NGÂN HÀNG ĐỀ TRẮC NGHIỆM CHUYÊN ĐỀ NGUYÊN HÀM, TÍCH PHÂN (Mà ĐỀ 01) C©u : p Tính: L = ò x sin xdx B L = -p C©u : B 11 C 3 D 1 Hàm số nào dưới đây là một nguyên hàm của hàm số: y = + x2 ilie A F ( x) = ln x - + x B F ( x) = ln x + + x C F (x) = + x2 D /ta C©u : ut Tính tích phân sau: A 6 D L = 0 C L = -2 oa n tk A L = p B C©u : Tính K = ò x dx x -1 A K = ln2 B w B 11/2 :// w Họ nguyên hàm của ex +1 ln +C ex - s A ht C©u : dx ò (1 + x A ln C©u : C e2 + 4 D e2 + 4 C K = 2ln2 D K = ln Diện tích hình phẳng giới hạn bởi đồ thị có phương trình A 8 C©u : K= w fa C©u : ln ce e2 + om e2 ok c A e Kết quả của tích phân I = ò ( x + ) ln xdx là: x bo C©u : F ( x) = x + + x )x x 1+ x C 7/2 là: D 9/2 ex là: e2x - ex -1 ln +C B ex +1 C ex - ln +C ex +1 B ln x x + + C C ln D ln e x - + C bằng: +C x +C + x2 D ln x ( x + 1) + C Tính tích phân sau: I = A I=0 2x + ò x dx -1 B I=2 C Đáp án khác D I=4 1 http://tailieutoan.tk C©u 10 : Thể tích khối tròn xoay tạo thành khi quay quanh trục hoành hình phẳng giới hạn bởi các đường x3 y= và y=x2 là C©u 11 : 468p (đvtt) 35 436p (đvtt) 35 B C 486p (đvtt) 35 Cho hàm số F(x) là một nguyên hàm của hàm số A và thì B C D B C : + sin x om Hàm số nào là nguyên hàm của f(x) = A F(x) = ln(1 + sinx) bo F(x) = - ok c B x D /ta C F(x) = 2tan là: ilie Diện tích hình phẳng giới hạn bởi đồ thị các hàm số A C©u 13 : ut C©u 12 : 9p (đvtt) D oa n tk A + tan x x p D F(x) = 1 + cot + 2 4 x3 + x sin x - cos x + c C x3 + sin x + x cos x + c B Đáp án khác D w w fa A ce C©u 14 : Tìm nguyên hàm I = ( x + cos x ) xdx ò x3 + x sin x + cos x + c f ( x) = e x - s A :// w C©u 15 : Hàm số F ( x) = e x + tan x + C là nguyên hàm của hàm số f(x) nào ht C sin x B f ( x) = e x + sin x D Đáp án khác e- x f ( x) = e x 1 + cos x C©u 16 : Diện tích hình phẳng giới hạn bởi y = - x2 và y=3|x| là: A C©u 17 : 17 B C 13 D p Tính: L = ò e x cos xdx 2 http://tailieutoan.tk A C©u 18 : L = ep + B L = (ep - 1) Kết quả của tích phân: I = ò A + ln B C L = -ep - 1 C ln D L = - (e p + 1) + 6x dx 3x + - ln 2 D 2+ ln A tan x +C B oa n tk C©u 19 : Nguyên hàm của hàm số f (x) = tan3 x là: tan x + ln cos x + C D C Đáp án khác tan x + p C©u 20 : ut a dx = Mệnh đề nào sau đây đúng? cos x ilie Biết : ò B a là một số lẻ C a là số nhỏ hơn 3 D a là số lớn hơn 5 Giá trị của tích phân là B ok c A D Không tồn tại C 12 B 12 Biết I = ò a :// B ln2 s ht C©u 24 : C D 6 x - ln x dx = + ln Giá trị của a là: x w A 3 ce dx = ap thì giá trị của a là + x2 w fa C©u 23 : Biết tích phân ò w A bo C©u 22 : om C©u 21 : /ta A a là một số chẵn Tìm nguyên hàm của hàm số f(x) biết f ( x) = C p D 2 2x + x + 4x + x + 3x A x + 3x +C x + 4x + B - C ln x + + ln x + + C D ( x + 3) ln x + x + + C C©u 25 : x + 4x + +C x4 dx 2x + -1 Tính I = ò 3 http://tailieutoan.tk A I = C I = B I = 5 D I = C©u 26 : Tính Diện tích hình phẳng giới hạn bởi đường cong và A B C D C©u 27 : Diện tích hình phẳng giới hạn bởi các đường: x = -1; x = 2; y = 0; y = x - x là: A - B C oa n tk 0 D C©u 28 : A B ut C /ta C©u 29 : om Tính tích phân sau: B Tính: I = ò dx x - 5x + B I = ln D C I = 1 D I = ln2 ce A I = -ln2 bo C©u 30 : D C ok c A ilie Tính tích phân sau: A w fa C©u 31 : Thể tích khối tròn xoay tạo thành khi cho đường x2 +(y-1)2=1 quay quanh trục hoành là 8p (đvtt) C©u 32 : B 4p (đvtt) C 2p (đvtt) C I= D 6p (đvtt) (2 x + x - 2)dx x +2 x - x - + ln 12 s C©u 33 : I= :// A w w Tính I = ò B I= + ln - ln - ln D Diện tích hình phẳng giới hạn bởi đồ thị các hàm số B 3 - ln + ln là: C 2 D 7/3 ht A 5/3 I= C©u 34 : Một nguyên hàm của hàm số: y = cos5x.cosx là: A F(x) = sin6x C©u 35 : ln m Cho A = ò 11 sin x + sin x B C F(x) = cos6x sin x sin x - + 2 D e x dx = ln Khi đó giá trị của m là: ex - A Kết quả khác B m=0; m=4 C m=4 D m=2 4 http://tailieutoan.tk C©u 36 : Tính I = ò dx x - x-2 2 A I = I = - ln C©u 37 : B I = ln B I = 1- C I = - 3ln2 D I = 2ln3 p Tính I = ò tg2 xdx A I = 2 p oa n tk C ln2 D I= p B S = Gọi F(x) là nguyên hàm của hàm số f ( x) = B 2ln2 t Với t thuộc (-1;1) ta có ò C 1/2 bo p p w w D 1/3 p ) B S=ln2; V = p ( - ) D S=ln3; V = p ( - 1+ 2x +1 s :// Kết quả của tích phân I = ò A + ln ht D -2ln2 ; y = gọi S là diện tích hình phẳng giới hạn bởi D. gọi V là thể tích vật tròn xoay khi D quay quanh ox. Chọn mệnh đề đúng. C S=ln3; V = p ( + C©u 43 : D S = p (đvdt) dx = - ln Khi đó giá trị t là: x -1 2 Cho hình phẳng D giới hạn bởi: y = tan x; x = 0; x = A S=ln2, V = p ( + C©u 42 : - (đvdt) thỏa mãn F(3/2) =0. Khi đó F(3) bằng: x - 3x + 2 w fa C©u 41 : C –ln2 B - p ce A C S = om A ln2 C©u 40 : (đvdt) ilie (đvdt) ok c C©u 39 : p /ta A S = ut C©u 38 : Diện tích hình phẳng giới hạn bởi hai đường y = x, y = x + sin2x và hai đường thẳng x = 0, x = p là: p p ) ) dx là: B + ln Gọi F(x) là nguyên hàm của hàm số f ( x) = C - ln 3 x - x2 D - ln thỏa mãnF(2) =0. Khi đó phương trìnhF(x) = x có nghiệm là: A x = 0 C©u 44 : B x = -1 C x = 1- D x = 1 Tính I = ò - x dx 5 http://tailieutoan.tk A I = p B I = C I = p D I = 2 C©u 45 : Hàm số nào là nguyên hàm của f(x) = x x + : B F(x) = ( x + 5) 3 A F(x) = ( x + 5) D 2 F ( x ) = 3( x + 5) oa n tk C F(x) = ( x + 5) C©u 46 : Thể tích của vật thể tròn xoay tạo bởi khi quay hình phẳng giới hạn bởi các đường y = x2 – 2x, y = 0, x = 0, x = 1 quanh trục hoành Ox có giá trị bằng? 7p (đvtt) Tính tích phân C a Tích phân ò ( x - 1)e2 x dx = A 2 sin x + C D (đvtt) D C -cos2x + C 8p D tg x + C ok c B - e2 . Giá trị của a là: B 4 bo cos x + C (đvtt) om B C C©u 48 : Họ nguyên hàm của hàm số: y = sin3x.cosx là: C©u 49 : ta được kết quả: A A 15p ut B ilie C©u 47 : 8p (đvtt) 15 /ta A C 3 D 1 C©u 50 : Hàm số f ( x) = x(1 - x) có nguyên hàm là: ce 10 F ( x) = ( x - 1)11 ( x - 1)10 +C 11 10 B F ( x) = ( x - 1)12 ( x - 1)11 + +C 12 11 C F ( x) = ( x - 1)12 ( x - 1) 11 +C 12 11 D F (x) = ( x - 1)11 ( x - 1)10 + +C 11 10 w w Biết tích phân ò :// C©u 51 : w fa A s A 7 2x + dx =aln2 +b . Thì giá trị của a là: 2- x B 3 C 1 D 2 ht C©u 52 : Diện tích hình phẳng giới hạn bởi y - y + x = , x + y = 0 là: A Đápsốkhác C©u 53 : B 5 C D 11 C K = 3ln + D K= Tính: K = ò (2 x - 1) ln xdx A K = 3ln2 B K = 3ln - 6 http://tailieutoan.tk C©u 54 : Tính tích phân A B C C©u 55 : D Các đường cong y = sinx, y=cosx với 0 ≤ x ≤ p 2 và trục Ox tạo thành một hình phẳng. Diện tích của hình phẳng là: B 2 2 - C Đáp số khác. C©u 56 : Cho I = (2 x + ln x ) dx Tìm I? ò 13 + ln2 C B + ln + ln 2 2 D 13 + ln ut A D oa n tk A C Một kết quả khác p p Cho I1 = ò cos x 3sin x + 1dx I2 = ò 2 0 Phát biểu nào sau đây sai? A Đáp án khác B I1 > I2 sin x dx (sinx+ 2)2 D 7 (đvdt) /ta B 11 (đvdt) om C©u 58 : 13 (đvdt) ok c A ilie C©u 57 : Diện tích hình phẳng giới hạn bởi đồ thị hàm số y=x2 và đường thẳng y= - x+2 là C I1 = 14 D 3 I2 = ln + 2 6p (đvtt) Tính tích phân sau: A C :// s ht Tìm nguyên hàm của hàm số f(x) biết f ( x) = C 3( x + 9 - x ) 27 15p (đvtt) 16 B Tính diện tích hình phẳng giới hạn bởi A B A D D Cả 3 đáp án trên C©u 61 : C©u 62 : 5p (đvtt) w C B w fa C©u 60 : 16p (đvtt) 15 w A ce bo C©u 59 : Cho hình phẳng giới hạn bởi các đường y = 2x – x2 và y = 0. Thì thể tích vật thể tròn xoay được sinh ra bởi hình phẳng đó khi nó quay quanh trục Ox có giá trị bằng? x + 93 + +C x + C và C 7 x+9 - x B 27 D 9 x + 93 - x + C D Đáp án khác 7 http://tailieutoan.tk C©u 63 : Với giá trị nào của m > 0 thì diện tích hình phẳng giới hạn bởi hai đường y = x2 và y = mx bằng đơn vị diện tích ? A m = 2 B m = 1 C m = 4 D m = 3 C ln cos x + C D ln(cosx) + C C©u 64 : Họ nguyên hàm của tanx là: A -ln cos x + C tan x +C B oa n tk C©u 65 : nguyên hàm của hàm số f ( x) = ex (1 - 3e-2 x ) bằng: A F ( x) = e x - 3e- x + C B F ( x) = e x + 3e-2 x + C C F ( x) = e x + 3e- x + C D F ( x) = e x - 3e-3 x + C C x tan + C C©u 67 : x tan + C 2 x tan + C B Tìm a sao cho I = ò [a +(4 - a)x + 4x ]dx = 12 C©u 68 : B a = - 3 C a = 3 Cho hàm số F(x) là một nguyên hàm của hàm số f(x) = cos3x và bo A C x tan + C = thì B D w fa ce D D a = 5 ok c A Đáp án khác ilie ut dx + cos x /ta A Tính: ò om C©u 66 : C©u 69 : Họ nguyên hàm của f(x) = sin x w cos x +C B w A - cos x + C cos x - cos x +C D - cos x + +c cos x :// sin x +C s C©u 70 : Gọi F1(x) là nguyên hàm của hàm số f1 ( x) = sin x thỏa mãnF1(0) =0 và F2(x) là nguyên hàm của ht hàm số f ( x) = cos2 x thỏa mãnF2(0)=0. A C©u 71 : A Khi đóphương trìnhF1(x) = F2(x) có nghiệm là: x = kp B x= Một nguyên hàm của f ( x) = F ( x) = e2 x + e x + x p + kp kp C x= B F ( x) = e2 x + e x D x = k 2p e3 x + là: ex + 8 http://tailieutoan.tk C F ( x) = e x - e x D F ( x) = e x - e x + C©u 72 : Diện tích hình phẳng giới hạn bởi: y = x - x; y = - x + x là: C©u 74 : Tìm nguyên hàm của hàm số f(x) biết f ( x ) = x + ln x + C B Họ nguyên hàm của A ln tan ln x + ln x + C 16 D + ln x x C ln x + ln x + C là: sin x x +C B ln cot x +C C -ln tan D Đáp án khác x +C D ln sin x + C /ta C©u 75 : Tính I = (2e x + e x )dx ? ò B 1 C©u 76 : -1 e om A e 20 ut A C ilie C©u 73 : B 9 oa n tk A -9 C ok c D e Cho f (x) là hàm số chẵn và ò f ( x)dx =a chọn mệnh đề đúng -3 A ò f ( x)dx = - a B A ò cos x sin xdx bằng: sin4 x + C w fa C©u 77 : -3 f ( x)dx =2a C ò f ( x)dx =a D ò f ( x)dx =a -3 ce ò bo B sin x +C C cos x + C D cos4 x + C w C©u 78 : Thể tích khối tròn xoay khi quay quanh trục Ox hình phẳng giới hạn bởi các đường :// w p y = x ln x, y = 0, x = e có giá trị bằng: (b e3 - 2) trong đó a,b là hai số thực nào dưới đây? B a=24; b=6 s A a=27; b=5 a C a=27; b=6 D a=24; b=5 ht C©u 79 : Diện tích hình phẳng giới hạn bởi hai đường cong y = (1 + e ) x và y = (e + 1) x là? A x e -1 ( đvdt) B e - ( đvdt) C e +1 ( đvdt) D e + ( đvdt) p C©u 80 : Tính I = ò x cos xdx A I = p B I = p + 1 C I = p D I = p - 2 C©u 81 : Hình phẳng D giới hạn bởi y = 2x và y = 2x + 4 khi quay D xung quanh trục hoành thì thể tích khối 9 http://tailieutoan.tk tròn xoay tạo thành là: 288 (đvtt) B V = 72 p (đvtt) D V = C V = + p (đvtt) C©u 83 : A 2x 3 - +C x B x4 + là: x2 -3x3 + C x x3 + +C x C D a Biết ò (4 sin x - )dx = giá trị của a (0;p ) là: a= p B a= p C a= p ut A Nguyên hàm của hàm số y = ilie C©u 82 : 4p (đvtt) x3 - +C x oa n tk A V = D a= p B 7 C 6 D 10 om A 27 /ta C©u 84 : Cho S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 - 6x2 + x và trục Ox. Số nguyên lớn nhất không vượt quá S là: C©u 85 : Xác định a,b,c để hàm số F ( x) = (ax + bx + c)e là một nguyên hàm của hàm -x B a = -1, b = 1, c = 1 Cho hàm số C©u 87 : e w fa A C C bo C©u 86 : a = 1, b = 1, c = -1 ce A ok c số f ( x) = ( x - 3x + 2)e - x a = -1, b = 1, c = -1 D a = 1, b = 1, c = 1 và tính B D w ln x dx x w Tính: J = ò :// J= B s A J= C J= D J= ht C©u 88 : Tính diện tích hình phẳng được giới hạn bởi đường cong A C©u 89 : và hai trục tọa độ. B Họ nguyên hàm của f(x) = x +C A F(x) = ln x +1 C D là: x ( x + 1) B F(x) = ln x +C x +1 10 http://tailieutoan.tk C©u 26 : p e2 Cho I = ò A C©u 27 : cos ln x dx , ta tính được : x B I =1 I = cos1 C I = sin1 D Một kết quả khác C - D p Tích phân ò cos x sin xdx bằng: B 0 oa n tk A C©u 28 : Diện tích hình phẳng giới hạn bởi các đường cong y = x + sin x và y = x , với x 2p bằng: 0 D 1 sin p t + m / s Tính quảng đường di chuyển của 2p p vật đó trong khoảng thời gian 1,5 giây (làm tròn kết quả đến hàng phần trăm). Vận tốc của một vật chuyển động là v t = 0,16 m B 0, 43 m C 0, 61m D 0,34 m /ta A C 4 ut C©u 29 : B -4 ilie A C©u 31 : sin 4x sin 2x + B 3sin 3x + sin x D cos 4x cos 2x + bo 1+ 1+ x dx thành ò f (t )dt , với t = + x Khi đó f (t ) là hàm nào trong các hàm số sau? B w f (t ) = t + t D a + 2b = 13 f (t ) = 2t + 2t C f (t ) = 2t - 2t D f (t ) = t - t e2 - C e2 - 1 D e2 D a4 e w C©u 33 : x w fa Biến đổi ò C a + b2 = 41 B a - b > ce 3a - b 12 C©u 32 : A sin 4x sin 2x + dx a = ln (với a, b là các số tự nhiên và ước chung lớn nhất của a, b bằng 1). Chọn x +3 b khẳng định sai trong các khẳng định sau: Giả sử ò A C ok c A om C©u 30 : Cho hàm số f x = cos3x.cos x . Nguyên hàm của hàm số f x bằng 0 khi x = là hàm số nào trong các hàm số sau ? Tích phân ò x ln xdx bằng :// 1 e2 - s A ht C©u 34 : A C©u 35 : B Khẳng định sau kết x a2 B p a 2 C p x a4 p Cho I = ò e cos xdx ; J = ò e sin xdx và K = ò e x cos xdx Khẳng định nào đúng trong các khẳng x3 dx ln ? 1 a x định sau? (I) I + J = ep 93 http://tailieutoan.tk (II) I - J = K ep - A Chỉ (I) và (II) C Chỉ (II) Khẳng định sau sai kết 1 C©u 37 : a.b 3(c 1) Cho ò B ac b ? C a b 2c 10 B - D 1 + C 3cos x cos x sin x dx , nguyên hàm tìm được là? cos x 1 + + C 3cos x cos x A - C 1 + +C 3cos x cos x D ab c 1 + C 3cos x cos x ut A x 1 b dx a ln 1 x 2 c D Chỉ (I) ilie C©u 36 : B Chỉ (III) oa n tk (III) K = B 125 C 95 D om C©u 39 : 65 265 x2 + Nguyên hàm F ( x ) của hàm số f ( x) = là hàm số nào trong các hàm số sau? x ok c A /ta C©u 38 : Diện tích hình phẳng giởi hạn bởi các đường cong y = x + 2x và y = x + F( x ) = B x3 +x F ( x) = + C x D F( x ) = ce C w fa A bo x3 +x F ( x) = + C x x3 - + 2x + C x x3 + + 2x + C x w f x = 3x - cos x B f = 3 C :// A w C©u 40 : Cho f (x ) = - sin x và f (0) = 10 Trong các khẳng định sau khẳng định nào đúng? 3 f = 2 D f (x ) = 3x + cos x + D 23 15 s C©u 41 : Diện tích hình phẳng (H) giới hạn bởi hai đường y = x y = 2x ht A C©u 42 : B C Diện tích hình phẳng giới hạn bởi đường thẳng y = - x và patabol y = x2 bằng: 94 http://tailieutoan.tk oa n tk 22 B C©u 43 : 26 C 28 D p 25 ut A ilie Cho tích phân I = ò e sin x sin x cos xdx Nếu đổi biến số t = sin2 x thì I= 1 t e dt + te t dt ò ò 0 /ta C B I= om A 1 I = ò e t dt + ò te t dt 0 1 t e (1 - t )dt ò0 I = ò e t (1 - t )dt ok c D C©u 44 : Thể tích vật thể tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau quanh trục hoành A bo +p f '( x ) dx 17 , giá Nếu f (1) 12, f '( x ) liên tục 5 C©u 46 : B p (4 + p ) D p (4 - p ) trị f (4) bằng: 9 C 29 D 19 C - ln D 0 w e2 x :// Hàm số f ( x) = ln s A bằng C B w fa C©u 45 : 4-p 4 w A p ce y = tan x, y = 0, x = 0, x = ò t ln tdt đạt cực đại tại x = ? ex B - ln ht C©u 47 : Cho đồ thị hàm số y f x Diện tích hình phẳng (phần tô đậm trong hình) là: 95 http://tailieutoan.tk A f x dx 3 C f x dx f x dx 3 3 3 0 f x dx f x dx B f x dx f x dx D C©u 48 : Họ nguyên hàm của hàm số y = (2 x - 1)e là x x3 dx = ln b Chọn phát biểu đúng về mối quan hệ a và b x +1 a B Họ nguyên hàm F x của hàm số f x = C Fx = +C sin x B +C sin x D ht A D Fx = Fx = a - b = -2 cos x +C sin x +C sin x w B w x +C C©u 54 : x 1 I = ò (u + 1)u 5du D I = ò x (1 - x )5 dx C 2x + + C D 2x C 2 x +1 +C D 2 x -1 +C C ln dx , kết quả sai là: x2 2x - + C Tính ò bo w fa 1 u6 u5 I = + ce B Tính ò 2x s C©u 53 : 13 I = 42 ln :// A (2 x - 3)e x + C Cho I = ò x (x - 1)5 dx và u = x - Chọn khẳng định sai trong các khẳng định sau: C©u 52 : cos x là: - cos x om Fx = - a = b C a + b = 2 ut a = 2 b A A D ilie C©u 51 : (2 x + 3)e x C /ta Cho ò C©u 50 : (2 x - 3)e x p C©u 49 : A B oa n tk (2 x + 3)e x + C ok c A x 2x +C +1 +C dx , kết quả sai là: B x +1 +C p p 2 Cho hai tích phân I = ò sin xdx và J = ò cos xdx Hãy chỉ ra khẳng định đúng: A C©u 55 : I = J B Một nguyên hàm của 2sin2 I J C Không so sánh được D I > J x là: 96 http://tailieutoan.tk A 2sinx x 2 C cos B x + sinx D x - sinx C©u 56 : Cho Hàm số f x g x liên tục trên a;b và thỏa mãn f x > g x > với mọi x a; b Gọi V là thể tích khối tròn xoay sinh ra khi quay quanh Ox hình phẳng giới hạn đồ thị C : y = f x ; C' : y = g x ; đường thẳng x = a ; x = b . V được tính bởi công thức nào sau đây ? b B a C C©u 57 : b b V = p ò f x - g x dx a D V = ò f x - g x dx a Cho a > , hai số thực phân biệt , và hai số thực r = tan C ò B òx dx = ar - k x2 + a D a , k = tan a Khi đó đẳng thức nào dx = k - r +a a /ta ò dx = ak - r x + a2 om ilie sau đây là đúng. A oa n tk a V = pò f x - g x dx ut A b V = pò f (x) - g (x) dx òx dx = r - k + a2 a a A f (t ) dt x , x t2 19 B C©u 60 : Tính I = ò p :// I= D p2 C 9 D 29 C I= p D I = p B ò x4 + x -4 + dx = ln x - + C x 4x D x2 x +1 ò - x dx = ln x - - x + C hệ số a : 5 dx , kết quả là : x x -3 w A p2 C ce x Nếu p2 bo B w fa C©u 59 : p2 w A ok c C©u 58 : Thể tích của khối tròn xoay do hình phẳng (H) giới hạn bởi cácđường y = sin x ; y = ; x = 0; x = p khi quay xung quanh Ox là : B I= p s C©u 61 : Kết quả nào sai trong các kết quả sao? ò tan C x+1 - x-1 ò 10 x dx = 5.2 x.ln + 5x.ln + C ht A xdx = tan x - x + C C©u 62 : Gọi S là Diện tích hình phẳng giới hạn bởi các đường y = x - 3x ; y = x ; x = -2 ; x = Vậy S bằng bao nhiêu ? A 8 B 2 C 4 D 16 97 http://tailieutoan.tk C©u 63 : Giá trị của ò 2e xdx bằng: B C©u 64 : sin Cho I n x cos x dx 3e C D D 5 C 1+ x dx một học sinh đã thực hiện các bước sau: x2 Để tính I= ò I Đặt t= x suyra x = t2, dx=2tdt II I= ò 4 ut 1+ t 2tdt = ò t -3 + t -2 dt t 1 1 I= - - t1 2t 39 IV I= 16 om /ta III B IV ok c Cách làm trên sai từ bước nào ? A I 4e Khi đó n bằng: 64 B A 6 C©u 65 : e4 - 1 oa n tk e4 ilie A C III D II hoành y = - x , y = B e Cho ò x ln x dx = ht C©u 69 : A C©u 70 : A B w 29 B C a - b = 4 D a - b = 12 Tính ò dx 1- x B D a.b = 46 f (2 x ) dx D 9 D x2 - x - x +1 : 19 C 5 Hàm số nào dưới đây không là nguyên hàm của hàm số f ( x) = x2 + x + x +1 4p f ( x )dx 10 , s A C 3ea +1 Khẳng định nào sau đây là đúngvới kết quả đã cho. b Nếu f ( x ) liên tục :// C©u 68 : a.b = 64 w A ce C©u 67 : 3p w fa A bo C©u 66 : Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau quanh trục x2 + x - x+1 C C 1- x C x(2 + x) ( x + 1)2 x2 x +1 , kết quả là: -2 - x + C B C 1- x D 1- x +C 98 http://tailieutoan.tk C©u 71 : Hàm số F( x) = e x2 là nguyên hàm của hàm số f ( x) = e C©u 72 : C©u 74 : D f ( x) = x e x - C D C I n = xn ex + nI n -1 D I n = xn ex - nI n-1 dx bằng: cos2 x B Cho n Khi đó : I n = ò x n e x dx * I n = xn ex - I n-1 I n = xne x + I n-1 B Một vật chuyển động với vận tốc v t = 1, + t2 + m / s Tìm quảng đường vật đó đi được trong t +3 B Đáp án khác 0 C /ta 26, 09 m oa n tk 4 giây (làm tròn kết quả đến hàng phần trăm) A ut A C ex f ( x) = 2x p C©u 73 : f ( x) = xe B Giá trị của ò (1 - tan x) A x2 ilie A 2x 4, 05 m D 11,81m B 1 C 21 ok c A 10 om C©u 75 : Giả sử f x dx = và f z dz = Tích phân f t dt bằng ò ò ò D 4 C©u 76 : Họ nguyên hàm của hàm số f x = s in3 x.cosx là: B sin x+C sin x +C bo C cos x +C D sin4 x.cosx +C D D I=ò D 5 ce A A w fa C©u 77 : Diện tích hình phẳng giới hạn bởi các đường y = x - x và y = bằng B w C©u 78 : ht C©u 79 : A C©u 80 : A ò tdt I= ò t -1 Nếu B tdt I=ò 2 t +1 C f ( x ) dx 17 B Một nguyên hàm t dt I=-ò t -1 t dt 2 t +1 f ( x ) dx : 15 ( x 2) sin xdx B 3 10 f ( x )dx 12 29 S 14 10 C 2 x2 + 1 + x2 t = Nếu đổi biến số thì dx x x2 s A :// w Cho tích phân I = S 3 C 5 ( x a ) cos3 x sin 3x 2017 tổng S a.b c : b c C S 15 D S 10 99 http://tailieutoan.tk C©u 81 : -1 -1 A 11 C©u 82 : Nếu B 30 C 2 f ( x ) dx 10 A Giả sử ò f t dt = và ò f r dr = Tích phân ò f u du bằng f ( x )dx , 17 B D 1 : f ( x ) dx 170 C 3 D C f (x ) = e - x + e x + f (x ) = e x - e -x + D f (x ) = e x + e -x + x Để tính I = ò ln x + x + dx một học sinh đã thực hiện các bước sau: /ta C©u 84 : B ut f (x ) = e x - e -x + ilie x A oa n tk C©u 83 : Hàm số F (x ) = e x + e -x + x là nguyên hàm của hàm số 3 u = ln x + x + du = I.Đặt x2 + dv = dx v = x ok c 1 II. I= ò udv = uv - ò vdu 0 bo om ce III. I= xln x+ x + - x + = ln + + - w fa Lập luận trên sai từ bước nào ? A I B II C III D Không có buớc nào sai ht s :// w w C©u 85 : Cho đồ thị hàm số y = f ( x) Diện tích hình phẳng (phần gạch trong hình) là: A ò f ( x)dx B -3 ò -3 f ( x)dx + ò f ( x)dx C ò -3 f ( x)dx + ò f ( x)dx D -3 ò f ( x)dx + ò f ( x)dx 0 C©u 86 : Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 và đường thẳng y = x là: A B C D 23 15 C©u 87 : Tìm khẳng định sai trong các khẳng định sau: 100 http://tailieutoan.tk òx p D 6 3 p Cho tích phân I = ò 2 C sin x - 2 cos x + B C x là: B ln x + C x + ok c x +1 om x +1 D , với > thì I bằng: 2 Một nguyên hàm của hàm số f ( x) = 4 ut B oa n tk Khi đó n bằng: 64 ilie Cho I = ò sin n x cos xdx = C©u 89 : A x sin dx = ò0 ò0 sin xdx p C©u 90 : (1 + x)dx = 2009 C©u 88 : A x ò (1 + x) dx = p 2007 -1 A B C D 5 /ta A ò sin(1 - x)dx = ò sin xdx x2 + D C©u 91 : Tính Diện tích hình phẳng giới hạn bởi các đường y = ln x, y = 0, x = e A 2 B 3 C e D 1 ce B 0 C w fa A bo C©u 92 : Diện tích hình phẳng giới hạn bởi các đường cong y = x và y = x bằng: C©u 93 : B w a 2b 2 -4 1 (2 x 1 sin x )dx a b 1 ? a b C a b D 2a 3b D 1 Nếu ò f (x )dx = và ò f (x )dx = thì ò f (x )dx có giá trị bằng s :// C©u 94 : w Khẳng định sau sai kết A D 2 A 12 B 7 C -1 B òx D ò 0dx = C ( C là hằng số) ht C©u 95 : Trong các khẳng định sau khẳng định nào sai? A ò x dx = ln x + C (C là hằng số) C ò dx = x + C (C là hằng số) dx = x +1 + C (C là hằng số) +1 C©u 96 : Một nguyên hàm của hàm số f x = sin x + cos x là: A F(x) = sin x + sin x B F(x) = cos x - sin x 101 http://tailieutoan.tk D F(x) = C F(x) = - cos x + sin x cos x + sin x C©u 97 : Một vật chuyển động với vận tốc v t m / s và có gia tốc là v ' t = m / s Vận tốc ban t +1 đầu của vật là m / s Hỏi vận tốc của vật sau 10 giây (làm tròn kết quả đến hàng đơn vị) A 14 n C©u 98 : Cho I n = ò sin xdx B 15 n * Khi đó : C 13 D 16 In = sin n -1 x.cos x n - + I n -1 n n B In = - sin n -1 x.cos x n - + I n -1 n n C In = sin n -1 x.cos x n - + I n- n n D In = - sin n -1 x.cos x n - + I n- n n d b a B -2 3 C 0 ilie a A b ut d Nếu ò f ( x)dx = ; ò f ( x)dx = , với a d b ò f ( x)dx bằng: /ta C©u 99 : oa n tk A D 8 0 A 3 om 6 C©u 100 Cho f (x)dx = 10; f (x)dx = 7; : ò ò ò f (x)dx có giá trị bằng? C -3 D 17 ok c B 170 ht s :// w w w fa ce bo 102 http://tailieutoan.tk ®¸p ¸n M· ®Ò : 06 ) | } ~ 36 { | } ) 71 { ) } ~ 02 { ) } ~ 37 ) | } ~ 72 { ) } ~ 03 ) | } ~ 38 { ) } ~ 73 { | } ) 04 ) | } ~ 39 { | ) ~ 74 { | } ) 05 ) | } ~ 40 { ) } ~ 75 { | } ) 06 { ) } ~ 41 ) | } ~ 76 { | } ) 07 { | } ) 42 { | ) ~ 77 { | } ) 08 { | } ) 43 { | ) ~ 78 09 { | } ) 44 { | } ) 79 10 ) | } ~ 45 { | ) ~ 11 ) | } ~ 46 { | ) ~ 12 { | } ) 47 { | ) 13 { ) } ~ 48 { | 14 { ) } ~ 49 ) 15 { ) } ~ 50 ) 16 { | ) ~ 51 17 ) | } ~ 18 { | } ) 19 { | ) 20 { | } 21 { ) 22 { | ) ~ { | ) ~ 80 { | ) ~ 81 { | } ) ~ 82 { | ) ~ } ) 83 { ) } ~ | } ~ 84 { | } ) | } ~ 85 { ) } ~ { ) } ~ 86 { ) } ~ 52 { ) } ~ 87 { ) } ~ 53 ) | } ~ 88 { ) } ~ ~ 54 ) | } ~ 89 { | ) ~ ) 55 { | } ) 90 { | } ) } ~ 56 ) | } ~ 91 { | } ) | } ) 57 { | } ) 92 ) | } ~ { | ) ~ 58 ) | } ~ 93 { | ) ~ 24 ) | } ~ 59 { | ) ~ 94 { ) } ~ 25 { | } ) 60 ) | } ~ 95 { ) } ~ 26 ) | } ~ 61 { | ) ~ 96 { | } ) 27 ) | } ~ 62 ) | } ~ 97 { | ) ~ 28 { ) } ~ 63 { ) } ~ 98 { | } ) 29 { | } ) 64 { | ) ~ 99 { ) } ~ 30 ) | } ~ 65 { | } ) 100 ) | } ~ ht s 23 :// w w w fa ce bo ok c om /ta { ilie ut oa n tk 01 103 http://tailieutoan.tk { ) } ~ 66 { | } ) 32 { | ) ~ 67 ) | } ~ 33 { ) } ~ 68 { | ) ~ 34 { | ) ~ 69 { ) } ~ 35 { | ) ~ 70 ) | } ~ oa n tk 31 ht s :// w w w fa ce bo ok c om /ta ilie ut 104 http://tailieutoan.tk Đáp án 1 A 2 B 3 A 4 A 5 A 6 B 7 D 8 D 9 D 10 A ut ilie A /ta 11 12 om 13 14 ok c 15 16 bo 17 B B B C A D C D B 22 D 23 C 24 A 25 D 26 A 27 A 28 B 29 D 30 A 31 B 32 C 33 B 34 C w 21 :// s ht D w w fa 20 ce 18 19 oa n tk Câu 105 http://tailieutoan.tk C 36 D 37 A 38 B 39 C 40 B 41 A 42 C 43 C 44 D 45 C 46 C ilie ut 35 C /ta 47 48 om 49 50 ok c 51 52 bo 53 A A B B A A D A D 58 A 59 C 60 A 61 C 62 A 63 B 64 C 65 D 66 D 67 A 68 C 69 B 70 A w 57 :// s ht D w w fa 56 ce 54 55 oa n tk 106 http://tailieutoan.tk B 72 B 73 D 74 D 75 D 76 D 77 D 78 C 79 C 80 C 81 D 82 C ilie ut 71 B /ta 83 84 om 85 86 ok c 87 88 bo 89 B B B C A C 94 B 95 w B 96 D 97 C 98 D 99 B 100 A w 93 :// s ht B D w fa 92 D D ce 90 91 oa n tk 107 http://tailieutoan.tk [...]... http://tailieutoan.tk NGÂN HÀNG ĐỀ TRẮC NGHIỆM CHUYÊN ĐỀ NGUYÊN HÀM, TÍCH PHÂN (Mà ĐỀ 02) C©u 1 : 2 Giá trị của ò x2 - 1 dx là -2 C©u 2 : B 4 C 5 D 3 1 x Nguyên hàm của hàm số f x = x2 – 3x + là x 3 3x 2 + + ln x + C 3 2 B F(x) = C F(x) = x 3 3x 2 + ln x + C 3 2 D F(x) = ln e x - e - x + C B ln e x + e- x + C /ta ilie x3 3 x 2 - ln x + C 3 2 om e x - e- x Nguyên hàm của hàm số ... C 96 B 97 A 98 A 99 B 100 C w 93 :// tp s ht C C w fa 92 C C ce 90 91 oa n tk 34 http://tailieutoan.tk NGÂN HÀNG ĐỀ TRẮC NGHIỆM CHUYÊN ĐỀ NGUYÊN HÀM, TÍCH PHÂN (Mà ĐỀ 03) C©u 1 : Nguyên hàm của hàm số cos x.sin 2 x.dx bằng: ò : 2 Diện tích hình phẳng giới hạn bởi y = x - 4 x + 5 và hai tiếp tuyến tại A(1; 2) và B(4; 5) là: 11 4 B C©u 3 : 9 4 C D 4 x3 dx = 0... x + C C Đáp án khác D x ln x - x + C C f x liên tục trên K ht A C w B x2 + x + 1 x +1 Họ nguyên hàm F(x) của hàm số f ( x) = tp s C©u 41 : x2 - x -1 x +1 w A B f x có giá trị lớn nhất trên K D f x có giá trị nhỏ nhất trên K Hàm số nào sau đây không là nguyên hàm của hàm số f ( x) = :// C©u 40 : ce f x xác định trên K w fa A bo C©u 39 : Hàm số f x có nguyên hàm trên K nếu ... 5 D ln x 1+ x2 +C w 4 Tìm nguyên hàm: ò ( 3 x2 + )dx x - 33 5 x + 4 ln x + C 5 tp s A x +C 1+ x2 w C©u 14 : ln :// A w fa 2 C (b) ce C©u 13 : B (a) bo A (c) ok c 1 1- x ilie (c) x2 + 6x + 1 x 2 + 10 đều là nguyên hàm của một hàm số. ; g ( x) = 2x - 3 2x - 3 /ta Hai hàm số f ( x ) = om (b) ut C©u 12 : Khẳng định nào sau đây là đúng : (a) Một nguyên hàm của hàm số y = ecos x là - sin x.ecos... C sin 3 x sin 5 x + +C 3 5 bo A=- p Tích phân ò x + 2 cos 2 xdx = 0 0 B 1 2 C 1 4 D 1 - 4 w A -1 ce C©u 31 : e 8 D Đáp án khác w fa C p3 om C©u 30 : Tính A = sin 2 x cos3 x dx , ta có ò C /ta p3 x4 x C 4 ut p Tích phân e x A D ilie A oa n tk C©u 28 : Nguyên hàm của hàm số f x x 3 trên là :// 32 3 B tp s A w C©u 32 : Diện tích hình phẳng được giới hạn bởi hai đường... = 1 - x 2 Thể tích của khối tròn xoay khi quay (S) quanh Oxlà C©u 5 : w fa 1 Đổi biến x=2sint tích phân I = A ò dt 4 - x2 D 4 p 3 trở thành p p p 6 6 3 ò tdt C 0 1 ò0 t dt D ò dt 0 1 Cho f ( x ) là hàm số lẻ và liên tục trên Khi đó giá trị tích phân tp s C©u 6 : B 0 dx 2 p 3 :// 0 w 6 w p ò C ò f ( x) dx là: -1 B -2 ht A 1 C 2 D 0 C©u 7 : Họ các nguyên hàm của hàm số y = sin... x C©u 90 : Tìm nguyên hàm của hàm số f(x) biết f ( x) = tan 2 x A tan 3 x +C 3 B Tanx-1+C C©u 91 : sin x - x cos x +C cos x C D Đáp án khác a dx = 0 4 - x2 0 A a=ln2 B a=0 oa n tk Tìm a thỏa mãn: ò C a=ln3 D a=1 3 C©u 92 : Diện tích hình phẳng giới hạn bởi đồ thị hàm số y=x , trục hoành và các đường thẳng x= -1, x=3 là B 27 (đvdt) 2 C 41 (đvdt) 2 1 Giá trị của tích phân ò x 3 3 1... Dùng phương pháp lấy nguyên hàm từng phần, đặt dv sin 4 x cos 4 xdx C Dùng phương pháp đổi biến số, đặt t sin x 45 4 bo B C 27 4 D 21 4 3 Nguyên hàm F x của hàm số f x = sin 4 2 x thỏa mãn điều kiện F 0 = là 8 ce C©u 75 : 57 4 w fa A ok c om u sin 4 x D Dùng phương pháp lấy nguyên hàm từng phần, đặt dv cos5 xdx C©u 74 : Diện tích hình phẳng giới hạn bởi đồ thị hàm số ... 2 C©u 8 : Diện tích hình phẳng giới hạn bởi đường cong y = x2 + 1, tiếp tuyến với đường này tại điểm M(2; 5) và trục Oy là: A 2 B 7 3 C 5 3 D 8 3 18 http://tailieutoan.tk C©u 9 : 1 Cho f ( x ) là hàm số chẵn và liên tục trên thỏa mãn ò f ( x ) dx = 2 Khi đó giá trị Tích phân -1 1 ò f ( x) dx là: 0 A 2 B 1 4 C 1 2 D 1 oa n tk C©u 10 : Họ nguyên hàm của hàm số f x =... và F(2)=1. Khi đó F(3) bằng bao nhiêu: x -1 ok c Biết F(x) là nguyên hàm của hàm số om /ta ilie C©u 55 : Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = -x 2 + 4x và các tiếp tuyến với đồ thị hàm số a biết tiếp tuyến đi qua M(5/2;6) có kết quả dạng khi đó a-b bằng b 12 A C 5 B 14 D -5 11 C 3 ln 2 D 1 2 w fa ce C©u 57 : Thể tíchvật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường ... http://tailieutoan.tk NGÂN HÀNG ĐỀ TRẮC NGHIỆM CHUYÊN ĐỀ NGUYÊN HÀM, TÍCH PHÂN (Mà ĐỀ 02) C©u : Giá trị của ò x2 - dx là -2 C©u : B 4 C 5 D 3 x Nguyên hàm của hàm số f x = x2 –... 57 : Diện tích hình phẳng giới hạn bởi đồ thị hàm số y=x2 và đường thẳng y= - x+2 là C I1 = 14 D 3 I2 = ln + 2 6p (đvtt) Tính tích phân sau: A C :// s ht Tìm nguyên hàm của hàm số f(x) biết ... Họ nguyên hàm F(x) của hàm số f ( x) = s C©u 41 : x2 - x -1 x +1 w A B f x có giá trị lớn nhất trên K D f x có giá trị nhỏ nhất trên K Hàm số nào sau đây không là nguyên hàm của hàm số