1. Trang chủ
  2. » Giáo án - Bài giảng

toán nâng cao và các chuyên đề hình học 9

67 5,3K 5

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 67
Dung lượng 13,56 MB

Nội dung

toán nâng cao và các chuyên đề hình học 9 tham khảo

Trang 1

P h i i n th* "hiit

Chudng I

61 MOT ~6 HE THUC LUQNG VE CANH VA D U ~ N G CAO TRONG

TAM GIAC V U ~ N G

- - Trong mot tam g i i c vuBng, binh

phuang mdi canh g6c vuang bing tich c i ~ a

canh huy&n v6i hinh chi& cua canh g6c

vuBng do tr&n canh huy&n

b = ab'; c = act RA -_ - - _ H _ _ - - - _ _ c

- Trong m&t tam g i i c vudng, binh -_ -

B

phuung d u h g cao irng v6i canh huy&n Hit~lz I

bhng tich hai hinh chi& cha hai canh g6c

vuBng tren canh huy&n

~ r o n g mot tam g i i c vuBng, tich hai canh g6c vuBng bing tich c i a

canh huy&n v6i duirng cao tuung irng

Trong m&t tam gi6c vuBng, nghjch dao binh phuung d u h g cao img

v6i canh huy&n bing tBng c i c nghjch d i o binh phuung hai canh g6c

Trang 2

_ G i i i

Gih sir tam giiic ABC vu6n&% , c6

KA AH I BC Theo he th* lu(mg v6 canh g6c vubng v6i hinh chi&u cha n6

tr&n canh huy&n, ta c 6 :

Vi & 2 MQt tam giiic vubng c6 canh huy&n

I i 6,15cm, d u h g cao h g v6i canh huy&n l i

3cm Tinh cdc canh g6c vubng cha tam gihc

Gitii

BC = 6.15 cm v i d u h g cao AH = 3 cm (h3) B -.- - 11 c

Theo he thirc l u w g v& d u h g cao v i hinh chi&u 6-15 - - * -

cha c i c canh g6c vubng tr&n canh huy&n, ta c6 : Hirrh 3

AH^ = BH HC

hay 32 = BH(6,15 - BH), suy ra B H ~ - 6,15BH + 9 = 0

o (BH - 3,75) (BH - 2,4) = 0

Trang 3

G i i su AB < AC, thg thi BH = 2,4 cm, khi d 6 HC = 3.75 cm

Cting theo h& thirc luqng trong tam g i L vubng ABC, ta lai c 6 :

2 Cho tam g i i c ABC vuang b A, dubng cao AH Bigt BH : HC = 9 : 16,

AH = 4 8 cm Tinh do d i i c i c canh g6c vubng cua tam giic

3 'Trong met tam g i i c vuang, ti s 6 giCia dubng cao v i trung tuygn kk ttir dinh g6d vubng bhng 40 : 41 Tinh do d i i c i c canh g6c vuang cua tam

g i i c vubng 66 bi6t canh huy@n bhng & Icm

4 Cho hinh vubng ABCD v i diim 1 nitn giiia A v i B Tia DI cat BC b E

D u h g thing kk qua D vuang g6c viri DE c8t BC b F

a) Tam g i i c DIF l i tam g i i c gi ? Vi sao ?

b) Chimg minh ring -;- +- khbng ddi khi I chuy4n dong tr&n

DI- DE'

doan AB

5 Cho tam g i i c ABC vubng b A c6 canh AB = 6 cm, BC = 10 cm CBc

d u h g phin g i i c trong v i ngoii cua g6c B cat AC Ian luut b D v i E

Tinh c i c doan thing BD v i BE

6 Cho tam g i i c ABC vubng b A, phin g i i c AD, dubng cao AH Big1

CD = 68 cm, BD = 5 1 cm Tinh BH, HC

7 Cho tam g i i c nhon ABC, hai d u h g cao BD v i CE c i t nhau tai H Goi B I , C I l i hai dikm tuang irng tren c i c doan HB, HC Bigt -~ ~-~ AB,C = AC,B = 90'

Tam g i i c ABICl l i tam g i i c gi ? Vi sao ?

8 Canh huykn cha mot tam g i i c vubng 1611 hun met canh g6c vubng c i ~ a tam g i i c 1 i 9 cm, chn tdng hai canh g6c vubng 1131 hon canh huyen lh

6 cm Tinh chu vi v i dien tich cua t a m g i i c vubng d6

9 Chci tam gi5c ABC c d ; 90' d u h g cao BH Dgf BC = a, CA =.b, AB = c,

AH = c', HC = b'

Trang 4

1

Chimg minh ring a = b + c = 2bc'

10 ChotamgiicABCc6 B = 6 0 ° , A C = 1 3 c m v i B C - B A = I

Tinh dQ dai cilc canh AB, BC

11 Cho tam giilc ABC c6 > 90°, d u h g cao j 3 ~ Dst BC = a, C

A C = c , A H = c ' , H C = b '

Chimg minh ring a2 = b2 + c2 + 2bcq

12 Cho tam giic ABC can ir B v i di6m D tren canh AC Bi&t BDC = qO,

AD = 3 dm, DC = 8 dm Tinh d& dii canh AB

$2 ~f SS LUQNG GIAC CUA GOC NHON

- d6i slna = - ; cosa = - k& ,

N6u hai g6c nhon a v i + c6 sina = sinp C canh huyen B

fhoac cosa = cosp, hocc ttga = tgp, ho#c Hl1ih4

cotga = cotgp) thi a = p

N6u hai g6c phu nhau thi sin g6c niy bang casin g6c kia v i tang g6c

niy bing catang g6c kia

N 6 u a + + = 9 0 ° t h i :

sina = cosp ; cosa = sin0 ;

tga = cotgp ; cotgp = tga

Vi du 3 Cho tam gi6c ABC vuang ti A, d u h g cao AH Bi6t AB = 7.5

Tam giic ABC vuOng 6 A, c6 AH I BC,

theo he th~Ic luqng trong tam giic vuang, ta c6 : Hi~rlr 5

Trang 11

45 Hai tam gidc vudng ABC v i A'B'C ddng dang viri n h a u ( i = - 900) c6 hai dubng cao h h ' tuung irng thuec canh huyen a v i a'

Chirng minh SHTK = ( I - cos' A - cos B - C O S - C ) S ~ ~ , ~

47 Cho tam giAc ABC vu8ng u A

a) K t dubng cao AA' ~ o i E v i F the0 thir tu 18 hinh chi& cha didm A'

CE AC"

tren AC v i AB Chirng minh - = -

BF , 4 ~ ~ ' b) ~ h o D I i met didm tr&n canh BC ; M v i N Ian Iuqt I i hinh chi&u c i a di6m D tren AB v i AC Chirng minh DB DC = MA MB + NA NC

48 Tren met qua doi c 6 mat c l i thdp B

cao loom Tir dinh B v i chin C c i a r - - - -

thip nhin diim A b chgn ddi duiri cic

g6c tuung h g bang 60' VA 3 (11 11 )

Tinh chi& cao h ciia quH ddi

49 6 dB cao 920 m, tir met m6y bay

truc thHng nguiri ta nhin hai diem A

v i B cha hai d%u met

cha met d&t c i c g6c ldn luqt IP H i ~ r h I J

a = 3 7 ' v ? i P = 3 1 °

Tinh chi& dhi AB c6a cdu

50 Cho tam g i i c AMB vudng b M Qua B k6 dubng thing d vu8ng g6c v6i

AB Goi H v i K ldn luqt l i hinh chi& c c l diem M tr&n.duting thing d

v i tr€n AB Cho bi6t &IAB = a ( a 5 459 vi AB = 2a

a) Tinh MA, MB, MH the0 a vh a ;

b) Tinh MH the0 a v i 2 a ;

C) Chirng minh : cos2a = 1'- sin a , cos2a = 2cos a -

Trang 12

5 1 DINH NGHfA VA S u XAC DINH D U ~ N G T R ~ N

T&p hap cbc didm clch didm 0 cd djnh met khoang bang R kh6ng d6i (R > 0) 11 d u h g trbn tam 0 c6 bbn kinh bang R

D u h g kinh 11 day cung l6n nhgt c6a dubng trbn

Qua ba di&m kh6ng thing hhng, bao gib ciing v8 duac met d u h g trbn

v i chi m6t m i th6i

D u h g trbn di qua ba dinh A, B, C c i a tam gibc ABC goi l i d u h g

trbn ngoai ti6p tam gilc ABC Khi 66 tam gibc ABC goi lh tam gibc n6i ti6p d u h g trbn

V i & 6 Cho tam gibc ABC vu6ng b B, AB = 8cm, BC = 6cm Goi D 11

didm d6i ximg c6a didm B qua AC

a) Chirng minh r&ng b6n didm A, B, C, D chng thuoc met dubng trbn b) Tinh bbn kinh cba d u h g trbn n6i trong

Gicii

a) Theo d& bhi, didm D d6i ximg v6i

didm B qua AC n6n DA = BA, DC = BC

AADC = - AABC (c.c.c), -

suy ra ADC = ABC = 90"

Goi 0 lh trung didm cba AC Trong cbc

tam g i k vu6ng ABC v i ADC c6 BO v i DO

IP cbc d u h g trung tuy6n thuec canh huy&n

AC n6n BO = OA = OC, DO = OA = OC

Suy r a : O A = O B = O C = O D

V$y b6n didm A, B, C, D c h g thubc

dutfng trbn tam 0 d u h g kinh AC Hinh 12

b) Tam gihc ABC vu6ng b B, the0 djnh l i Py-ta-go, ta c6 :

2 2

AC = AB + AC' = g2 +62 = 100, suy ra AC = LO cm

Trang 13

' a) Cich dung :

I

- D;mg dubng trung trqc d c6a

doan AB, d c i t tia Ay b 0:

- Dung d u h g trbn t8m 0 , bin

kinh OA thi dubng trbn ( 0 ) chinh Ih

d u h g trbn phai d ~ p g

Chrhry nrinh :

truc d c i ~ a doan AB n&n OA = OB, do

V$y bsn kinh d u h g tr6n (0) 1B : R ,= -cm

2

51 Cho tam g i i c d$u ABC, hai d~rimg cao BD, CE

a) Chimg minh b6n di&m B, C, D, E chng thuec met d u h g trbn ; b) Goi G 18 giao diim cha BD vh CE Chirng minh b6n didm A, E, D, G chng thu&c m6t d u h g trbn Tinh bin kinh cba d t h g trbn niy, bi&'t tam gi6c d&u ABC c6 canh bing 8cm

TOAN NANG CAO HlNH 9 - 2

Trang 14

; I

52 Cho d u h g trbn ( 0 ) day AB V day BC vu6ng g6c viri ABI

a) Cheng minh AC I i dudng kinh cha d u h g trbn ( 0 )

b) Tinh b i n kinh d u h g trbn (O), bi6t AB = 12cm BC,= 5cm:

53 Cho hinh vubng ABCD Tren c i c canh AB BC, CD, DA My theo thir tu

AM BN CP Q D

c i c didm M, N, P, Q sao cho - = - = - = -

MB NC PD Q A ' a) Chirng minh tit g i i c MNPQ l i hinh vu6ng ;

b) Goi 0 l i giao didm hai dudng chCo AC v i BD C h h g minh ban d i d ~ n

M, N, P, Q cfing n i m tr&n mbt dubng trbn tam I i diim 0

54 Cho d u h g trbn tam 0 bin kinh 4cm, c6 tam b goc toa do H i y x i c d!nh v/ tri c6a c i c diim A, B, C dbi v6i duirng trbn, b16t toa d o clic di6m :

A ( - 2 ; ) ; B 6 ) ; C ( 2 6 ; - 2 4 3 )

55 Goi I v i K theo thir t$ I i c i c diem nim tr&n canh AB, AD cua hinh vubng ABCD sao'cho A1 = AK Dubng thing k ~ ? qua A vu6ng g6c vCli

DI b P, c L BC b Q

C h h g minh nBm didm C, D, K, P, Q cilng thuec mot dubng !rbn

56 Cho hinh vu6ng ABCD, 0 I i giao didm hai dubng chCo AC v i BD Goi

M, N 1611 IU@ I i trung didm c i a OB, CD -

a ) C h h g minh AMN = 90°, tir d6 suy ra bb'n didm A, M, N, D c i ~ n g thuqic mqit d u h g tr6n ;

b) So s i n h AN viri MD

57 ~ h o tam g i i c ABC can 6 A c 6 AB = IScm, dubng cao AH = 9cm

Tinh b i n kinh d u h g trbn ngoai tisp tam g i i c ABC

58 Cho hinh vusng ABCD canh bdng a Goi M v i N I i hai d i i m tujr 9 tr&n

c i c canh AB v i AD sao cho chu vi tam g i i c AMN bing 2a Goi H 18

hinh chi& cua didm C tren MN

Chirng minh rang didm H lubn lu6n thuqic mqit d u h g trbn c 6 djnh khi

hai diim M, N chuybn dong tr&n c i c canh AB v i AD

59 Cho dubng trbn ( 0 ; R) v i m6t di6m A nam trong d u h g trbn d 6 (A khlic 0) Tim tap hqp trung didm M c i a doan thing AB khi didm B chuyin dong tren dubng trbn (0)

Tam cua dubng trbn Is ihm d6i xirng c i a d u h g trbn 66

Bgt ki dudng kinh n i o cting ,i truc dPji xitng c i a d u h g trbn I

Trang 15

D u h g kinh vudng g6c v&i met day cung thi di qua tnrng dikrn c6a day gy I

D u h g kinh di qua trung didm cua met day (kh6ng 18 dubng kinh) thi vuang g6c vdi day &y

Trong met d u h g trbn :

- Hai day bang nhau thi c l c h d&u tam'

- Hai day cdch dku tam thi bang nhau

-Day Ian han thi g l n tam hun

- Day g l n tam hun thi ldn hun

V i [/<I 8 Cho tam giic ABC nei ti+ dubng trbn ( 0 ; R) ; Tinh dB dhi cdc canh AB, AC, bik't R = 3cm vh khoang cich tir 0 den AB vh AC Iln luut 18

Trang 16

Bdi t@p

60 Cho d u h g trbn ( 0 ; R ) hai dtly cung AB v i CD c&t nhau tai diim M

n i m &n ngoii d u h g trbn

, a) Chimg minh ring n€u AB = CD thi MA = MC ;

b) T r u h g hqp AB > CD HHy so sinh khoing cich til M d&n trung diim cha c i c dtly AB, CD

61 Cho d u h g trbn ( 0 ) v i didm I nim b&n trong dubng trbn Chirng minh rhng trong c i c dtly di qua I thi dily vuBng g6c vdi 0 1 c6 dB d i i nho nhst

62 Cho nira d u h g trbn ( 0 ) dubng kAh AD Tr&n nira dubng trbn l&y hai di&m B v i C Bi8t AB = BC = 2&cm, CD = 6cm Tinh b i n kinh d u h g trbn

63 Cho dubng trbn (0 ; R), d u h g kinh AB, dtly cung AC

a) Cho bi&t khoang cich tir 0 d8n AC, BC l8n IU@ l i 6cm v i 8cm

Tinh d& d i i c i c dily AC, BC v i bin kinh d u h g trbn ;

b) Tr&n tia d6i c i a tia CA Igy diim D sao cho CD = CA Tim tap hqp , trong tilm G ctia tam giic ABC khi C chuydn dong tr&n d u h g trbn ( 0 )

64 Cho dubng trbn ( 0 ) d u h g kinh AD, dily cung AB Qua B k6 day BC '

vuBng g6c vdi AD

I Tinh b i n kinh cba d u h g trbn bigt AB = IOcm, BC = 12cm 1

65 Cho d u h g trbn ( 0 ) bin kinh 5cm Hai dtly AB v i CD song song v6i nhau

v i c6 do d i i l8n luqt bing 8cm v i 9.6cm Tinh khoing cich giila hai dtly

66 Cho d u h g trbn ( 0 ; R), dubng kinh AB, day cuhg DE Tia DE c6t AB

b C Bi&t DOE = 90' v i OC = 3R

a) Tinh d o d i i CD v i CE the0 R ;

b) Chimg minh CD.CE = CA.CB

67 Cho d u h g trbn (0.; R ) v i mot diim M nim b8n trong dubng trbn

a) Hgy n&u cich dqng dtly AB nhan didm M Iim trung dl& ;

b) Tinh d& d i i day AB n6i trong ctlu a bi€t R = 7,5cm, OM = 2, lcm I

68 Cho nira d u h g trbn ( 0 ; R) Hai dily cung AB vA CD song song viri nhau c6 do d i i 18n luat l i 32cm vh 24cm v i khohng giaa hai dtly I i 4cm

Trang 17

Goi d l i khoHng cich tir tam 0 cha d u h g trbn ( 0 ; R) d&'n d u h g thing a thi vj tri tuang d6i cha d u h g thing v i d u h g trbn duqc bidu thj the0 bHng sau :

3 D u h g thing v i d u h g trbn kh6ng giao

Vi tri tuung d6i cha '

d u h g th&ng v i duirng trbn

I D u h g thing v i d u h g trbn tit nhau

2 Dubng thing v i d u h g t r b n ,ti&p x6c nhau

Vi du 9 Cho doan thing AB v i trung di&m 0 cha AB Tr&n tang mot nira m+t phing bir AB vZ tia Ax, By vu6ng g6c vdi AB Tren cBc tia Ax, By Igy theo thir tu hai dikm C v i D sao cho COD = 90' K6 OH I CD

a) Chimg m h h h g H thu6c d u h g trbn t h 0 ;

b) XBc djnh vj tri tucmg d6i cha d u h g thing CD v&i d u h g trbn ( 0 )

Gidi

a) Tia DO cht tia d6i cba tia Ax 13 E

Tam giBc vu6ng AOE v i tam g i i c vu6ng

BOD c6 :

S6didm chung

O D = O E (chirng minh tren) Hirth IS

Dl= E (chimg minh tren)

Do 6 6 AOHD = AOAE (canh huy&n - g6c nhon), suy ra OH = OA

Vi OA = OB m i OA = OH nen OA = OB = OH Vgy di&m H thu6c

d u h g trbn tam 0 d u h g kinh AB

Trang 18

b) Do H thuoc dubng trbn tam 0 bin kinh OA, mh C D I OH tai H n&n khoing cdch tir didm 0 d&n CD bing bin kinh d u h g trbn ( 0 ) nghya l i d =

R Vay d u h g thing CD ti6p xlic vdi d u h g trbn ( 0 ) tai didm H '

69 Cho dikm M cdch d u h g thing xy l I 6cm VB dubng trbn (M ; IOcm) a) C h h g minh ring d u h g trbn (M) c6 hai giao didm v6i d u h g thang xy b) Goi hai giao didm n6i tr&n II P vh Q Tinh do d i i PQ

70 Cho hinh thang ABCD.c6 = = 90°, AB = BC = lcm, AD = 2cm Chimg minh ring d u h g thing AC ti6p xlic vdi dubng trbn (D ; f i cm)

71 Cho hinh vuBng ABCD, tr€n d u h g chCo BD 18y didm I sao cho BI = BA Dubng thing k6 qua I vu8ng g6c vdi BD c i t AD 6 E

a) So s i n h c i c doan thing AE, EI, ID ;

b) Xbc djnh vj tri tucmg d6i c6a d u h g thing BD vdi d u h g trbn (E ; EA)

Ox v i c 6 tam n i m tr€n canh Oy

73 Dqng d u h g trbn b i n kinh 2cm, ti6p xuc v6i d u h g thing xy cho trubc

v i di qua diem A c i c h xy m8t khoHng 3cm

74 Cho d u h g trbn (0 ; 15crn), AB lh day cung c6a d u h g trbn Tim tap hqp trung dikm Vc6a AB khi AB thay d8i trong dubng trong (0), biQ

AB = 24cm

, 54 TIEP TUYEN CIIA D U ~ N G TRON

T ~ N H C H ~ T HA1 TIEP TUYEN CAT NHAU

Ti6p tuy€'n c6a d u h g trbn 1I d u h g thing chi c6 met dikm chung vdi

N6u hai tiEp tuy6n cc6 m&t duimg trbn cdt nhau tai m4t dikm thi :

- Didm 6 6 c i c h d&u hai ti6p didm

- Tia k t tir diem d6 di qua t&m 118 tia phan giic cha g6c tao biri hai ti&p tuy6n

Trang 19

- Tia k t ttr tam di qua di6m 66 lh tia phrln giic cba g6c tao biri hai b i n kinh di qua ti&p dikm

! V i tlg 10 Cho dubng trbn (0 ; 5cm) vh didm M nhm b6n ngohi d u h g

trbn Qua M k& hai ti&p tuygn MA vh MB vdi d u h g trbn (A vh B lh tigp

1 dikm)

Ti3 di&m C tr6n cung i1h6 k& tigp tuygn v6i d u h g trbn d t MA, MB IPn luqt 6 P vh Q Cho bi&'t AM I BM

a) Tir gi6c'MAOB 11 hinh gi ? Vi sao 7

b) Tinh chu vi tam giic MPQ - ;

C) Tinh g6c POQ

Gidr

a) Theo giH thigt :

MA, MB 18 tigp tuy&n cha d~rbng trbn ( 0 )

c3 , A vh J3 n6n OA 1 AM vh OB 1 BM, Go d6

MA I MB n t n G = 90°

Tir g i i c AMBO c 6 = = = 90' ,

n&n 18 hinh chii nhgt Hinh chii nhgt nhy lai

b) Theo tinh chgt hai ti6p tuygn cc6 mot Hinh 16

Trang 20

I 1 0

= -AOB = - .90 = 4

Vi d41 I I Cho tam g i i c ABC ctin Zr A VE d u h g trbn t i m D d u h g kinh

BC c k AC v i AB Iin l u g Zr E v i F Goi H 18 giao didm cba BE v i CF

C h h g minh ring :

a) B6n digm A, E H, F tang thuec met d i r h g trbn

b) DE 18 ti&p tuy&n c i a dubng trbn n6i trong ciu a

Goi 0 l i trung di8m cha AH, ta c6 OE,

O F I&n I ~ o t i i trung tuy&n thuec canh huy&n

AH cGa hai tam giic vu6ng AEH v i AFH n&n

OA = OH = O E = OF Do 66 b6n di&m A, E,

H, F thucc dubng trbn (0)

v i CF cba tam g i i c ABC, AD l i dubng trung Hinh 17

tuy&n thuQc canh d i y BC n&n AD I BC, d o

suy rz + E2 = 90' hay O ~ D = 90' hay OE I DE

DE vu6ng g6c v6i bin kinh OE tai E n&n DE is ti&p tuygn cha d u h g tmn (0)

75 Cho dubng trbn di&m tr&n d u h g trbr sao cho BAC ( 0 ; 5cm) dubng kinh AB, ti&p tuy&n Bx Goi C l i met - = 30 0, tla AC cfd Bx . b E a) C h h g minh BC' = AC CE ; '

b) Tinh d o d i i doan BE

Trang 21

76 Cho nha d u h g trbn (0) d u h g kinh AB Qua C thuac nka d u h g trbn, k6 tiCp tuy6n xy cua nha dubng trbn Goi M v l N Ian Iuut I i hinh chi& cba dikm A vb diim B tren xy Goi H lh than dubng vu611g g6c k6 tir C

a) C lh trung dikm cha MN ;

C h h g minh rhng :

1

MA + MB) < PQ <-(MA + MB)

79 Cho nira d u h g trbn ( 0 ) d u h g kinh AB, hai ti6p tuy6n Ax, By Trtn Ax,

By igy the0 - thit tu hai dikm C v l D Bi& AC + BD = CD Chimg minh : a) G6c COD = 90'

b) D u h g theng AB lb ti6p tuy&n c6a d u h g trbn ngoai ti6p tam giic COD, cbn d u h g theng CD 1b ti6p tuy&n c6a dubng trbn (0)

80 Cho g6c xAy k h i c g6c bet Chimg minh ring c6 thk tim duuc v6 s b chc dikm B vb C tr&n hai canh Ax v l Ay sao cho chu vi tam g l l c ABC lu6n

luBn bhng 2 1 (1 l l mijt dij dhi cho trudc)

81 Cho d u h g trbn (0 ; 6cm) v l day AB bing IOcm Goi M 18 mot didm tren

d u h g thang AB vh M nam btn ngobi d u h g trbn (0) Tim khoing cich t& M d&n trung didm c6a AB khi g6c xen giiia hai ti&p tuy&n k6 tir M

bhng 60' ; 90'

82 Cho nira dubng trbn ( 0 ) d u h g kinh AB, ti6p tuy6n Ax Qua dikm C trtn nira d u h g trbn ( 0 ) k6 ti6p tuy6n vdi nira d u h g trbn cat Ax b M K6

C H I AB cdt BM b I C h h g minh I Ib trung dikm cba CH

83 Cho tam g i i c ABC c6 BC = IOcm, CA = 12cm v l AB = 14cm Tinh khoing c i c h giira tam d u h g trbn niji ti+ vh t r y g tam cha tam giic

84 Cho tam g i i c ABC c6 BC < AC, trung tuy&n CD D u h g trbn n6i tiep c8c tam giic ACD Vh BCD ti6p xxc vdi CD lln luqt b E vb F

C h h g minh : 2EF = AC - BC

85 Cho tam g i L ABC vu6ng ir A D u h g trbn ( 0 ) n&i ti&p tam gi6c ti6p x6c vdi canh AB, AC Iln luqt b D v l E

a) Tit g i L ADOE l l hinh gi7 Vi sao?

b) Tinh b i n kinh d u h g trbn (O), biB AB = 5cm ; AC = 12cm

Trang 22

86 Cho tam gi5c ABC, bigt BC = a, CA = b, AB = c Goi r l i bin kinh

, dtrirng trbn noi tigp, S 18 dien tich c i ~ a tam glac

Chirng minh ring : A B + AC = 2(r + R)

89 Cho tam gidc ABC vu6ng b A c6 BC = a, CA = b, AB = c Goi r lh bin kinh d u h g trbn n6i tiBp tam giic

Tinh do d i i c i c doan AE, AF, BE, CF

91 Cho tam g i i c d&u ABC Goi M, N la hai di&m lSin luqt tr&n hai canh AB,

AC ; D 18 trung di6m c6a BC

Bict chu vi tam g i k AMN blng nira chu vi tam gidc ABC Tinh g6c MDN

92 M6t tam g i i c vu6ng noi tiBp mot d u h g trbn duitng kinh 37dm v i ngoai tigp met d u h g trbn b4n kinh 5dm Tinh c i c canh g6c vu6ng cua tam gihc do

Goi 0, 0' 18 tam cha hai duirng trbn Dubng t h h g 00' goi 1 i d u h g noi tam, doan thing 00' goi Ih doan n6i tam D u h g n6i tam l i truc ddi ximg c6a hinh g8m hai d u h g trbn ( 0 ) v i ('0') ;

NBu hai d u h g trbn ti6p xlIc nhau thi tiBp di&m nim tren d u h g noi trlm

NBu hai d u h g trbn cat nhau thi d u h g nbi tam vu6ng g k vdi drly chung vh di qua trung dikm c6a drly chung

Hai d u h g trbn ( 0 ; R ) v i ( 0 ' ; r) c6 R 2 r Vj tri tuang doi giira hai

d u h g trbn img vdi he thttc giira R, r v i 00' duuc cho the0 bHng sau :

Trang 23

I , ' - Ti&p x6c ngohi I 1 d i h / 0 0 ' = R + r I

Vi tri tuong dbi cOa hai d~rbng

trbn ( 0 ; R) vh (0' ; r)

Hai d u h g trbn c i t nhau

Hai d u h g trbn ti6p xx6c nhau

Tr&n hinh 18, c i c d u h g thing d l , d2 Ih ti+ tuy6n chung ngoii ciia

hai dubng trbn ( 0 ) v i (0'), c i c d u h g thing m,, m2 18 ti6p tuy6n chung

trong c6a hai dubng trbn ( 0 ) v i (0')

S6 di6m chung 2di'm chung

R - r < 0 0 ' < R + r

V i dl( 12 Cho d u h g trbn ( 0 ) vh (0') tigp xuc ngohi tai A Ti6p tuy6n

chung ngohi cba hai d u h g trbn c6 ti6p di6m vdi & h g trbn ( 0 ) 6 M vdi d u h g

trbn (0') 6 N, ti&p tuy6n chung trong c6a hai d u h g trbn tai A c i t MN 6 I

a) Chirng minh tam giic MAN vh 010' 18 c i c tam g i i c vuBng ;

b) XBc djnh vj tri t u m g d6i c6a d u h g thing MN vdi d u h g trbn dubng

Suy ra IM = IA = IN, do 66 tam

giic MAN lh tam giBc vu6ng 2, A

?he0 tinh chgt hai ti6p ttuy&n c6a

mQt d u h g trbn ckt nhau, ta lai c6 : I 0 Hinh 19

vh 10' 1&n lugt lh tia phan g i k c6a hai

A

g6c k& bb MIA vh NIA , do 66 I 0 1 10' Vey tam giic 010' vuBng 2, I

Trang 24

b) Goi I' 18 trung diim c l a 0 0 ' , ta c6 1'1 = I 0 = 10' nen 1'1 18 bin kinh

d u h g trbn d u h g kinh 0 0 '

_ OM I MN vh O'N I MN ntn OM I/ O'N suy ra tir gihc OMNO' 18 hinh thang 1'1 lh d u h g k n g binh c i a hinh thang OMNO nen I' 1 //OM, suy ra 1'1 I MN

Dubng thing MN vuBng g6c v6i b6n kinh 1'1 tai I nen d u h g t h h g MN

lh t&p tuygn cc6 d u h g trbn (I)

V i (14( 13 Hai d u h g trbn (0, ; 6.5cm) vh (02 ; 7,5cm) giao nhau tai A

vh B Tinh dQ Cai doan n6i tam 0,02, bigt AB = 12cm

93 Cho nira dubng trbn ( 0 ) d u h g kinh AB VE d u h g trbn tam 0' d u h g kinh

OA Qua A vi5 d&y cung AC &a d u h g trbn ( 0 ) c i t d u h g trbn (0') b M

C h h g minh :

a) D u h g trbn (0') vh d u h g trbn ( 0 ) ti6p xxdc v6i nhau ;

b) O'M song song v6i OC ;

c) M 18 trung dikm c6a AC vh OM song song vdi BC

Trang 25

94 Cho tam giic ABC vudng a A VO d u h g trbn (01) di qua A vh tiEp x6c vdi BC tai B, vE d~rimg trbn (02) di qua A v i ti+ xxc vdi BC tai C Goi

M 1 i trung didm cSa BC Chdng midh :

a) D u h g trbn (0,) v i (02) ti&$ xx6c vbi nhau ;

b) AM I i ti+ tuyEn chung c6a hai d u h g trbn (0,) v i to2)

95 Cho hai d u h g trbn (0 - ; R ) v i (0' ; R') c i i nhau tai A v i B BiEt OAO'=~O", R = 6cm v i R' = 4,5cm

a) Tinh 00, AB ;

b) Goi P I i trung didm c6a 00, qua A kc5 c i t tuy&n vudng g6c vbi AP

c i t dubng trbn ( 0 ) if C, c&t d u h g trbn (0') 13 D So sdnh AC, AD v i AB

96 Cho hai dubng trbn (01 ; 17cm) v i ( 0 2 ; 1Ocm) AB I i mot tigp tuygn chung ngoii c6a hai d~rbng trbn c6 ti6p didm viri d~rbng trbn ( 0 , ) u A, vdi d u h g trbn ( 0 2 ) if B Dubng thing AB c i t dubng ndi tam 0101 b C Tinh d o &hi c i c doan C O I , C 0 2 bi6t 0102 = 21cm

97 Cho td g i i c ABCD Bi&i ring dubng trbn nOi tiCp hai tam giic ABC vh ADC ti6p xx6c nhau Chdng minh rgng d~rbng trbn noi tiEp hai tam giic ABD vh CBD c b g tiEp xx6c nhau

98 Cho hai d u h g trbn (0,) v i (02) ti6p xbc ngohi tgi A ~ d t dubng thing

ti+ xuc vbi d u h g trbn ( 0 , ) ir B, ti+ xxlic v6i d u h g trbn (02) if C BiEt

AB = 6cm, AC = 8cm

a) Tinh dQ dhi doan BC ;

b) Tinh b i n kinh c6a c i c d u h g ( 0 , ) vh (0.9 -

99 Cho hai dubng trbn ( 0 ) va (0') tiEp xhc ngohi u A Dubng nbi t2m 00'

c i t dubng trbn ( 0 ) b B, c i t d u h g trbn (0') b C DE 11 mot ti€$ tuy&n

chung ngohi cha hai dubng trbn (D E(O), EE(0'))

Goi M l i gino didm cua hai dubng thing BD v i CE Chirng mich : a) G6c EMD = 90' ;

b) MA l h tiEp tuy&n chung cda hai dubng trbn ( 0 ) v i ( 0 ' ) ;

Trang 26

c ) Tam g i k AMN' Ih tam gikc gi ? Vi sao ?

.' 101 Cho hai dubng trbn ( 0 1 ) v l (02) ti6p xuc ngohi U K AD 1l mot ti6'p

tuy6n chung ngoii' c6a hai dubng trbn ( A € ( O , ) , D E ( 0 2 ) ) VE dubng kinh AB c i ~ a dubng trbn (OI) Chfing m i n h ~ ~ ~ = BK.BD

102 Cho hai dulrng trbn (O1; 5cm) v i ( 0 2 ; 2cm) nim ngohi nhau Mot ti6p tuy6n chung ngoli AB c6a hai dubng trbn ( A € ( O I ) B E ( 0 2 ) ) vh met ti+ ttuy6n chung trong CD c i a hai dubng trbn ( c E ( o ~ ) , D E ( 0 2 ) ) Tinh do dbi doan n6i t8m O1O?, bi6t AB = 1.5CD

103 Cho d u h g trbn (0) vh d~rirng thing xy khong giao nhau v i hai didm

A, B trtn d~rbng thing xy Qua A vE hai ti6p truy6n AC vh AD vbi dnbng trbn (0) trong do C, D 12 c i c ti6p didm, qua B vZ hai ti@ tuy6n BE vh

BF vbi dubng trbn (0) tlong d6 E, F l i c i c tit5p didm VE d~rbng trbn ( 0 , ) ti6p xuc vbi hai canh AC, AD ; vE dubng trbn ( 0 2 ) ti6p xuc vdi hai canh BE, BF

C h h g minh ring n6u duirng trbn ( 0 1 ) v l (02) bhng nhau thi 0,02 song song v6i xy

104 Cho tam gikc cAn ABC c6 c q h d i y BC = 16cm, canh b8n AB = IOctn Tinh b i n kinh dubng trbn nbi ti66 ngoai ti6p tam gikc v l kholng cich giita c i c tam c i a hai d u h g trbn d6

105 Cho hai d u h g trbn (0) vh (0') giao nhau b A v l B ( 0 v l 0' thuoc hai nha mat phang bir AB) Met c i t tuy6n k e qua A tit dubng trbn (0) CI C

cat dubng trbn (0') u D K e OM I CD vh O'N I CD

I

a) Chdng minh MN = -CD ;

2 b) Goi I l i trung didm c i a MN C h h ~ g minh ring dubng thing k6 qua I vubng g6c vbi CD lubn ludn di qua mot diem c o d/nh khi c i t tuy6n CAD thay ddi ;

C) Qua A k6 ckt tuy6n song song vdi d u h g nbi tam 00' cat dubng trbn ( 0 ) b P, cat d u h g trbn ( 0 ' ) b Q So sinh do d j i ckc doan CD v i PQ

106 (Jho n h dubng trbn ( 0 ) d u h g kinh AB = 2R v i di6m M t&n n h d u h g trbn

66 VE d u h g trbn t h M ti6p xxilc vbi d ~ r h g kinh AB tai H Qua A vh B vE hai ti6p tuytn AC vh BD v6i d u h g t$n (M) trong 66 C, D lh ckc ti6'p didm a) Chdng minh ba didm C, M, D cbng nim tr8n ti6p tuye'n c i a dulrng trbn ( 0 ) tai diim M ;

Trang 27

C ) G i i s~ CD c i t AB b K Chirrlg minh OB' = O H OK

107 Cho 3 didm A, B, C theo thir t ~ r d6 trCn mot dubng thing v i AB = 4BC Trtn cung mot nira mat phang bir AC vE i ~ u a dubng trbn tam 0 dubng kinh AB v i nua dubng trbn t9m 0' doimg kinh BC Ti+ tuyCn chung cua hai nira duirng trbn co ti@ diCm viri duirng trbn (0) a F vdi nira dubng trbn ( 0 ' ) b G, c i t c i c 1i6p'tuyQ ve tit A v i C cua hai ~ i u a dubng trbn d6 b D v i E Ti6p ttuy&n chung cua hai n+ dtrirng trbn 6 B c i t DE

a ) C h h g minh c i c tam g i i c 0 1 0 , OID vh O'IE I2 c i c tam giic vuong ;

I b) Dat O'C = a ( a I.8 mot'do d i i cho truirc) Tinh 91, EG v$ AD theo a ;

I

c) Tinh - SADEC the0 a

1 Ms Cho, tam Ciic ABC c6 BC = a CA = b AB = b Gqi S I i di(n t k h cba

I

tam giic

I

C h h g minh rang ngu C(a + b + c)(b + c - a) = 4 s thi tam giic ABC vudng 6 A

109 Cho dubng trbn (0 ; R) v i duirng thing xy khdng giao nhau Tit mot didm M tujr ); tree xy kk hai ti6p tuy6n M P vA MQ vdi dubng trbn (0) trong d 6 P, Q ii ciic ti6p didm Qua 0 ke OH I xy, d8y cung PQ c i t OH

u I, cat OM b K Chirng minh :

1 b) PQ ludn luBn di qua mat di&m c6,djnh khi diem M thay d6i tr€n xy

v6i d u h g kinh AB c i ~ a d~rbng trbn ~ i i y tai M C h h g minh,AM BM = 2Rr

111 Cho duirng trbn (0 ; R) ti6p xxilc trong vdi d u h g trbn (0' ; R') tai didm

A trong d6 R' > R Duirng nbi t2m 00' cit hai duirng trbn niy idn l u g b

B v A B' C h h g minh rang ti6p tuy6n chung ngoii cha c i c dubng trbn

d u h g kinh 00' v i BB' di qua didm c b djnh A

112 Cho d u h g trbn ( 0 ) v i met didm P nkni btn tiong duirng trbn ( P + 0) Gpi Q l i met di&m tujl ); tr8n dirbng trbn ( 0 ) Chirng minh rang khi di6m Q chuydn dong tren dubng trbn (0) thi giao didm M ciic dubng thing k t qua 0 vudng g6c vdi PQ vh ti6p truyCn kC tit Q c i a duirng trbn ( 0 ) chay trtn met dubng thing c 6 djnh

113 Cho d ~ r b i g thing AB, hai diim C v i D thuoc hai ~ i u a mat p h i ~ ~ g khic nhau b b AB HHy tim trtn AB met di&m M sa6 cho AMC = 2BMD

114 Dvng hai d u h g trbn ti6p xilc ngoii c6 tam I.+ hai didm c 5 djnh cho trudc sao cho met trong hai ti6p tuy&l ch.ung 'ngoii cua liai dubng trbn

d 6 di qua ;not diem c b dinh cho trudc

Trang 28

C h z i ~ n g 111

GOC vdi D U ~ N G TRON

G6c c 6 dinh trirng viri t i m dudng trbn d u a c goi la g6c tam

S 6 d o c i ~ a cung nho bang s o d o g6c u t2m chan c u n g d6

S 6 d o c ~ i a riua dubng tr6n bang 1x0"

Trong m6t dubng iron hay hai duirng trbn b i n g r ~ h a u :

- Hai cung duqc goi I i bang nhau neu chung c 6 s 6 d o bang nhau

- Trong hai cung, cung n i o c 6 s o d o luri han d o a c goi la cung Ian han -

N6u C la mot dikm tren cung A B t h i :

O A = 0 1 ( b i n kinh d~rirng tron (0))

v i O'A = 0 ' 1 ( b i n kin11 duimg t r b ~ i

( 0 ' ) ) m i O A = O'A (theo gih thiet) n&n

O A = O'A = 0 1 = 0'1, d o d 6 tir g i i c OAO'I

la hinh thoi

Mat k h i c O A O ' = 90' (theo giii thie't) ~ I ~ I I / J 21

vi the" td g i i c OAO'I Is hinh vu6ng

-

b) Td g i i c OAO'I la hinh vuBng n&n AOI = A O ' I = 90"

Trong d~rirng trbn ( 0 ) g6c b tilm A 0 1 = 90", d o d 6 :

- S o d o c u n g n h o A1 = s 6 d o g6c A 0 1 = 90"

- S 6 do c u n g 1611 A1 = 360' - 90" = 270'

Trang 29

Tuang tu, trong dubng trbn (O'), ta c6 :

- Cung l6n A1 c6a d u h g trbn ( 0 ) = cung Ian A1 c6a d u h g trbn (0')

115 Cho dubng trbn ( 0 dubng kinh BOC vh BOD So sanh so" do c i a hai-cung nh6 AC v l AD ; R ) vh d u h g trbn (0' ; R'), c i t nhau tai A v l B - - VE

trong hai d u h g trbn d6, bigt R R R'

116 Cho tam giic d&u ABC VC phia ngoli cua tam g i i c v& nira d u h g trbn tam 0 , dubng kinh BC Tr&n nira dubng trbn d6 lily hai di6ni M v l - - N sao

-cho cung BM = MN = NC Goi giao di6m c6a AM, AN vdi canh BC IBn lugt 18 D v i E

Chting minh BD = DE = EC

117 Cho d u h g trbn ( 0 ; R) Tren ti&p tuy&n kkt tir A v8i dubng trbn l&y didm B, tia OB c i t d u h g trbn ir C Bi&t AB = R& Tinh s15 do c i c cung

AC c l a d u h g trbn ( 0 ) , (Ilm trbn d&n do)

118 Cho hai dubng trbn ( 0 ; R) v l d u h g trbn (0' ; R) c i t nhau tai A v i B trong 66 tam c l a d u h g trbn nly nim tren d u h g trbn kia

a) Tir g i i c AOBO' I l hinh gi ? Vi sao ?

n b) Tinh do d l i c i c cung AB c6a m6i dubng trbn ;

Trang 30

c) SS d o hai cung nhb bang nhau

120 C h o tam g i i c OBC can b 0, dvbng cao OH VE d u h g trbn (0 ; OB), tia H O c i t dubng trbn 0 h A Bigt b = 50''

Tinh s6 d o c i c c u n b nh6 BC, CA, AB

52 LIEN HE G I ~ A CUNG V A DAY

! Vdi hai cung 11116 trong mat d ~ r i m g trbn hay hai duirng trbn b i n g nhau : I

1 - Hai cung bang nhau cang hai day bang nhau I / - Hai day b i n g ntiau dang hai cung bang nhau I

I Vdi hai cung nh6 trong m6t duimg trbn hay hai @ u h g trbn bang nhau :

- Cung ldn hon callg d i y lh han

I - DLy Idn h a 1 cang c u n g ih hun

N6u hai tam g i i c c 6 hai canh tuung h g bang nhau tirng d6i mot nhung c i c g 6 c xen giDa khBng b i n g nhau thi canh t h ~ ? ba c6ng kh6ng bang nhau vh canh nho d6i d i t n vdi g6c ldn han II canh ldn hun

N t u hai tam g i i c c 6 hai canh tuung h g bang nhau tirng d6i tnot nhtrng canh thir ba kh6ng bang nhau thi g6c xen giira hai canh d 6 cGng kh6ng bang nhau vii g6c nho doi dign vdi canh 1dn han lii g 6 c l h han

V i du 15 C h h g minh r i n g duimg kinh di qua di6m chinh giira c6a mot cung thi di q u a trung didm c6a day cang cung ay Menh d& dHo c 6 dling kh8ng ? HHy n t u di&u kign dd menh dd d l o c i n g d6ng

Gitii

G i l sir d u h g kinh M N di qua didm chinh giDa M clia cung A B c i ~ a duirng trbn ( 0 )

X6t hai trubng h a p :

Trang 31

a) M l i d i h chinh giira cc6 cung nhb AB (h.22;) - - -

Vi M I i didm chinh giira cua cung AB n@n MA = MB suy ra MA = MB;do

d6 M tr&n d u h g trung t ~ c cha AB

OA = OB (bin kinh d u h g trbn (0)) do d 6 0 trCn dubng trung truc

c i a AB

Vgy OM l i d u h g trung truc c6a AB ntn OM di qua trung didm I ciia AB b) M l i didm chinh giira c6a cung lim AB (h.22b)

Vi c i c diim A v i B n8m trtn c i c nira d u h g trbn d u h g kinh MN n&n

c i c - cung - MA v i cung MB 18 c l c cung nho c ~ i a d t r h g trbn ( 0 ) m i

MA = MB n t n MA = MB, d o d6 M tr&n trung truc c6a AB Didm 0 trtn trung truc cha AB, vi th& dubng kinh MN 1s dubng trung truc cua AB ntn

MN c i t AB I3 I 18 trung di6m c3a AB

M&nh d & ddo khBng dung trong t r u h g hap AB is dubng kinh c i a duimg trbn (0) Ching han dubng kinh CD di qua trung didm 0 c6a dAy

AB nhung hai didrn C v i D kh6ng I i didm chinh giira c6a c l c nira dubng trbn dubng kinh AB

Didu ki&n dd m&nh d6 ddo ciing ddng 18 : Dtly AB kh6ng di qua tarn 0 M&nh d& d6 duuc phit bidu nhu sau : " D u h g kinh di qua trung didm c6a mat day cung kh6ng di qua tam dubng trbn thi di qua trung didm c i a day cang cung do"

121 Cho tam g i i c ctln ABC (AB = AC) Tr@n tia d6i c i a tia BA l&'y didm D

VC dubng trbn tAm 0 ngoai ti&p tam g i i c BCD - -

a) So s l n h s 6 d o c i c cung DB, BC v i 6?

b) K6 01, OH, OK l&n luqt vu6ng g6c v&i DC, DB, BC So sinh c5c doan 01, OH, OK

122 Cho tam g i l c ABC, AB < AC VE dubng trbn d u h g kinh BC c i t AB,

AC Idn luqt 6 E v i D ChCmg minh BD < CE

123 Cho d u h g trbn ( 0 ) day cung AB Goi C v l D 1s hai di6m tr&n AB sao cho AC = CD = DB G c tia OC, OD cit d u h g t r h ( 0 ) - - 1.9n l w I3 M v i PI

So sinh c i c cung AM, MN v i 6%

124 d u h g trbn Bigt Cho nira dubng trbn ( 0 ) dubng kinh AE = 2AB - - ; AD = 3 2 ; B, C, D lA ba didm trtn nifa a) C h h g minh ring AB = BC = CD ;

b) Chirng minh AC = BD ;

Trang 32

- A

C) C h h g minh ring c i c cung AD v l BC c6 chung didm chinh gisa M I

I d) Tlr g i i c ABCD 12 hinh gi ? Vi sao 3

125 Cho dubng trbn (0) duirng kinh AC v1 di6m B tren dubng trbn sao cho

= 60' Qua B k i day BD I AC, qua D k6 day DF//AC

, .A,

a) Tinh s 6 do c6c cung CD, AB, FD

b) Tim tigp tuygn c6a d u h g trbn (0) song song vdi AB ? I

G6c nei tigp 118 g6c c6 dinh nim tren d u h g trbn V i hai canh c k

d u h g trbn d6 #

Cung n l m ben trong g6c goi I l cung bj chin

SB do g6c nOi tigP bing nira s6 do cung bj chin

Trong met d u h g trbn :

- CXc g6c nQi ti&p c h g chan met cung hoac chin hai cung bang nhau

- Moi g6c nOi tigp chdn nira d u h g trbn d&u 18 g6c vu6ng

- Moi g6c nOi tigp (nht, hun hoac bing 9 c6 s 6 d o blng nira s 6 do c6a g6c b tam chng chin mot cung

Vi & 16 Cho tam g i i c can ABC (AB = AC) nOi ti6p d u h g trbn (0)

Tia phan g i i c cha g6c B vP g6c C c i t d u h g trbn b D vP E

a) So s i n h hai tam g i i c ACE v1 ABD ;

b) Goi I I i giao di6m c6a BD v2 CE Tir giic ADIE I 1 hinh gi ? Vi sao ?

Tam - giBc 'ABC can A

suy ra Lai ABD c6 ADB = - = ACE e (hai g6c nai ti* cbng

~ i n h 23

Trang 33

- - - - than cung AB), AEC = B (hai g6c noi tie'p chng chan cung AC) nen

ABD = ACE n&n AD = AE, suy ra AD = AE

Hinh binh hinh ADIE c 6 hai canh kk AD = AE n&n l i hinh thoi

Vi dl;, 17 Cho hai d u h g trbn (0) va ( 0 ' ) cit nhau b A v2 B ( 0 v i 0' thuoc hainira mat phing bit AB) Qua A k i cit tuygn cht duitng trbn ( 0 ) a C, c i t

d u h g trbn (0') b D X i c djnh vi tri c i t tuye'n CD d6 CD c6 do d i i I& nhgt

A v i B nen 00' 1 AB tai I l i trung

I Tam g i i c AOB can 13 0 , c 6 0 1 1i duitng cao n&n 1 i phin g i i c cha g6c

Ngày đăng: 14/10/2016, 18:05

TỪ KHÓA LIÊN QUAN

w