1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi HSG toán lớp 9 có đáp án đề 41

6 3,1K 41
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 276,5 KB

Nội dung

Đề thi vào lớp 10 THPT chuyên Lam Sơn (25) Thời gian 180 phút Môn: Toán chung Câu I. ( 3 điểm) Cho biểu thức: 3 1 1 1 1 1 x x A x x x x x = + + a. Rút gọn biểu thức A b. Với giá trị nào của m thì A=4 Câu II. (4 điểm). Cho Parabon (P) phơng trình 2 y x= và đờng thẳng (dm) phơng trình: y=2(m-1)x-(2m-4) a. Chứng minh rằng với mọi m thì Parabon luôn cắt đờng thẳng (dm) tại hai điểm phân biệt. b. Gọi x 1 , x 2 là hoành độ giao điểm của (P) và (dm). Tìm giá trị nhỏ nhất của 2 2 1 2 y x x= + Câu III. (). Cho tứ giác ABCD nội tiếp đờng tròn tâm O. gọi H, i theo thứ tự là hình chiếu của B trên AC, CD. Gọi M, N theo thứ tự là trung điểm của AD, HI. Chứng minh rằng: a. V ABD và V HBI đồng dạng b. ẳ 0 90MNB = . Câu IV. (4,5 điểm). Cho hình chóp SABCD. Đáy ABCD là hình vuông cạnh a. Cạnh SA vuông góc với đáy ABCD. a. Chứng minh rằng: SC BD . b. Gọi M, N theo thứ tự là hình chiếu của A lên SB, SD. Chứng minh rằng: ( )SC AMN . Câu V. Cho phơng trình: 4 3 2 1 0x ax bx ax+ + + + = (1) trong đó: ,a b R a. Biết (1) ít nhất 1 nghiệm thực. Chứng minh rằng: 4 2 2 5 a b+ . b. Giải hệ phơng trình: 20 8 2005 2165 2005 20 8 2165 x y x y ì + + = + + ì = P N V THANG IM CHM Mụn Toỏn chung thi vo lp 10 chuyờn Lam Sn Câu I Nội dung Điểm a, Đ/K: x>1 0,25 1 1 2 1 ( 1)( 1) x x x x A x x x x x x x = + = + 0,5 ( 1) 2 1 1A x x= + 0,5 2 ( 1 1)A x = 0,25 b, Để 1 1 2 4 1 1 2 x A x = = = 0.5 1 3 1 1 x x = = 0,5 Nhận thấy pt(2) VN. 4 1 3.A x = = 10.x = 0,5 Câu II 4,0 a, Phơng trình hoành độ giao điểm của (p) và (dm) là: 2 2( 1) (2 4) 0(*)x m x m + = ' 2 ( 1) (2 4)m m = V 2 4 5m m = + 0,75 2 ( 2) 1 0,m m = + > 0,75 Phơng trình luôn 2 nghiệm phân biệt hay parabon (p) luôn cắt đờng thẳng (dm) tại 2 điểm phân biệt 0,5 a, Theo giả thiết x 1, x 2 là hoành độ giao điểm của (p) và (dm) Theo câu a ta m và theo viet ta có: 2( 1) 1 2 (2 4) 1 2 x x m x x m + = = 0,5 2 2 2 ( ) 2 1 2 1 2 1 2 y x x x x x x= + = + 0,5 2 4( 1) 2(2 4)y m m = + (1) (2) 2 4 2 1 2 2 4 1 y m m m y m m = + + = 0,5 1 5 1 2 2 4 ( ) 4( ) 5 5 2 4 2 y m m = = y nhận giá trị nhỏ nhất là -5 khi 1 2 m = . 0,5 Câu III 5,0 a, Ta ẳ 0 90BHC = (gt) ẳ 0 90BIC = (gt) H,I cùng nhìn BC Từ tứ giác BHIC nội tiếp ẳ ABC ẳ BIH = và ẳ ẳ BCH BDA = (góc nội tiếp cùng chắn 1 cung) ẳ ẳ BIH BDA = (1) Tơng tự tao ẳ ẳ ABD HBI= (2) Từ (1) và (2) ta ABD HBIV : V (g.g) b, Theo trên ta ABD HBIV : V Lại BM,BN lần lợt là 2 trung tuyến của chúng BM BA BN BH = (3) Lại có: ẳ ẳ ABM HBN = (cặp góc tơng ứng của 2 tam giác đồng dạng) ẳ ẳ ABM MBN = (4) Từ (3) và (4) ta có: ABH MBNV : V ( c.g.c) ẳ ẳ AHB MNB = Mà: ẳ 0 90AHB = (gt) ẳ 0 90MNB = Câu IV 4,5 0,5 0,5 0,5 0,5 0,5 0,5 2,0 H D C A B M I N 1 1H a, Theo gt ta ( )SA ABCD SA BD Mà: AC BD (gt) ( )BD SAC BD SC 0,5 0,5 0,5 0,5 b, Ta có: BC AB (gt) BC SA (gt) ( )BC SAD } ( ) BC AM AM SBC SB AM AM SC (1) Chứng minh tơng tự ta có: AN SC (2) Từ (1) và (2) ta có: ( )SC AMN 0,5 0,5 0,5 0,5 0,5 Câu V a, Giả sử (1) một nghiệm 0 x R ta có: 4 3 2 1 0(2) 0 0 0 0 0 0 1 1 2 (2) ( ) ( ) 0(3) 0 0 2 0 0 x ax bx ax x x a x b x x + + + + = + + + + = đặt: 1 1 2 2 2 0 0 0 0 2 0 0 x y y x x x + = = + Vậy (3) 2 2 0 0 0 y ay b + + = 2 2 2 2 2 2 ( 2) ( ) ( )( 1) 0 0 0 y ay b a b y = + + + theo BunhiacôpSki 0,25 0,25 S N D A M B C 0,25 0,25 0,25 0,5 0,25 1,5 Lại có: ( ) 2 2 2 0 2 2 2 1 0 y a b y − ⇒ + ≥ + Nhng 2 1 2 2 4 0 0 2 0 y x x    ÷  ÷  ÷   = + ≥ §Æt: 2 4 , 0 0 y t t= + ≥ ( ) 2 2 9 2 2 1 5 5 4 9 9 4 5 16 2 2 5 5 5 5 5 25 t a b t t t t a b t t t t    ÷   + ⇒ + ≥ = − + + + + + ≥ + + − = + + + 4 2 2 5 a b + ≥ (v× 5 16 0, 0 5 25 t t t + ≥ > + ) DÊu “=” x¶y ra khi t=0 2 4 0 y⇔ = ⇔ 2 1 0 x = ± Víi 4 2 1 , 0 5 5 x a b − = ⇒ = = Víi 4 2 1 , 0 5 5 x a b − = − ⇒ = = b, HÖ 20*8 2005 2165(1) 20*8 2005 2165(2) x y y x      − + + = − + + = §/K: , 160x y ≥ LÊy (1)-(2) ta cã: 20*8 2005 2005 20*8x y x y − + + = + + − ( ) ( ) 2 ( 20*8)( 2005) 2 ( 2005)( 20*8)x y x y ⇔ − + = + − ( ) ( ) 2 2 2005 20*8 2165 x y y x ⇔ = ⇒ + − − = KÕt hîp víi (1) 2005 20*8 1y x ⇒ + − − = HÖ 2005 20*8 2165(1) 2005 20*8 1(3) y x y x      + + − = ⇔ + − − = LÊy (1)-(3) ta cã: 2 20*8 2164x − = 20*8 1082 2 160 1082 1170884 x x x ⇔ − = ⇔ − = ⇔ = 0,25 0,25 0,25 0,25 HÖ cã nghiÖm duy nhÊt x=y=1170884 . Đề thi vào lớp 10 THPT chuyên Lam Sơn (25) Thời gian 180 phút Môn: Toán chung Câu I. ( 3 điểm) Cho biểu thức:. ẳ BIH BDA = (1) Tơng tự tao có ẳ ẳ ABD HBI= (2) Từ (1) và (2) ta có ABD HBIV : V (g.g) b, Theo trên ta có ABD HBIV : V Lại có BM,BN lần lợt là 2 trung

Ngày đăng: 10/06/2013, 01:25

TỪ KHÓA LIÊN QUAN

w