1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi HSG toán lớp 9 có đáp án đề 45

5 1,4K 18
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 118,5 KB

Nội dung

đề thi vào lớp 10 - lam sơn (29) môn: toán học - Thời gian 150 phút Câu 1: (2 điểm) a) Chứng minh rằng n N * ta 1)1( 1 +++ nnnn = 1 11 + nn b) Tính tổng S = 1009999100 1 . 4334 1 3223 1 22 1 + ++ + + + + + Câu 2: (2 điểm) Tìm trên đờng thẳng y = x + 1 những điểm toạ độ (x, y) thoả mãn y 2 - 3y x + 2x = 0 Câu 3: (1 điểm) Tìm n Z sao cho n 2 + 2006 là số chính phơng Câu 4: (2 điểm) Cho đờng (0, R) và 2 điểm A, B nằm ngoài đờng tròn (0) sao cho 0A = 2R. Tìm điểm M (0) sao cho P = MA + 2MB nhỏ nhất và tìm giá trị nhỏ nhất đó. Câu 5: (2 điểm) Cho hình chữ nhật ABCD, đờng vuông góc với AC tại C cắt AB và AD lần lợt tại E và F. Chứng minh :BE CF + DF CE = AC EF Câu 6: (1 điểm) Tìm x, y , z N * sao cho x + y + z = xyz Hớng dẫn chấm Câu 1: a) ta )1()1( 1)1( 1)1( 1 22 ++ ++ = +++ nnnn nnnn nnnn = 1 11 )1( 1)1( + = + ++ nn nn nnnn b) áp dụng đẳng thức trên với n = 1, n = 2 n = 99. Ta 2 1 1 22 1 = + 3 1 2 1 3223 1 = + 100 1 99 1 1009999100( 1 = + -------------------------------------- cộng theo từng vế S = 1 - 10 9 100 1 = Vậy S = 10 9 1.0 0.25 0.5 Câu 2: Điều kiện : x 0 Gọi M (x, y) là điểm cần tìm => (x, y) là nghiệm của Hệ ( ) ( ) 2023 11 2 =+ += xxyy xy Giải (2) ta y 1 = 2 x y 2 = x Với y 1 = 2 x (1) trở thành x + 1 = x ú ( )1 x 2 = 0 ú x = 1 Với y 2 = x (1) trở thành x + 1 = x ú x - x + 1 = 0 ú ( x - 2 1 ) 2 + 4 3 = 0 vô n 0 vậy điểm M cần tìm: M (1, 2) 0.25 0.25 0.25 0.25 0.25 Câu 3: Giải sử n 2 + 2006 là số chính phơng => n 2 + 2006 = m 2 (m Z) Ta m 2 - n 2 = 2006 ú (m - n) (m + n) = 2006 Nếu m, n khác tính chẵn lẻ => m 2 , n 2 khác tính chẵn lẻ => m 2 - n 2 là số lẻ => vô lí Hay m, n cùng tính chẵn lẻ Khi đó { 2 4))((2)( nm nmnmnm + +<=> Nhng 2006 không chia hêt cho 4 vậy không tồn tại n N để n 2 + 2006 là số chính phơng 0.25 0.25 0.25 0.25 0.25 Câu 4: Gọi C là giao điểm của 0A và (0) I là trung điểm 0C => I cố định Xét tam giác 0IM và tam giác 0MA góc Ô chung. 2 1 0 0 0 0 == A M M I (gt) => tam giác 0IM tam giác 0MA => AM = 2IM. Vậy MA + 2MB = 2 (IM + MB) 2BI không đổi Đẳng thức xảy ra ú B, M, I thẳng hàng. KL: P = MA + 2MB nhỏ hhất = 2BI khi B, M, I thẳng hàng. Khi đó M là giao điểm của BI và (0). 0.25 0.25 0.25 0.254 Câu 5: áp dụng định lý ta lét 1 =+ =+= AF DF AE AF EF CF AF DF EF CE AE BE nhân 2 vế với AE.AF ta BE. AF + AE.DF = AE. AF 0.5 Lại AE. AF = AC . EF = 2 S AEF Nên BE. AF + AE . DF = AC. EF (1) Mặt khác: AF 2 = CP . EF => AF = EFCF. DF 2 = CE. EF -> DF = EFCE. Thay vào (1): BE EFACEFCEDFEFCF . =+ ú BE CF + DF CE = AC EF 0.5 0.5 0.5 Câu 6: Ta : x, y, z N * x + y + z = xyz ú 1 111 =++ yzxzxy (1) Do x ,y, z vai trò bình đẳng nh nhau nên ta giả sử 1 x y z nên (1) <-> 1 = 2222 3111111 xxxxxzyzxy =++++ -> x 2 3 do x N * => x = 1 khi đó ta 1 + y + z = yz ú (z-1) (y-1) = 2 do 11 1,1 yz Nyz => = = 21 11 z y => = = 3 2 z y vậy 3 số cần tìm là 1, 2 , 3 0.25 0.25 0.25 0.25 . 3223 1 = + 100 1 99 1 10 099 991 00( 1 = + -------------------------------------- cộng theo từng vế S = 1 - 10 9 100 1 = Vậy S = 10 9 1.0 0.25 0.5 Câu 2:. đề thi vào lớp 10 - lam sơn ( 29) môn: toán học - Thời gian 150 phút Câu 1: (2 điểm) a) Chứng minh rằng n N * ta có 1)1( 1 +++ nnnn

Ngày đăng: 10/06/2013, 01:25

TỪ KHÓA LIÊN QUAN

w