950 câu trắc nghiệm hình học 12 và đáp án tham khảo
TR C NGHI M HÌNH H C 12 CHƯƠNG 1- D S 01 C©u : Cho lăng trụ tam giác ABC.A’B’C’ cạnh đáy a=4, biết diện tích tam giác A’BC Thể tích khối lăng trụ ABC.A’B’C’ A B C D 10 C©u : Cho hình chóp S.ABC có SA=3a (với a>0); SA tạo với đáy (ABC) góc 600.Tam giác ABC vng B, ACB 300 G trọng tâm tam giác ABC Hai mặt phẳng (SGB) (SGC) vng góc với mặt phẳng (ABC) Tính thể tích hình chóp S.ABC theo a A V 3 a 12 B V 324 a 12 C V 13 a 12 D V 243 a 112 C©u : Đáy hình chóp S.ABCD hình vng cạnh a Cạnh bên SA vng góc với mặt phẳng đáy có độ dài a Thể tích khối tứ diện S.BCD bằng: A a3 B a3 C a3 D a3 C©u : Cho hình chóp S.ABC có đáy ABC tam giác vuông cân B, AB = BC = a , SAB SCB 900 khoảng cách từ A đến mặt phẳng (SBC) a Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC theo a A S 2a B S a C S 16 a D S 12a C©u : Cho hình chóp S.ABC có đáy tam giác cạnh a, góc SC mp(ABC) 45 Hình chiếu S lên mp(ABC) điểm H thuộc AB cho HA = 2HB Biết CH a Tính khoảng cách đường thẳng SA BC: A a 210 15 B a 210 45 C a 210 30 D a 210 20 C©u : Một hình chóp tam giác có đường cao 100cm cạnh đáy 20cm, 21cm, 29cm Thể tích khối chóp bằng: A 7000cm3 B 6213cm3 C 6000cm3 D 7000 2cm3 C©u : Cho hình chóp S.ABC có đáy ABC tam giác đều; mặt bên SAB nằm mặt phẳng vng góc với mặt phẳng đáy tam giác SAB vuông S, SA = a , SB = a Gọi K trung điểm đoạn AC Tính thể tích khối chóp S.ABC a3 A V a3 B V a3 C V a3 D V C©u : Trong mệnh đề sau, mệnh đề đúng? A Tồn hình đa diện có số đỉnh số mặt B Tồn hình đa diện có số cạnh số đỉnh C Số đỉnh số mặt hình đa diện ln ln D Tồn hình đa diện có số cạnh số mặt C©u : Cho lăng trụ đứng ABC.A'B'C' có đáy tam giác cân A, AB AC 2a;CAB 120 Góc (A'BC) (ABC) 45 Thể tích khối lăng trụ là: A 2a 3 B a3 3 C a3 D a3 C©u 10 : Cho hình chóp S.ABC có tam giác SAB cạnh a, tam giác ABC cân C Hình chiếu S (ABC) trung điểm cạnh AB; góc hợp cạnh SC mặt đáy 300 Tính thể tích khối chóp S.ABC theo a A V 3 a B V a C V 3 a D V 3 a C©u 11 : Cho hình chóp S.ABC có đáy ABC tam giác vuông B, BA=4a, BC=3a, gọi I trung điểm AB , hai mặt phẳng (SIC) (SIB) vuông góc với mặt phẳng (ABC), góc hai mặt phẳng (SAC) (ABC) bẳng 600 Tính thể tích khèi chãp S.ABC A V 3 a B V 3 a C V 12 3 a D V 12 3 a C©u 12 : Cho hình chóp S.ABC Người ta tăng cạnh đáy lên lần Để thể tích giữ ngun tan góc cạnh bên mặt phẳng đáp tăng lên lần để thể tích giữ nguyên A B C D C©u 13 : Cho lăng trụ tam giác ABC.A’B’C’ có cạnh đáy 2a, khoảng cách từ A đến mặt phẳng (A’BC) a Khi thể tích lăng trụ bằng: 2 B 3a3 A a C 4a 3 D 4a 3 C©u 14 : Cho hình chóp SABCD có ABCD hình vng có M trung điểm SC Mặt phẳng (P) qua AM song song với BC cắt SB, SD P Q Khi A B C VSAPMQ VSABCD D bằng: C©u 15 : Cho hình chóp S.ABC có A, B trung điểm cạnh SA, SB Khi đó, tỉ số VSABC ? VSABC A B C D C©u 16 : Cho hình chóp SABC có SA = SB = SC = a vng góc với Khi khoảng cách từ S đến mặt phẳng (ABC) là: A a B a C a D a C©u 17 : Cho lăng trụ đứng ABC.A'B'C' có đáy tam giác cân A, AB AC 2a;CAB 120 Góc (A'BC) (ABC) 45 Khoảng cách từ B' đến mp(A'BC) là: A a B 2a C a 2 D a C©u 18 : Cho hình chóp S.ABC có mặt phẳng (SAC) vng góc với mặt phẳng (ABC), SA = AB = a, AC = 2a, ASC ABC 900 Tính thể tích khối chóp S.ABC A V a3 B V a3 12 C V a3 D V a3 C©u 19 : Cho hình chóp S.ABCD có đáy hình vng cạnh 2a Mặt phẳng (SAB) vng góc đáy, tam giác SAB cân A Biết thể tích khối chóp S.ABCD 4a Khi đó, độ dài SC A a B 6a C 2a D Đáp số khác C©u 20 : Cho lăng trụ ABC.A’B’C’ có đáy ABC tam giác cạnh 2a, hình chiếu A’ lên (ABC) trùng với trung điểm AB Biết góc (AA’C’C) mặt đáy 60o Thể tích khối lăng trụ bằng: A 2a3 B 3a3 C 3a3 D a3 C©u 21 : Cho hình chóp S.ABCD có đáy hình chữ nhật, AB a; AD 2a; SA a M điểm SA cho AM A a3 3 a VS BCM ? B 2a 3 C 2a 3 D a3 C©u 22 : Cho hình chóp SABCD có ABCD hình thang vng A D thỏa mãn AB=2AD=2CD=2a= SA SA (ABCD) Khi thể tích SBCD là: A 2a 3 B a3 C 2a 3 D a3 2 C©u 23 : Cho hình chóp tứ giác có cạnh đáy a mặt bên tạo với đáy góc 450 Thể tích khối chóp bằng: A a3 B a3 C a3 D a C©u 24 : Cho hình chóp S.ABCD có đáy ABCD hình vng tâm O Gọi H K V trung điểm SB, SD Tỷ số thể tích AOHK VS ABCD A 12 B C D C©u 25 : Cho hình chóp S.ABCD có đáy hình thoi cạnh a, SA ( ABCD) Gọi M trung điểm BC Biết góc BAD 120, SMA 45 Tính khoảng cách từ D đến mp(SBC): A a B a 6 C a D a C©u 26 : Cho lăng trụ ABC.A’B’C’ có đáy ABC tam giác cạnh 2a, hình chiếu A’ lên (ABC) trùng với trọng tâm ABC Biết góc cạnh bên mặt đáy 60o Thể tích khối lăng trụ bằng: A a3 B a3 C 2a3 D 4a3 C©u 27 : Cho hình chóp S.ABC có đáy ABC tam giác cân A, góc BAC =1200 Gọi H, M trung điểm cạnh BC SC, SH vng góc với (ABC), SA=2a tạo với mặt đáy góc 600 Tính khoảng cách hai đường thẳng AM BC A d C©u 28 : a B d a 21 C d a D d a 21 Cho hình chóp S.ABCD có SA ( ABCD) Biết AC a , cạnh SC tạo với đáy góc 60 3a diện tích tứ giác ABCD Gọi H hình chiếu A cạnh SC Tính thể tích khối chóp H.ABCD: A a3 B a3 C a3 D 3a C©u 29 : Cho hình chóp S.ABC tam giác ABC vuông B, BC = a, AC = 2a, tam giác SAB Hình chiếu S lên mặt phẳng (ABC) trùng với trung điểm M AC Tính thể tích khối chóp S.ABC A V a3 B V a3 C V a3 D V a3 C©u 30 : Cho hình chóp SABCD có ABCD hình bình hành có M trung điểm SC Mặt phẳng (P) qua AM song song với BD cắt SB, SD P Q Khi A B C VSAPMQ VSABCD D bằng: C©u 31 : Cho hình chóp S.ABCD có đáy hình vng cạnh a, mặt bên SAB tam giác nằm mp vng góc với đáy Khoảng cách từ A đến mp(SCD) là: A a 21 B a 21 14 C a 21 D a 21 21 C©u 32 : Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB a Cạnh bên SA vng góc với mặt phẳng đáy, SC tạo với mặt phẳng đáy góc 450 SC 2a Thể tích khối chóp S ABCD A 2a 3 B a3 3 C a3 D a3 3 C©u 33 : Cho hình chóp S.ABCD có đáy hình vng cạnh a, SA a SA ( ABCD) H hình chiếu A cạnh SB VS AHC là: A a3 3 B a3 C a3 D a3 12 C©u 34 : Khối mười hai mặt thuộc loại: A 5, 3 B 3,6 C 3, 5 D 4, 4 C©u 35 : Cho hình chóp tứ giác S.ABCD có đáy hợp với cạnh bên góc 450 Bán kính mặt cầu ngoại tiếp hình chóp S.ABCD Thể tích khối chóp A B C Đáp số khác D C©u 36 : Cho mặt phẳng (P) vng góc mặt phẳng (Q) (a) giao tuyến (P) (Q) Chọn khẳng định sai: A Nếu (a) nằm mặt phẳng (P) (a) vng góc với (Q) (a) vng góc với (Q) B Nếu đường thẳng (p) (q) nằm mặt phẳng (P) (Q) (p) vng góc với (q) C Nếu mặt phẳng (R) vng góc với (P) (Q) (a) vng góc với (R) D Góc hợp (P) (Q) 90o C©u 37 : Mỗi đỉnh hình đa diện đỉnh chung nhất: A Ba mặt B Năm mặt C Bốn mặt D Hai mặt C©u 38 : Chọn khẳng định đúng: A Hai đường thẳng phân biệt vng góc với đường thẳng thứ ba hai đường thẳng song song với B Hai đường thẳng phân biệt vng góc với mặt phẳng hai đường thẳng song song với C Hai đường thẳng vng góc với đường thẳng thứ ba hai đường thẳng song song với D Hai đường thẳng vng góc với đường thẳng thứ ba hai đường thẳng song song với C©u 39 : a Cho hình chóp S.ABC có đáy tam giác vuông A, AC Tam giác SAB cạnh a nằm mp vng góc với đáy Biết diện tích tam giác SAB a 39 Tính khoảng 16 cách từ C đến mp(SAB): A 2a 39 39 B a 39 39 C a 39 13 D a 39 26 C©u 40 : Cho hình chóp S.ABC có đáy ABC tam giác cạnh a , tam giác SAC cân S nằm mặt phẳng vng góc với đáy, SB hợp với đáy góc 300, M trung điểm BC Tính khoảng cách hai đường thẳng SB AM theo a A d a 13 B d a 13 C d a a 13 D d C©u 41 : cho hình chop S.ABC , đáy tam giác vng A, ABC 600 , BC = 2a gọi H hình chiếu vng góc A lên BC, biết SH vng góc với mp(ABC) SA tạo với đáy góc 600 Tính khoảng cách từ B đến mp(SAC) theo a A d a B d 2a C d a 5 D d 2a C©u 42 : Cho hình chóp SABCD có ABCD hình thang vng A D thỏa mãn AB=2AD=2CD SA (ABCD) Gọi O = AC BD Khi góc hợp SB mặt phẳng (SAC) là: A BSO B BSC C DSO D BSA C©u 43 : Cho hình chóp S.ABC có đáy ABC tam giác vng cân đỉnh C, cạnh góc vng a Mặt phẳng (SAB) vng góc đáy Biết diện tích tam giác SAB a Khi đó, chiều cao hình chóp A a B a C a D 2a C©u 44 : Cho hình chóp S.ABCD có đáy hình chữ nhật Hình chiếu S lên mp(ABCD) trung điểm H AB, tam giác SAB vuông cân S Biết SH a 3;CH 3a Tính khoảng cách đường thẳng SD CH: A 4a 66 11 B a 66 11 C a 66 22 D 2a 66 11 C©u 45 : Cho hình chóp tam giác S.ABC với SA,S B, SC đơi vng góc SA SB SC a Khi đó, thể tích khối chóp bằng: A a B a C a D a C©u 46 : Cho hình lăng trụ ABC.A’B’C’ có đáy ABC tam giác vng cân đỉnh C, cạnh góc vng a, chiều cao 2a G trọng tâm tam giác A’B’C’ Thể tích khối chóp G.ABC A a3 B 2a 3 C a3 D a C©u 47 : Đường chéo hình hộp chữ nhật d , góc đường chéo hình hộp mặt đáy , góc nhọn hai đường chéo mặt đáy Thể tích khối hộp bằng: A d cos2 sin sin C d3 sin2 cos sin C©u 48 : B d sin cos sin D d cos2 sin sin Cho hình chóp tứ giác S.ABCD có cạnh đáy a, thể tích khối chóp a3 Góc cạnh bên mặt phẳng đáy gần góc sau đây? A 600 B 450 C 300 D 700 C©u 49 : Trong mệnh đề sau, mệnh đề sai? A Lắp ghép hai khối hộp khối đa diện lồi B Khối tứ diện khối đa diện lồi C Khối hộp khối đa diện lồi D Khối lăng trụ tam giác khối đa diện lồi C©u 50 : Cho hình chóp S.ABCD có cạnh đáy a, góc mặt bên mặt đáy 450 Gọi M, N, P trung điểm SA, SB CD Thể tích khối tứ diện AMNP A a3 48 a3 B 16 C a3 24 D a3 ĐÁP ÁN Đ SÔ 01 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 { { ) { { ) { ) { { { { { { ) { { { { { { { ) ) { { { ) | | | | | | | | | | ) ) | | ) | | ) | | ) | | | | | } } } } } } } } ) } } } } ) } } ) } } ) ) } } } ) ) } ~ ) ~ ) ) ~ ) ~ ~ ) ) ~ ~ ~ ~ ~ ~ ) ~ ~ ~ ~ ~ ~ ~ ~ ) 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 { { { { { { ) { { ) { { { { { { { ) ) ) { ) ) | | | | ) | | ) ) | ) | | | ) ) | | | | ) | | ) } ) ) } ) } } } } } ) } } } } } } } } } } } ~ ) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ) ) ~ ~ ) ~ ~ ~ ~ ~ ~ TR C NGHI M HÌNH H C 12 CHƯƠNG 1- D S 02 C©u : Một miếng tơn hình chữ nhật có chiều dài 98cm, chiều rộng 30cm uốn lại thành mặt xung quanh thùng đựng nước Biết chỗ mối ghép 2cm Hỏi thùng đựng lít nước? A 20 lít B 22 lít C 25 lít D 30 lít C©u : Một hình trụ có bán kính đáy 50cm có chiều cao h = 50cm a) Tính diện tích xung quanh diện tích tồn phần hình trụ b) Tính thể tích khối trụ tạo nên hình trụ cho c) Một đoạn thẳng có chiều dài 100cm có hai đầu mút nằm hai đường trịn đáy Tính khoảng cách từ đoạn thẳng đến trục hình trụ 2 A a) 5000 cm ; 1000 cm b) 125000 cm c) 25 cm 2 B a) 5000 cm ; 10000 cm b) 12500 cm c) 25 cm 2 C a) 500 cm ; 10000 cm b) 125000 cm c) 25 cm 2 D a) 5000 cm ; 10000 cm b) 125000 cm c) 25 cm C©u : Một hình nón có đường sinh 2a thiết diện qua trục tam giác vng.Tính diện tích xun quanh diện tích tồn phần hình nón Tính thể tích khối nón A 2a2 ;(2 2)a2 ; C 2a3 2a3 2a ;( 2)a ; 2 B 2a2 ;(2 2)a2 ; 2a3 D 2a2 ;(2 2)a2 ; 2a3 C©u : Cho hình hộp ABCDA’B’C’D’ có đáy hình thoi hai mặt chéo ACC’A’, BDD’B’ vng góc với mặt phẳng đáy Hai mặt có diện tích 100 𝑐𝑚2 , 105 𝑐𝑚2 cắt theo đoạn thẳng có độ dài 10 cm Khi thẻ tích hình hộp cho A 225√5 𝑐𝑚3 425 𝑐𝑚3 B 525 𝑐𝑚3 235√5 𝑐𝑚3 C D ĐÁP ÁN D SÔ 07 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 { ) { { ) { { { { { { { { { { ) { { { { { { ) ) { ) { | | ) ) | | ) ) ) | | ) | | | | ) | | | | | | | | | | ) } } } } } } } } } } } } } } } } ) ) } } } } } ) } ) ~ ~ ~ ~ ~ ) ~ ~ ~ ) ) ~ ) ) ) ~ ~ ~ ~ ) ) ) ~ ~ ~ ~ ~ 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 { { { { { { ) { { ) { { { ) ) ) { { { { { ) { { ) { { | | ) | | | | ) ) | | | | | | | | ) | | ) | | | | ) | ) ) } } } ) } } } } } ) } } } } } } ) ) } } ) ) } } ) ~ ~ ~ ) ) ~ ~ ~ ~ ~ ) ~ ) ~ ~ ~ ) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 ) { { { { ) ) { { { { { { { ) { ) { { ) { { { ) ) { { | ) | | | | | | | ) | | | | | | | ) ) | | ) ) | | | ) } } ) ) } } } ) } } ) ) } } } } } } } } } } } } } ) } ~ ~ ~ ~ ) ~ ~ ~ ) ~ ~ ~ ) ) ~ ) ~ ~ ~ ~ ) ~ ~ ~ ~ ~ ~ 14 TR C NGHI M PHƯƠNG PHÁP TOẠ ĐỘ TRONG KHÔNG GIAN ĐỀ S 08 C©u : Cho A 0;0;1 , B 3;0;0 ,C 0;2;0 Khi phương trình mặt phẳng (ABC) : A x y z B C©u : Cho đường thẳng x y A 2t y 4t z 1 C x y z 1 qua A 1; 0; có véc tơ phương u tham số đường thẳng x z 6t x y z 2; 4;6 Phương trình : x B D t y z x C t y 2t z t D x y 2t z 3t t 3t C©u : Gọi M, N trung điểm AB CD Tọa độ điểm G trung điểm MN là: 1 1 A G ; ; 2 2 1 1 4 4 B G ; ; 2 2 C G ; ; 3 3 1 1 3 3 D G ; ; C©u : Trong khơng gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x y 4z mặt cầu (S): x2 y z 4x 10 z Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến đ7ờng trịn có bán kính bằng: A B C D C©u : Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d1 : x 1 y 1 z 1 x y 1 z m ; d2 : 2 Để d1 cắt d m A B C D C©u : Cho đường thẳng : x y 3 z P : x 2y 2z mặt phẳng chứa vng góc với P có phương trình : A 2x 2y z B 2x 2y z C 2x 2y z D 2x 2y z C©u : Cho hai mặt phẳng (P): x+y-z+5=0 (Q): 2x-z=0 Nhận xét sau A Mặt phẳng (P) mặt phẳng (Q) có giao tuyến x y 5 z 1 x y 5 z B Mặt phẳng (P) mặt phẳng (Q) có giao tuyến 1 C Mặt phẳng (P) song song với mặt phẳng (Q) D Mặt phẳng (P) vng góc với mặt phẳng (Q) C©u : Vị trí tương đối hai đường thẳng 1 : x 1 y z x 1 y 1 z 1 là: , 2 : A Song song với B Cắt điểm M (3; 2;6) C Cắt điểm M (3; 2; 6) D Chéo C©u : x 1 2t x y 1 z , : y t Phương trình đường thẳng Cho hai đường thẳng 1 : 1 z vng góc với mặt phẳng (P): x y z cắt hai đường thẳng 1 là: A x 5 7t : y 1 t z 4t B C x 5 7t : y 1 t z 4t D : x y 1 z 4 x y 1 z C©u 10 : Cho mặt phẳng : x y 3z đường thẳng d có phương trình tham số: x 3 t y 2t Trong mệnh đề sau, mệnh đề đúng? z A d B d cắt ( ) D d // C d C©u 11 : Gọi (S) mặt cầu tâm I(2 ; ; -1) tiếp xúc với mặt phẳng ( ) có phương trình: 2x – 2y – z + = Bán kính (S) ? A B D C C©u 12 : Đường thẳng sau song song với (d): x y z 3 A x 1 y z 3 B x2 y4 z4 1 C x 1 y z 1 2 D x 1 y z 1 1 2 C©u 13 : Trong không gian Oxyz, cho điểm M 1;0;0 ; N 0;1;0 ; C 0;0;1 Khi thể tích tứ diện OMNP bằng: B A C©u 14 : C D Trong không gian với hệ toạ độ Oxyz, cho đường thẳng d : x y 1 z điểm 1 A(1;-1;2) Tọa độ hình chiếu vng góc H A lên d là: A H(0;- 1;- 2) B H(0; 1; 2) D H(0;- 1; 2) C H(0; 1;- 2) C©u 15 : Cho mặt phẳng ( P) :2 x y z mặt cầu (S ) : x2 y z x y z 11 Giả sử (P) cắt (S) theo thiết diện đường tròn (C) Xác định tọa độ tâm tính bán kính đường trịn (C) A Tâm I (3;0; 2), r B Tâm I (3;0;2), r C Tâm I (3;0;2), r D Tất đáp án sai C©u 16 : Gọi ( ) mặt phẳng cắt ba trục tọa độ ba điểm M(8; 0; 0), N(0; -2; 0), P(0; 0; 4) Phương trình ( ) là: A x y 1 z C x – 4y + 2z – = B x y 2 z 0 D x – 4y + 2z = C©u 17 : Mặt phẳng (P) chứa trục Oy điểm A 1; 1;1 : A x z B x y C x z D x y C©u 18 : Phương trình mặt cầu tâm I(1; 2; 3) bán kính R=3 là: A B B C x2 y z 2x y 6z C ( x 1)2 ( y 2)2 ( z 3)2 D ( x 1)2 ( y 2)2 ( z 3)2 C©u 19 : Mặt phẳng qua điểm A(1; 0; 0), B(0; -2; 0), C(0; 0; 3) có phương trình: A x y 3z B 6x y 2z C x y 3z D Đáp án khác C©u 20 : Cho bốn điểm A(-1,1,1), B(5,1,-1) C(2,5,2) , D(0,-3,1) Nhận xét sau A A,B,C,D bốn đỉnh tứ diện B Ba điểm A, B, C thẳng hàng C Cả A B D A,B,C,D hình thang C©u 21 : Trong khơng gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x y z điểm A(4; -4; 4), B(4; -2 ;6), C(3 ; -5; 7) Mặt cầu (S) tiếp xúc với (P), qua điểm C có tâm nằm đường thẳng AB Tâm I mặt cầu (S) có tọa độ là: A (-4; -3; 5) B (4; -3; 5) C (4; 3; 5) D (4:3; -5) C©u 22 : Cho điểm A(0,0,3) , B(-1,-2,1) , C(-1,0,2) Có nhận xét số nhận xét sau Ba điểm A,B,C thẳng hàng Tồn mặt phẳng qua ba điểm ABC Tồn vô số mặt phẳng qua ba điểm A,B,C A,B,C tạo thành ba đỉnh tam giác Độ dài chân đường cao kẻ từ A 5 Phương trình mặt phẳng (A,B,C) 2x+y-2z+6=0 Mặt phẳng (ABC) có vecto pháp tuyến (2,1,-2) A B C D C©u 23 : Mặt cầu có phương trình x2 y z x y có tọa độ tâm I bán kính r là: A I 1; ;0 ; r B I 1; ; , r C I 1; ;0 ; r D I 1; ;0 , r C©u 24 : Điểm nằm đường thẳng (d) giao tuyến x + 2y – z +3 = 2x – 3y – 2z + = B (-1; -1; 0) A (0; 1; 5) C©u 25 : C (1; 2; 1) D ( 1; 0; 4) 2 x y z có vectơ pháp tuyến là: x z Đường thẳng có phương trình: A u 2; 1;1 B u 1; 1;0 C u 1;3;1 D u 1;0; 1 C©u 26 : Trong không gian Oxyz, cho ba điểm A 1;0;0 ; B 1;1;0 ; C 0;1;1 Khi tọa độ điểm D để ABCD hình bình hành: A D 1;1;1 B D 0;0;1 C D 0; 2;1 D D 2;0;0 C©u 27 : Trong khơng gian với hệ toạ độ Oxyz, cho tam giác ABC có tọa độ A(-1;1;-1), B(2;0;1), C(3;1;-2) Độ dài đường cao kẻ từ B tam giác ABC bằng: A 26 B 26 17 C 26 17 D 26 C©u 28 : Cho tam giác ABC với A(1;-4;2), B(-3;2;1), C(3;-1;4), trọng tâm G tam giác ABC có tọa độ bằng: A (3; -9; 21) 1 7 1 B ; 2; 2 2 7 C ; 1; 3 3 1 7 D ; ; 4 4 C©u 29 : Phương trình đường thẳng qua A( 1; 2; -1) vng góc với mặt phẳng (P): x + 2y – 3z +1 = là: A x 1 y z B x y z 1 3 C x 1 y z D x2 y4 z4 3 C©u 30 : Cho hai đường thẳng : x y z A 3; 2;5 Tọa độ hình chiếu A ? A 4; 1; 4; 1; B C C©u 31 : Phương trình tắc đường thẳng 4; 1; D 4;1; qua điểm M(2 ; ; -1) có vectơ phương a (4 ;-6 ; 2) A C C©u 32 : A x2 x4 y 6 y6 3 z 1 B z2 D x2 x2 y 3 y 3 z 1 z1 x y z mặt phẳng x 3z : x y Tọa độ giao điểm I đường thẳng d I 1;1;0 B 2;1;0 C I 1;1;1 D I 1; 2;0 C©u 33 : Phương trình mặt phẳng qua M(1; 3; -3) vng góc đường thẳng d: x 1 y z là: 1 A x 1 y z 1 B x y 3z 10 C Đáp án A B D x y 3z 10 C©u 34 : Mặt phẳng qua D 2;0;0 vng góc với trục Oy có phương trình là: A z = B y = C y = D z = C©u 35 : Khoảng cách từ điểm A(1;2;3) đến mặt phẳng (P): 2x – y +2z +6=0 bằng: A B C D C©u 36 : Trong không gian oxyz cho hai điểm A(5,3,-4) điểm B(1,3,4) Tìm tọa độ điểm C (Oxy) cho tam giác ABC cân C có diện tích Chọn câu trả lời A C(3,7,0) C(3,-1,0) B C(-3-7,0) C(-3,-1,0) C C(3,7,0) C(3,1,0) D C(-3,-7,0) C(3,-1,0) C©u 37 : Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD có A(3; 1; 5), B(2; 6; 1), C(4; ; 5) D(6; 0; 4) Phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD là: A ( x 1)2 ( y 1)2 ( z 1)2 25 B ( x 1)2 ( y 1)2 ( z 1)2 C ( x 1)2 ( y 1)2 ( z 1)2 25 D ( x 1)2 ( y 1)2 ( z 1)2 C©u 38 : Gọi mặt phẳng cắt trục tọa độ điểm M(8; 0; 0), N(0; -2; 0), P(0; 0; 4) Phương trình là: A C©u 39 : x – 4y + 2z – = Cho A 1; 4;2 , B MA2 A B x y z 0 1 1;2; : x 1 C y x y z 0 2 z Điểm M C 1; 0; D x – 4y + 2z = mà MB nhỏ có tọa độ : 1; 0; B 0; 1; D 1; 0; : x y z C©u 40 : Cho mặt phẳng ( ) : x y z Trong mệnh đề sau, mệnh đề sai ? ( ) : x y A C©u 41 : B Cho điểm I(3,4,0) đường thẳng : C D x 1 y z Viết phương trình mặt cầu (S) 1 4 có tâm I cắt hai điểm A,B cho diện tích tam giác IAB 12 ( x 3) ( y 4) z A ( x 3)2 ( y 4)2 z 25 B ( x 3) ( y 4) z 25 C ( x 3)2 ( y 4)2 z D C©u 42 : Trong không gian với hệ tọa độ Oxyz, cho điểm H(2;1;1) Mặt phẳng (P) qua H , cắt trục tọa độ A,B,C H trực tâm tam giác ABC Phương trình mặt phẳng (P) là: A x y z 1 6 B x y z 1 6 C x y z D x y x C©u 43 : Mặt phẳng qua A( 1; -2; -5) song song với mặt phẳng (P): x y cách (P) khoảng có độ dài là: B A D 2 C C©u 44 : Trong không gian Oxyz cho A 1;1; , B 1; 3;2 ,C 1;2; Khoảng cách từ gốc tọa độ O tới mặt phẳng (ABC) : A 3 B D C 3 C©u 45 : Cho (P): x + 2y + 2z – = cắt mặt cầu (S) theo đường tròn giao tuyến có bán kính r = 1/3,biết tâm (S) I(1; 2; 2) Khi đó, bán kính mặt cầu (S) là: A 1 2 B 1 2 C D C©u 46 : Mặt phẳng (P) song song cách hai mặt phẳng ( ) :2 x y z 0, ( ) :2 x y z có phương trình là: A Đáp án khác B x y z C x y z D x y z 12 C©u 47 : Khoảng cách từ A( 1; -2; 3) đến đường thẳng (d) qua B( 1; 2; -1) vng góc với mặt phẳng (P): x + 2y + 3z + = là: A C©u 48 : 14 14 B C 14 D 14 x t Giao điểm đường thẳng y t mặt phẳng ( P) :2 x y 3z là: z 2t A M (1; 3; 4) C©u 49 : Cho A 2; 1;6 , B B M ( C M (1;3; 4) D M ( 1 ; ; ) 3 3; 1; ,C 5; 1; , D 1;2;1 thể tích khối tứ diện ABCD : 50 40 B A 1 ; ; ) 3 60 C 30 D C©u 50 : Tồn mặt phẳng (P) vng góc với hai mặt phẳng (α): x+y+z+1=0 , (β) : 2x-y+3z-4=0 cho khoảng cách từ gốc tọa độ đến mặt phẳng (P) A B C 26 D Vơ số C©u 51 : Giá trị cosin góc hai véctơ a (4;3;1) b (0; 2;3) là: A C©u 52 : 26 26 B 13 26 Góc đường thẳng d : A 900 C 26 D Kết khác x y 1 z mặt phẳng x y 3z 2 B 450 C 00 D 1800 C©u 53 : Cho mặt cầu (S): x2 y z x y có tâm I bán kính R là: A I 1; 2;0 , R B I 1; 2;1 , R C I 1; 2;1 , R D I 1; 2;0 , R C©u 54 : Mặt cầu ngoại tiếp tứ diện ABCD có bán kính là: A B C D C©u 55 : Trong khơng gian với hệ tọa độ Oxyz, cho điểm A(3; 0; -1) B(1;3; -2) M điểm nằm trục hoành Ox cách điểm A,B Tọa độ điểm M là: A (2; ; 0) B ( -1; ; 0) C ( -2; ;0) D ( 1; ; 0) C©u 56 : Cho mặt phẳng qua điểm M(0; 0; -1) song song với giá hai vecto a = (1; -2; 3) b = (3; 0; 5) Phương trình mặt phẳng là: A -5x + 2y + 3z + = B 5x – 2y – 3z – 21 = C 10x – 4y – 6z + 21 = D 5x – 2y – 3z + 21 = C©u 57 : Phương trình mặt phẳng (P) qua điểm A vng góc với đường thẳng (d) x t với A(1;-1;-1) d : y t z 1 2t A x – y + 2z + 4=0 B x –y – 2z - 4=0 C x –y – 2z + 4=0 D x + y – 2z + 4=0 C©u 58 : Góc đường thẳng (d): x y z mặt phẳng (P): x y z là: A 45o B 90o 3 C 180o D 0o C©u 59 : Phương trình đường thẳng AB với A(1; 1; 2) B( 2; -1; 0) là: A x 1 y 1 z 2 B x 1 y 1 z 1 2 C x y 1 z 2 D x y 3 z 4 2 2 C©u 60 : Trong khơng gian với hệ toạ độ Oxyz, cho đường thẳng d : x y 1 z , mặt 1 phẳng ( P) : x y z điểm A(1;-1;2) Mặt phẳng (Q) qua điểm A chứa d phương trình (Q) là: A x y 5z 11 B x y 5z 11 C 2 x y 5z 11 D x y 5z 11 C©u 61 : Cho bốn điểm A(1,1,-1) , B(2,0,0) , C(1,0,1) , D (0,1,0) , S(1,1,1) Nhận xét sau A ABCD hình chữ nhật B ABCD hình bình hành C ABCD hình thoi D ABCD hình vng C©u 62 : Cho hai đường thẳng x : y 1 z x d : y 2t z 2t Trong mệnh đề sau 4t , mệnh đề ? A d song song d cắt B d trùng d chéo C D C©u 63 : Cho d đường thẳng qua điểm A(1; 2; 3) vng góc với mặt phẳng : x y 7z Phương trình tham số d là: A x 4t y 3t z 7t B x 1 8t y 2 6t z 3 14t C x 3t y 3t z 7t D x 1 4t y 2 3t z 3 7t C©u 64 : Cho điểm A(0; 2; 1), B(3; 0; 1), C(1; 0; 0) Phương trình mặt phẳng (ABC) là: A 2x + 3y – 4z – = B 2x – 3y – 4z + = 10 C 4x + 6y – 8z + = C©u 65 : D 2x – 3y – 4z + = Cho hai điểm A(2,0,3) , B(2,-2,-3) đường thẳng : x y 1 z Nhận xét sau A A , B nằm mặt phẳng C Tam giác MAB cân M với M (2,1,0) B A B thuộc đường thẳng D đường thẳng AB hai đường thẳng chéo C©u 66 : Cho mặt cầu (S) có phương trình x2 y z 3x y 3z mặt phẳng (P) : x+y+z-6=0 Nhận xét sau A Mặt phẳng (P) cắt mặt cầu (S) theo B Tâm mặt cầu (S) I(3,3,3) đường tròn (C) C Mặt cầu (S) mặt phẳng (P) khơng có D Mặt cầu (S) tiếp xúc với mặt phẳng (P) điểm chung C©u 67 : x (m 1)t x y 1 z m , : y (2 m)t Tìm m để hai đường thẳng Cho hai đường thẳng 1 : z (2m 1)t trùng A m 3, m B m C m 0, m 1 D m 0, m C©u 68 : Mặt cầu tâm I 2; 1; qua điểm A 2;0;1 có phương trình là: A x 2 y 1 z 2 C x 2 y 1 z 2 2 2 2 B x 2 y 1 z 2 1 D x 2 y 1 z 2 2 2 2 1 C©u 69 : Phương trình đường thẳng d qua A(1; 2; 3), có véc tơ phương u (1; 2; 3) là: A C©u 70 : x 1 y z B x 1 t y 2t z 3t Cho hai đường thẳng d1 : C x y 3z D x 1 t y 2t z 3 3t x 1 y z x 3 y 5 z 7 Tìm khẳng định , d2 : 4 11 A d1 d2 B d1 chéo d C d1 // d2 D d1 d2 C©u 71 : Vị trí tương đối mặt phẳng: : x y z : 2x + y – z – = A // B C , cắt D , chéo C©u 72 : Phương trình mặt phẳng qua A( 1; 1; 1), B(1; 0; 0), C( 1; -1; -1) là: A C©u 73 : x y z 1 B x y z 3 C 3x D Cho đường thẳng d qua điểm M(2; 0; -1) có vecto phương x y z 1 a (4; 6; 2) Phương trình tham số đường thẳng d là: A x 2t y 3t z 1 t B x 2 4t y 6t z 2t C x 2t y 6 3t z t D x 2 2t y 3t z t C©u 74 : Cho ba điểm A(0 ; ; 1), B(3 ; ; 1), C(1; ; 0) Phương trình mặt phẳng (ABC) A x – 4y + 2z – = B 2x – 3y – 4z +2 = C x – 4y + 2z = D 2x + 3y – 4z – = C©u 75 : Trong không gian với hệ tọa độ Oxyz, cho đường thẳng x 3 y z 5 mặt phẳng (P): x y z Mlà điểm d cách (P) 1 khoảng Tọa độ M là: d: A (3;0;5) B Cả đáp án A) B) C Cả đáp án A) B) sai D (1;2;-1) C©u 76 : x 2t Cho đường thẳng d1 : y 3t z 4t x 4t d : y 6t Trong mệnh đề sau, mệnh z 8t đề ? A d1 d B d1 // d C d1 d D d1 , d chéo C©u 77 : Trong khơng gian Oxyz cho vectơ a (1;1;0), b (1;1;0) c (1;1;1) Trong 12 mệnh đề sau, mệnh đề sai ? A c B a b C a D c b C©u 78 : Cho A 2; 0; , B 0;2; ,C 0; 0;2 , D 2;2;2 mặt cầu ngoại tiếp tứ diện ABCD có bán kính : B A 3 C D C©u 79 : Cho hai mặt phẳng (): 2x + 3y + 3z - = 0; (): 2x + 3y + 3z - = Khoảng cách hai mặt phẳng là: A C©u 80 : 22 11 B Cho đường thẳng d: C 11 D 22 11 x 8 y 5 z 8 mặt phẳng (P) x+2y+5z+1=0 Nhận xét 1 sau A Đường thẳng d song song với mặt B Đường thẳng d thuộc mặt phẳng (P) phẳng (P) C Đường thẳng d cắt mặt phẳng (P) A(8,5,8) D Đường thẳng d vng góc với mặt phẳng (P) 13 ĐÁP ÁN D SÔ 08 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 { { ) { { { ) { { ) { { { { { { { { { ) { ) { { { { { | | | ) ) | | ) ) | | | | ) ) | | ) ) | ) | | | | | ) ) ) } } } ) } } } } } } ) } } } ) } } } } } ) } ) ) } ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ) ) ~ ~ ~ ) ~ ~ ~ ~ ~ ~ ~ ) ~ ~ ~ 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 { { { { { { { { ) { ) { ) ) { { { { { { { { ) { { { ) | | | | | ) | | | ) | | | | ) | | | ) | ) | | | | | | ) } ) } ) } ) } } } } ) } } } } ) } } } } ) } } ) } } ~ ) ~ ) ~ ~ ~ ) ~ ~ ~ ~ ~ ~ ~ ) ~ ) ~ ) ~ ~ ~ ) ~ ) ~ 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 { ) { { { { ) { ) ) ) ) { { { { { { ) { { ) { { { ) ) | | | | ) | | | | | | ) | ) | | | | | ) | | | | | } } } } } } } ) } } } } } ) } } ) } } } } } } ) } } ~ ~ ) ) ) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ) ~ ) ~ ) ~ ~ ) ~ ) ~ 14