Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 14 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
14
Dung lượng
1,48 MB
Nội dung
GROUP THBTN - TÀI LIỆU THPT Sở GD - ĐT HƯNG YÊN LẦN ĐỀ THI THỬ THPT QUỐC GIA NĂM 2017 Mơn: Tốn Thời gian làm bài: 50 phút Câu 1: Cho a > 0; b > thỏa mãn a + b2 = ab Chọn mệnh đề mệnh đề sau? a+b = ( log a + log b ) A 3log ( a + b ) = ( log a + log b ) B log 3 C ( log a + log b ) = log ( ab ) D log ( a + b ) = ( log a + log b ) Câu 2: Số canh hình lập phương A B 12 C 16 D 10 Câu 3: Trong hàm số sau, hàm số đồng biến khoảng xác định nó? 2x + I ) ; y = − x + x − ( II ) ; y = x − x − ( III ) ( x+1 B Chỉ I C I III y= A I II D II III Câu 4: Điểm cực đại đồ thị hàm số y = x − 5x + x − 3 32 A ; ÷ 27 −32 B ; ÷ 27 C ( 1; ) D ( 0; −3 ) π π Câu 5: Giá trị lớn hàm số y = 3sin x − sin x khoảng − ; ÷ bằng: 2 A B C D -1 Câu 6: Cho khối chóp có đáy đa giác lồi có cạnh Trong mệnh đề sau, mệnh đề đúng? A Số mặt khối chóp 14 B Số đỉnh khối chóp 15 C Số mặt khối chóp số đỉnh D Số cạnh khối chóp f ( x ) = Với giả thiết đó, Câu 7: Cho hàm số y = f ( x ) xác định khoảng ( 0; +∞ ) thỏa mãn lim x →∞ chọn mệnh đề mệnh đề sau? A Đường thẳng y = tiệm cận đứng đồ thị hàm số y = f ( x ) B Đường thẳng x = tiệm cận ngang đồ thị hàm số y = f ( x ) C Đường thẳng y = tiệm cận ngang đồ thị hàm số y = f ( x ) D Đường thẳng x = tiệm cận đứng đồ thị hàm số y = f ( x ) Câu 8: Cho hàm số y = mx − ( m − 1) x − Tìm tất giá trị thực m để đồ thị hàm số có ba điểm cực trị A m ≤ B < m < C m > D m ∈ ( −∞ ; ) ∪ ( 1; +∞ ) x2 + x − có tiệm cận đứng x2 − x + m A m < m ≠ −8 B m ≠ m ≠ −8 C m > m ≠ −8 D m > Câu 10: Cho khối lăng trụ tam giác ABC A ' B ' C ' tích 30 (đơn vị thể tích) Thể tích khối tứ Câu 9: Tìm m đề đồ thị hàm số y = diện AB’C’C là: A 12,5 (đơn vị thể tích) C 7,5 (đơn vị thể tích) B 10 (đơn vị thể tích) D (đơn vị thể tích) Thành viên tí hon: Vũ Thị Ngọc Huyền · Câu 11: Cho hình chóp S.ABCD có đáy ABCD hình thoi tâm I có cạnh a, BAD = 60 Gọi dmH trung điểm IB SH vng góc với ( ABCD ) Góc SC ( ABCD ) 450 Tính thể tích khối chóp S.AHCD dm 35 39 39 35 B C D a a a a 32 24 32 24 Câu 12: Cho khối tứ diện ABCD Lấy điểm M nằm A B, điểm N nằm C D Bằng 2m hai mặt phẳng ( MCD ) ( NAB ) ta chia khối tứ diện cho thành bốn khối tứ diện: 1m A AMCN, AMND, BMCN, BMND B AMCN, AMND, AMCD, BMCN C BMCD, BMND, AMCN, AMDN D AMCD, AMND, BMCN, BMND 5m Câu 13: Người ta muốn xây dựng bồn chứa A nước dạng khối hộp chữ nhật phòng tắm Biết chiều dài, chiều rộng, chiều cao khối hộp 5m, 1m, 2m (như hình vẽ) Biết viên gạch có chiều dài 20cm, chiều rộng 10cm, chiều cao 5cm Hỏi người ta cần sử dụng viên gạch để xây hai tường phía bên ngồi bồn Bồn chứa lít nước? (Giả sử lượng xi măng cát không đáng kể) A 1180 viên; 8800 lít C 1180 viên; 8820 lít B 1182 viên; 8820 lít D 1182 viên; 8800 lít x Câu 14: Đạo hàm hàm số y = 10 là: 10 x B 10 x.ln10 C x.10 x −1 D 10 x ln10 Câu 15: Cho hình chóp S.ABCD có đáy ABCD hình bình hành, M N theo thứ tự trung điểm A SA SB Tính tỉ số thể tích A VS.CDMN là: VS.CDAB B Câu 16: Cho hàm số y = điểm phân biệt? A < m < C D x có đồ thị ( C ) Tìm m để đường thẳng d : y = −x + m cắt đồ thị ( C ) hai x −1 B m < m > C m < m > D m < m > Câu 17: Biểu thức Q = x x x với ( x > ) viết dạng lũy thừa với số mũ hữu tỷ A Q = x B Q = x C Q = x D Q = x 4 Câu 18: Cho hàm số y = x − mx + 2m + m Với giá trị m đồ thị ( C m ) có điểm cực trị, đồng thời điểm cực trị tạo thành tam giác có diện tích A m = 16 B m = 16 Câu 19: Giá trị biểu thức E = A B 27 27 1− −1 C m = 16 D m = − 16 C D bằng: Câu 20: Tìm tiệm cận đứng tiệm cận ngang đồ thị hàm số y = A Tiệm cận đứng x = 1, tiệm cận ngang y = −1 B Tiệm cận đứng y = 1, tiệm cận ngang y = 2x + x −1 Thành viên tí hon: Vũ Thị Ngọc Huyền C Tiệm cận đứng x = 1, tiệm cận ngang y = D Tiệm cận đứng x = 1, tiệm cận ngang x = Câu 21: Đường cong hình vẽ đồ thị hàm số đây? A y = x − x + B y = x − x + C y = −x + x + D Tất sai Câu 22: Cường độ trận động đất cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ đo độ Richter Trong năm đó, trận động đất khác Nhật Bản có cường độ đo độ Richer Hỏi trận động đất San Francisco có biên độ gấp lần biên độ trận động đất Nhật bản? A 1000 lần B 10 lần C lần D 100 lần Câu 23: Tìm tất giá trị thực tham số m cho hàm số y = ( m + 1) x + 2m + nghịch biến khoảng ( −1; +∞ ) A m ∈ ( −∞ ;1) ∪ ( 2; +∞ ) B m ≥ C −1 < m < x+m D ≤ m < Câu 24: Tìm m để hàm số y = − x + 3mx − ( 2m − 1) x + nghịch biến ¡ A m = B Khơng có giá trị m C m ≠ D Luôn thỏa mãn với giá trị m Câu 25: Cho hình chóp S.ABC có đáy ABC tam giác vuông A, AB = a , AC = a , SC = 3a SA vng góc với đáy (ABC) Thể tích khối chóp S.ABC A a3 12 Câu 26: Cho hàm số y = B a3 C a3 D a3 4 x − x − Chọn khẳng định A Hàm số đồng biến khoảng ( −2; ) ( 2; +∞ ) B Hàm số đồng biến khoảng ( −∞ ; −2 ) ( 0; ) C Hàm số nghịch biến khoảng ( −∞ ; −2 ) ( 2; +∞ ) D Hàm số nghịch biến khoảng ( −2; ) ( 2; +∞ ) ( ) Câu 27: Hàm số y = log − x + 5x − có tập xác định là: A ( 2; ) B ( −∞; ) C ( 3; +∞ ) D ( −∞; ) ∪ ( 3; +∞ ) Câu 28: Cho hình chóp S ABCD có (SAB) (SAD) vng góc (ABCD), đường cao hình chóp A SC B SB C SA D SD x2 − Hãy chọn mệnh đề mệnh đề sau: x A Đồ thị hàm số có tiệm cận ngang y = −1, có tiệm cận đứng x = B Đồ thị hàm số có hai tiệm cận ngang y = y = −1, Câu 29: Cho hàm số y = C Đồ thị hàm số có hai tiệm cận ngang y = y = −1, có tiệm cận đứng x = D Đồ thị hàm số có hai tiệm cận ngang y = ,có tiệm cận đứng x = Câu 30: Tính P = 3log ( log 16 ) + log có kết A B C 4 Câu 31: Tìm m để phương trình x − 5x + = log m có nghiệm phân biệt Thành viên tí hon: Vũ Thị Ngọc Huyền D A < m < m y B.0Khơng có giá trị -1 x C < m < D − 29 < m < Câu 32: Một để vượt khoảng cách 200km.0 Vận tốc dòng nước y’ cá hồi bơi ngược dòng 0 8km/h vận tốc bơi cá nước đứng yên v(km/h) lượng tiêu hao cá cho công1 thức: E ( v ) = cv t (trong c số, E tính2 jun) Tìm vận tốc bơi y cá nước đứng yên để lượng tiêu hao A 12 km/h B km/h C km/h D 15 km/h -1 x Câu 33: Cho hàm số y = f ( x ) có đồ thị hình vẽ O sau, 1các khẳng định sau khẳng đinh đúng? -1 1 A Hàm số đạt cực tiểu A ( −1; −1) cực đại B ( 3;1) B Hàm số có giá trị cực đại C Hàm số đạt giá trị nhỏ -1 đạt giá trị lớn D Đồ thị hàm số có điểm cực tiểu A ( −1; −1) điểm cực đại B ( 1; ) Câu 34: Cho hàm số y = f ( x ) xác đinh, liên tục R có bảng biến thiên Khẳng đinh sau sai? A M ( 0;1) gọi điểm cực tiểu hàm số B x0 = −1 gọi điểm cực đại hàm số C f ( ±1) = gọi giá trị lớn hàm số D f ( 1) = gọi giá trị cực đại hàm số Câu 35: Cho hình chóp S ABCD có đáy ABCD hình thang vng tai A D; biết AB = AD = a , CD = a Góc hai mặt phẳng (SBC) (ABCD) 60 Gọi I trung điểm AD, biết hai mặt phẳng (SBI) (SCI) vng góc với mặt phẳng (ABCD) Tính thể tích khối chóp S.ABCD A 5a B 15a C 15a D 5a a 17 Hình chiếu vng góc H S lên mặt (ABCD) trung điểm đoạn AB Gọi K trung điểm AD Tính khoảng cách hai đường SD HK theo a Câu 36: Cho hình chóp S ABCD có đáy hình vng cạnh a, SD = A a B ( Câu 37: hàm số y = − x ) − a C ( a 21 D ) có đạo hàm khoảng − 3; là: −7 −7 8 B y = x − x C y = − x − x − x2 3 3 Câu 38: Hàm số sau có bảng biến thiên hình bên: A y = − A y = ( ) x−3 x−2 3a ( B y = x+3 x−2 ) ( C y = 2x + x−2 ) −7 D y = − x − x ( D y = ) −7 2x − x−2 Câu 39: Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a Biết SA ⊥ ( ABCD ); SA = a Tính thể tích khối chóp Thành viên tí hon: Vũ Thị Ngọc Huyền x A a 3 B a3 3 C Câu 40: Đặt a = logy’3 15; b = log 10 Hãy biểu diễn log a3 D theo a b 50 A log 50 = ( a + b − 1) 1B log C log 50 = ( a + b − 1) D log y ( Câu 41: Tính đạo hàm hàm số y = log 2017 x + A y ' = 2x 2017 B y ' = (x 2x ) + ln 2017 a3 12 ) C y ' = 50 = ( a + b − 1) (x 50 = ( a + b − 1) D y ' = ) + ln 2017 (x +1 ) Câu 42: Cho hàm số y = −x + 3x − x − 11 có đồ thị ( C ) Phương trình tiếp tuyến với đồ thị ( C ) giao điểm ( C ) với trục tung là: A y = x − 11 y = x − C y = −6 x − 11 y = −6 x − Câu 43: Hàm số y = B y = x − 11 D y = −6 x − 11 có bảng biến thiên hình vẽ Xét tập xác định hàm số Hãy chọn x +1 khẳng định đúng? A Hàm số có giá trị lớn giá trị nhỏ B Hàm số có giá trị lớn C Không tồn giá trị lớn giá trị nhỏ hàm số D Hàm số có giá trị lớn Câu 44: Trong mệnh đề sau, mệnh đề sai? B.h B Thể tích khối hộp tích diện tích đáy chiều cao C Thể tích khối hộp chữ nhật tích ba kích thước A Thể tích khối lăng trụ có diện tích đáy B chiều cao h V = D Thể tích khối chóp có diện tích đáy B chiều cao h V = B.h 3 Câu 45: Hàm số y = x − 3x − x + 2017 đồng biến khoảng A ( −∞; ) B ( −∞ ; −1) ( 3; +∞ ) C ( −1; +∞ ) D ( −1; ) Câu 46: Thể tích khối lăng trụ tam giác có tất cạnh a là: a3 a3 a3 a3 C D 12 Câu 47: Một người gửi tiết kiệm số tiền 100.000.000 VNĐ vào ngân hàng với lãi suất 8%/năm lãi hàng năm nhập vào vốn Hỏi sau 15 năm số tiền người nhận bao nhiêu? (làm trịn đến đơn vị nghìn đồng? A 117.217.000 VNĐ B 417.217.000 VNĐ C 317.217.000 VNĐ D 217.217.000 VNĐ A B Câu 48: Giá trị lớn giá trị nhỏ hàm số y = A f ( x ) = 2; max f ( x ) = 2;4 2;4 11 f ( x ) = 2; max f ( x ) = C 2;4 2;4 x2 − x + đoạn 2; là: x −1 f ( x ) = 2 ; max f ( x ) = B 2;4 2;4 D f ( x ) = 2 ; max f ( x ) = 2;4 Câu 49: Đồ thị hình bên hàm số Thành viên tí hon: Vũ Thị Ngọc Huyền 2;4 11 3 A y = x − 3x + B y = x + x + Câu 50: Khối bát diện khối đa diện loại: A { 5; 3} B { 3; 5} C y = − x + 3x + D y = x + x + C { 4; 3} D { 3; 4} Thành viên tí hon: Vũ Thị Ngọc Huyền LỜI GIẢI CHI TIẾT THAM KHẢO Câu 1: Đáp án B Phân tích: Ta có a + b = ab ⇔ ( a + b ) = ab ⇔ ( a + b) 32 a+b = ab ⇔ log ÷ = log ab a+b a+b = log a + log b ⇔ log = ( log a + log b ) 2 Câu 2: Đáp án B 2log Hai mặt đáy mặt có cạnh, đường cao 12 Câu 3: Đáp án B Phân tích: Với I: ta nhẩm nhanh: y ' = ( x + 1) > ⇒ thỏa mãn Với II: hàm bậc bốn trùng phương có khoảng đồng biến nghịch biến nên loại Với III: y ' = x − có nghiệm phân biệt (loại) Nên I thỏa mãn Câu 4: Đáp án C 32 x= ⇒y=− Ta có y ' = 3x − 10 x + y ' = ⇔ 27 x = ⇒ y = 32 nên chọn C 27 Câu 5: Đáp án C Do > − ( ) Cách 1: đặt sin x = t ⇒ t ∈ ( −1;1) Khi f ' ( tt) = − 4tt ' = −12 t = 1 + = ⇔ So sánh f ÷ 2 t = − 1 1 f − ÷ ta thấy GTLN f ÷ = 2 2 Cách 2: π cos x = ⇔ x = + k π π x = + k 2π y ' = 3cos x − 12.cos x.sin x = ⇔ 3cos x − 4sin x = ⇔ sin x = ⇔ x = 5π + k π π x = − + k 2π sin x = − ⇔ x = π + k 2π ( ) π π π −π Do x ∈ − ; ÷ nên x ∈ ; 2 6 Thành viên tí hon: Vũ Thị Ngọc Huyền S f π=1 π −π B’f ( x ) = 6÷ Khi so sánh f ÷; ta thấy Max ÷ π π − ; ÷ 6 2 C’ Câu 6: Đáp án A Phân tích: Ta chọn ln A bởi, mặt đáy khối chóp A’ có cạnh, tương ứng với đỉnh đáy ta có cạnh bên Khi + = 14 Câu 7: Đáp án C Phân tích: Ta có B C C Đường thẳng y = yo tiệm cận ngang đồ H thị hàm số y = f ( x ) điều kiện I sau thỏa mãn A A D lim f ( x ) = y , lim f ( x ) = y x →+∞ o x→−∞ B o Vậy ta thấy C Câu 8: Đáp án D Phân tích: Để đường thẳng hàm số có ba điểm cực trị thì: Ta nhớ lại dạng đồ thị mà nhắc nhắc lại lời giải chi tiết đề tinh túy, ta thấy hàm bậc bốn trùng phương muốn có ba điểm cực trị phương trình y ' = phải có nghiệm phân biệt Ta đến với toán gốc sau: hàm số y = ax + bx + c a ≠ Xét phương trình y ' = ax + 2bx = Để phương trình có nghiệm phân biệt b 2a < m ≠ m ≠ ⇔ m > Khi áp dụng vào tốn ta được: − ( m − 1) Thoả mãn yêu cầu đề ⇔ m − 4m > ⇔ m < Câu 17: Đáp án B 1 5 Phân tích: Ta có Q = x x x = x Câu 18: Đáp án A Phân tích: Như câu tơi cm tốn gốc hàm số có ba điểm cực trị D) ( −2 m < ⇔ m > (loại ) Đồ thị hàm số ln có ba điểm cực trị A 0; m + m ; B ( x1 ; y ) ; C ( x2 ; y ) đối xứng qua Oy Phương trình qua hai điểm cực tiểu: Ta nhớ lại dạng đồ thị hàm bậc trùng phương có hệ số a > điểm cực trị mà giới thiệu phần giải chi tiết sách giải đề sau: Ta có y B = yC = f ( m) = f ( − m) = m2 − m + m + m4 = m4 − m + m ( ) 4 2 Khi d ( A; BC ) = 2m + m − m + 2m − m = m = m Như rõ ràng: 1 SABC = d ( A; BC ) BC = m2 m = ⇒ m = 16 2 Câu 19: Đáp án C Bấm máy tính ta có kết Câu 20: Đáp án C Phân tích: Ta có tiệm cận ngang hàm số y = = ; TCĐ x = 1 Câu 21: Đáp án A Phân tích: Ta thấy đường cong dạng chữ W ( nói mẹo đề có dạng khi: a > phương trình y ' = có ba nghiệm phân biệt) Từ ta loại C Tiếp tục với A B ta xét xem y B có nằm phía trục hồnh hay khơng Ta nhẩm nhanh: Với A phương trình y ' = có nghiệm x = ±1 y ( 1) = ( thỏa mãn) Thành viên tí hon: Vũ Thị Ngọc Huyền Câu 22: Đáp án D S A1 A1 ⇒ = 10 Phân tích: Ta có M = log Ao Ao Tương tự 3a A2 A 10 = 10 ⇒ = = 100 A0 A2 10 Câu 23: Đáp án D − m ∉2a( −1; +∞ ) m − m − < ⇔ ⇔ ≤ m < A Phân tích: Để thỏa mãn yêu cầu đề C m ≥ y ' < a Câu 24: Đáp án A y ' = −3x + mx − ( m − 1) ; ∆ ' = m2 − m + = ( m − 1) ≥ Với m = thỏa mãn B Câu 25: Đáp án C Phân tích: Tam giác SAC vng A nên SA = SC − AC = ( 3a ) − ( a ) 2 =a 1 a3 Khi VSABC = SA.SABC = a .a.2a = 3 Câu 26: Đáp án A x = Phân tích: Xét phương trình y ' = ⇔ x − x = ⇔ Như giới thiệu cách nhớ dạng đồ thị x = ±2 hàm bậc bốn trùng phương có hệ số a = ( −2; ) > nên ta xác định nhanh hàm số đồng biến ( 2; +∞ ) , hàm số nghịch biến ( −∞ ; −2 ) ( 0; ) Câu 27: Đáp án A Phân tích: Điều kiện: − x + 5x − > ⇔ < x < Câu 28: Đáp án C Phân tích: Ta nhớ kĩ hai mặt phẳng bên vng góc với mặt phẳng đáy giao tuyến hai mặt phẳng đường cao hình chóp Câu 29: Đáp án B Phân tích: Ta có lim x →+∞ x2 − 1 x2 − 1 = lim − = ; lim = lim − − = −1 ⇒ y = 1; y = −1 hai tiệm cận ngang x →+∞ x →−∞ x →−∞ x x x x đồ thị hàm số x2 − không tồn x →0 x Câu 30: Đáp án A Ta có lim + Phân tích: bấm máy tính ta được: P = Câu 31: Đáp án C Phân tích: Đặt log m = a ≥ m = a Xét hàm số f ( x ) = x − 5x + ta xét sau, hàm số chẵn nên đối xứng trục Oy Do ta xét hàm g ( x ) = x − x + ¡ , sau lấy đối xứng để vẽ đồ thị hàm y = f ( x ) ta giữ ngun phần đồ thị phía trục hồnh ta ( P1 ) , lấy đối xứng Thành viên tí hon: Vũ Thị Ngọc Huyền S S trục hoành qua trục hồnh taAđược phần phía B đồ thị hàm số y = f ( x ) y ( P2 ) , ( P ) = ( P ) ∪ ( P ) Lúc làm quý độc giả có thểI vẽ nhanh suy diễn nhanh K D C Nhìn vào đồ thị ta thấy để phương trình cho có nghiệm < a < ⇒ < m < 29 Câu 32: Đáp án A 200 N A 200 K Phân A tích: Ta có 200 = ( v −B8 ) t ⇒ t = v −D8 Khi E ( v ) = cv v − Do c số nên để lượng M H x M 200 v I tiêu hao f ( v ) = nhỏ Xét O hàm số 1f ( v ) ( 8; +∞ ) B v − 8C K 3v ( v − ) − v 2v − 24 v D C f ' ( v ) = 200 = 200 f ' ( v ) = ⇔ v = 12 2 ( v − 8) ( v − 8) Câu 33: Đáp án D Phân tích: A sai tọa độ điểm B sai B sai giá trị cực đại hàm số C sai giá tị cực trị hàm số Chọn D Câu 34: Đáp án C Phân tích: C sai giá trị cực đại hàm số Câu 35: Đáp án B Như nhắc câu trước hai mặt phẳng ( SBI ) ( SCI ) vng góc với ( ABCD ) nên SI ⊥ ( ABCD ) nên SI đường cao S.ABCD ( ) · · Kẻ IK ⊥ BC K Khi ta chứng minh SKI = ( SBC ) ; ( ABCD ) = 60° Ta vẽ hình phẳng mặt đáy Ta có M = AD ∩ BC ta chứng minh CD đường tủng bình tam giác ABM Khi AM = a; BM = ( 2a ) + ( 4a ) Khi SI = IK.tan 60° = 3a = 2a 5; IM = 3a Ta có ∆KMI : ∆AMB ⇒ 3= IM IK 3a 3a = ⇒ IK = 2a = BM AB 2a 5 3a 3a 15 ( a + a ) a = V= 5 3a Câu 36: Đáp án B Ta có SH = SD − HD = SD − HA − AD = a ; AO = ( ) HK PBD ⇒ HK P( SBD ) ⇒ d ( HK ; SD ) = d HK ; ( SBD ) ( ) ( AC a AC a = ⇒ HM = = 2 ) Mà d HK ; ( SBD ) = d H ; ( SBD ) ( hệ nhắc đến sách đề tỉ số khoảng cách hai điểm đến mặt phẳng) ( ) Kẻ HM ⊥ BD; HN ⊥ SM M Khi d H ; ( SBD ) = HN Mà ⇒ d ( HK ; SD ) = 1 a = + ⇒ HN = 2 HN SH HM a Thành viên tí hon: Vũ Thị Ngọc Huyền Câu 37: Đáp án B −7 −7 Phân tích: y ' = − ( −2 x ) − x = x − x 3 Câu 38: Đáp án B Do TCN đồ thị hàm số y = ta loại C D ( ) ( ) Ta có hàm số ln nghịch biến khoảng xác định ta chọn B có ad − bc = −5 < Câu 39: Đáp án B 1 a3 V = SA.SABCD = a 3.a = 3 Câu 40: Đáp án C Phân tích: Bấm máy thử gán giá trị vào số gán A, B xét hiệu hai vế xme có hay khơng, từ ta chọn C Câu 41: Đáp án B ( ( )) y ' = log 2017 x + ' = (x 2x ) + ln 2017 Câu 42: Đáp án D Phân tích: Tiếp tuyến CT lớp 11 năm 2017 không thi dạng này, nhiên giải sau: Ta có A ( 0; −11) giao điểm ( C ) với trục tung Khi phương trình tiếp tuyến A có dạng: y = f ' ( ) x − 11 = −6 x − 11 Câu 43: Đáp án D Phân tích: A sai Hàm số ko đạt giá trị nhỏ 0, B sai hàm số đạt GTLN C sai có tồn GTLN hàm số Câu 44: Đáp án A Phân tích: A sai V = Bh Câu 45: Đáp án B x = y' = ⇔ x = −1 Nếu nhớ dạng đồ thị giới thiệu đề đề tinh túy toán a > có điểm cực tị dạng chữ N, tức đồng biến ( −∞; −1) ( 3; +∞ ) Câu 46: Đáp án C a a3 V = a .a = 2 Câu 47: Đáp án C Phân tích: Sau 15 năm số tiền người nhận là: 10 ( + 0.08 ) Câu 48: Đáp án D Ta có ( x − ) ( x − 1) − ( x y' = ( x − 1) ( ) − 2x + ) = Do f ( x ) = f + = 2; max 2;4 2;4 x2 − 2x − ( x − 1) 15 ≈ 317.217.000 x = + =0⇔ x = − ( x ) = f ( ) = 113 Câu 49: Đáp án D Thành viên tí hon: Vũ Thị Ngọc Huyền Nếu thuộc bảng dạng đồ thị mà nhắc đến nhiều lần đề hẳn bạn nhẩm nhanh Nhẩm nhanh ta thấy tất A, B, C có nghiệm phân biệt, đạo hàm dạng ax + bx Ta chọn D Câu 50: Đáp án D Một khối đa diện lồi gọi khối đa diện loại { p,q} nếu: a) Mỗi mặt đa giác p cạnh b) Mỗi đỉnh đỉnh chung q mặt Thành viên tí hon: Vũ Thị Ngọc Huyền ... 40 = 18 0 viên 20 Vậy tổng số viên gạch 11 80 viên Khi thể tích bờ tường xây 11 80.2 .1. 0,5 = 11 80 lit Vậy thể tích bốn chứa nước là: 50 .10 .20 − 11 80 = 8820 lit Câu 14 : Đáp án B ( ) x x Ta có 10 '... viên; 8800 lít C 11 80 viên; 8820 lít B 11 82 viên; 8820 lít D 11 82 viên; 8800 lít x Câu 14 : Đạo hàm hàm số y = 10 là: 10 x B 10 x.ln10 C x .10 x ? ?1 D 10 x ln10 Câu 15 : Cho hình chóp S.ABCD có đáy ABCD... nghiệm x = ? ?1 y ( 1) = ( thỏa mãn) Thành viên tí hon: Vũ Thị Ngọc Huyền Câu 22: Đáp án D S A1 A1 ⇒ = 10 Phân tích: Ta có M = log Ao Ao Tương tự 3a A2 A 10 = 10 ⇒ = = 10 0 A0 A2 10 Câu 23: Đáp án D