1. Trang chủ
  2. » Khoa Học Tự Nhiên

BÀI tập đại số TUYẾN TÍNH đh QUỐC GIA hà nội

186 1,4K 3

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 186
Dung lượng 1,82 MB

Nội dung

b N6u them veo met dong hoac met cot cim ma tran A met to hdp tuygn tinh cim nhUng thing hoac nhung khac, thi dinh auk khong thay ddi... d Tap Matn, K con ma tran yang cap n vdi phep toa

Trang 1

PHAN HUY PHIJ • NGUYEN DOAN TUAN

BAI TAP

NHA XUAT BAN HAI HOC QUOC GIA HA NOI

Trang 2

rvikic LUC

§1 'thong gian vec to va anh xa tuyeen tinh 96

110

Trang 3

§1 Khong gian vec td va anh xn tuyin tinh 11(

Chtedng DANG TOAN PHUONG - KHONG GIAN VEC TO

§1 Dang song tuy6n tinh aol xUng va dang town phuong 139

Trang 4

Chuang 1

DINH THUG - MA TRAN

A - TOM TAT Lt THUYET

§1 PHEP THE

Met song anh o tit tap 11, 2,

met phep the bac n, ki hieu la

'1 2 3

n} len chinh no duet goi la

\ GI a 2 G3

15 del a, = a(1), 02 = a(2), , a„ = a(n)

Tap cac phep the bac n yeti phep nhan anh xa lap thanh met nhom, goi la nh6m del xeing bac n, ki hieu S S6 cac Olen t3 cua nhom S„ bang n! = 1, 2 n

Khi n > 1, cap s6 j} (khong thu tv) dude pi IA met nghich the cem a n6u s6 - j) (a, - a) am Phep the a &foe goi la than ndeM s6 nghich thg cim a chan, a &toe goi la phep the le n6u s6

nghich the ciaa a le

1 neM s la phep the chan

Ki hieu sgna =

-1 net} a la phep th6 le

va sgna goi IA deu am, phep the a Neu a vat la hai phOp the cling bac, thi sgn(a = sgn(a) sgn( )

Phep the a chicly goi IA met yang xich do dai k n6u c6 k s6 i„

•-• , i k doi mot khac nhau dr coo = 1 2, coo = i3, a(ic) = i1

Trang 5

va a(i) = i vdi moi i x i„ i k Vong )(felt do dttoc ki hieu IA

ik) M9i phep th6 dau &tan tfch the thanh tfch nhung yang xfch doe lap

Met vOng xfch do dal 2 dude goi IA met chuygn trf Vong xfch ••• , i k ) phan tfch chive thanh tfch 0 1 ,

§ 2 DINH THUG

I Gia sit K IA met trueng (trong cuan sich nay to din yau xet K la &Ong s6thvc K hoac truang s6 phitc C) Ma tran kidu (m, n) vdi cox phan tit troll twang IC la met bang chit nhat gfim

m hang, n cet cac phan tit K, i = 1,m, j = 1,n Tap cac ma tran kidu (m, n) chive kf hieu M(m, n, R) Ma trail vuong cap n

IA ma tran co n dong, n cot Tap cac ma trail vu8ng cap n vdi cac phan tit thuoc truong K ki hiOu IA Mat(n, K)

2 Cho ma tr4n A vuong cap n, A = (ad, i, j = 1, 2, , n Dinh thitc ciia ma tran A, kf hieu det A la met flan tit dm K dude xac dinh nhu sau:

detA = zsgn(a)a mo)

E S n

3 Tinh eh& ceta Binh that

a) Neu dgi cho hai dong (hoac hai cot) nao do cim ma tram

A, thi dinh auk cim no ddi da:u

b) N6u them veo met dong (hoac met cot) cim ma tran A met to hdp tuygn tinh cim nhUng thing (hoac nhung khac, thi dinh auk khong thay ddi

Trang 6

fan ail

‘a n„ a,,, +ani

a ll al; .a 1,„ all

4 Cdch tinh dinh that

a) Cho ma tran A E Mat(n, K) Kf hi'911 Mi; la dinh that cua

ma trail alp (n-1) nhan dine bAng cach gach be clOng thU i, cot

thu j cut ma tram A vb Aij = (-1)H M u clucic g9i la pha'n phu dai s6cUa phgn to a ii cna ma trait A Ta có CAC tong thtic:

det A ngu i = k

O ngu i x k det A ngu i = k

Nhu fly detA = EamAki (k = 1, 2, n)

1=1 heat detA = Z

a ikAik /=1

Trang 7

CUT thac tit throe goi la cang thdc khai trim dinh tilde theo (long hay theo cot

detA = ZED' Si k+31+ A ik

do j1. jk la k cot cgdinh Tgng &toe lgy theo tat ca cac bQ ik) sao cho < i2 < < i k Cong thdc troll dude goi la c8ng thdc khai trim dinh thae theo k cot ji, 'along tV, to có gong thdc khai trim theo k clang Khi k = 1, to &roc gong tilde da not trong muc a

§ 3 MA TRANI

1 Ma trgn kigu (m, n) vgi cac phan tU tr8n trang K da dude gidi thigu trong §2 Tap the ma tran kigu (m, n) vdi cac phan ti tren tragng K dude ki hiQu la Mat(m, n, K) A E Mat(m, n K) (Woe vigt A = (aii) i = 1, m ; j = 1, 2 n hay ro rang hon:

Trang 8

8 11 a19 aln

amt amt arnn,

2 Cac phep todn tren Mat(m, n,

Cho A = (a y ), B= (b,j ) thuOc Mat(m n, K)

Ta có:

a) Ma tran C = (cg) a do cy = a ii +

&toe goi la tong cua hai ma tran A va B va ki hien la A +B

Ma tran D= (d,,) a do di; = a ij -

dude goi la hiOu cila ma trail A va B va Id hi'eu la A - B

b) Vdi k E At, ma trail kA c8 cac phAn to la (ka ii ) duoc goi

la tick cua ma tran A vdi ph&n td k cua trudng K

c) Neu A = (aii ) c Mat(m, n, K) va

&toe goi litich caa hai ma tram B ye A

Vol A, B e Mat(n, K), to có det(AB) = detA detB

Trang 9

d) Tap Mat(n, K) con ma tran yang cap n vdi phep toan cOng lap thanh mot nhom giao hoan, con vdi phep Wan rang ma tran va phep nhan ma trail lap thanh mat vanh khong giao hodn, co don vi

3 Hang ctia ma tran; Ma trim nghich ddo

Gig A E Mat(m, n, K), ta dinh nghia hang ciat ma tran A

la cap cao nhgt cua dinh thric con khgc khong rut ra W ma tran

A KM A E Mat(n, K) va hang A = n (ta cling dung ki hi3u hang

A la rang A) thi ma tran A goi la khong suy bign, khi do detA * 0 va ton tai duy nhgt ma tran B thuOc M(n, K) A.B = B.A = I„; d do I lit ma trail don vi Ma tran B &roc goi 11

ma tran nghich dgo cna ma tran A va ki hi3u la A'

Gig su A= (A u )la ma trail plw hpp cim ma tran A = (ad,

Ab la Olga Ow dal see mitt phgn ht aii ; A t la ma tran chuya'n

vi cua A Khi do:

At detA

Trang 10

Vay a có 5 nghich the nen sgna = -1

b) Ta hay tinh sS nghich the cua boa)) vi (1, 4, 7 3n-2, 2,

1 khong tham gia vao nghich the

4 tham gia yen 2 nghich the voi the s6 thing sau no

7 tham gia van 4 nghich the

3n - 2 tham gia vao 2(n - 1) nghich the voi the se dung sau no

2 khong tham gia vao nghich the nao vdi the se dung sau no

5 tham gia yen 1 nghich the voi the se dung sau n6

S tham gia vao 2 nghich the vdi cae s6 dUng sau n6

3n - 1 tham gia vim (n - 1) nghich the voi the s6 thing sau no Cae s6 3, 6, 9 , 3n khong tham gia vao nghich the nao voi the s6 (hang sau

Trang 11

Vay co tat ca 2 + 4 + 2(n-1) + 1 + 2 + (n 1) - 3(n -1)n

2

(n-1 )n

nghich the trong hoot vi da neu va do d6 sgn S = (-1) 2

Khi n = 4k hoac n = 4k + 1 thi sgn 5 = 1

con neu n = 4k + 2 ho4 n = 4k + 3 thi sgn = -1

Vi du 1.2

_ 1 2 3 Cho phep th'e' f - en dgu la (-1) 1

Lift( gidi:

a) Vi sgn f sgn = sgn (f

= sgn(Id) = 1 non sgn (e 1)= sgn (f) = (-1) k

b) X4t phep the"a = 1 2 nj

n -1 1 thi g = f a

Do gay sgn g = sgnf sgn a

n(n-1)

Nhung sgn a = (-1) 2 nen sgn g = (_])k+C;',

Trang 12

Vida 1.3

ChUng minh rang vier nhan mat phep th6 vdi ehuy6n trf

j) v6 ben trai Wring throng v6i viac dai cha car s6 i, j a clang drah cna phep the Cling nhu vay, nhan mat phop th6 Nth ehuynn trf (i, j) v6 been phai tunng during voi del eh?, I, j a dong tit 66a phep th6

chuy6n tri Xet

Trunng hop nhan ben phai dude ant Wring fib

Vi dy 1.4 Cho f va g la hal phop th6cua n strtn nhien clAu tien a) Chung minh rang có the' cilia f va g bang khong qua (n-1) phop chuyan trf (nghia la ton tai k phop chuyan trf a l , cr2 , ak ,

Trang 13

La gicii

a) Xet phep the g o f', phan tich g o e' thanh tfch cac vang xich dOc lap T 1 , Tp

g o e' = T 2 T i Neu kf hiOu m i nt do, dai cart yang 'dell T i thi

rang mOt vong xfch (a l , a2, am) la mOt plop the

a cac s6 tv nhien Ui 1 den n sao cho a(a) = a 1+1 (i = m-1) va a(a„,) = a l , con a(l) = 1 nen 1 yen moi i = 1, ,., m Vong xfch (a l , a2, u„) goi la ce do, dai m

Ta da hiet rad yang xfch do, dai m deu phan tich duo thanh m - 1 chuyen trf Vi vay g o e' phan tfch duo thanh 'Lich

caa i(m i -1)= n -p = k phep chuyen trf

f ve g duo Wang it hdn n - 1 phep chuyen trf

on f = Ta se chUng to rang killing dua

Trang 14

Do f chi co met phAn tei chinh quy ye g co n phan tV chinh quy, vi vgy khong thg clua f vg g bring it hon n - 1 phep chuygn tri

Vi du 1.5

Chung minh rang vdi mei so k (0 <k < C;) t6n tai met phep thg a e S„ co dung k nghich thg

1231 giai

Ditch 1: Ta hay cluing minh met It& gug manh

Nigu a = (a,, la met hogn vi cda 1, 2, n va ace 1: nghich thg, 0 < k < , thi có thg ct6i che hai phfin tri nao

do de thu ridge hog') vi c-3 co k + 1 nghich thg That Nay, int&

hgt ta nhan thy rang negi > vdi moi i = 1, 2, , n-1 thi co

a nghich the' Vi vay, do so' nghich th6 caa a la k < , nen ten tai i o dg oc ii) < a i0+1 ;

Xet hoan vi p = 0„) trong do 111 i = a, ngu i # i„, i„ + 1, con p io = a ;0+1 , p i+, =a,„ thi HI rang 13 co nhigu hon a met nghich the" Nghia la s6 nghich th6 ciga p la k + 1

Trang 16

2cosa, = 2coi2 a - 1 = cos2a

Gia sa D1 = cosia \TM moi = 1, k

Ta có

= 2.cosa coska - cos(k -Da

= (cos(k+Da + cos(k-1)x) - cos(k-1)a = cos(k+1)a Nhn vay D„ = cosna

Trang 17

Khai trin theo cot tht nhEt, to c6:

A n = (e P +e -P)A n _i:

e 21' - e -2(P Nlinn xet rang 4 1 = 6 9 +Cc =

A 2 = ((i e ro e

636 - -39

e (P -

e (1+1)6 - e -(lrv1),p Girt sit AR -

Trang 18

P(x +1) P(x +1)

P(x + n) P(x +n)

Ong vao clang Hirt nhgt vgi tat ca k=2, n+2)

Khi do, phAn tii dung dau có clang:

poc + 0 + P(k) (x +0.(x +11.) k o k = n)

k!

k=1

Trang 19

Pkx+1.) P(x+n)

PTUx +1) P(n)(x+n) PT+I kx+1) PT+I kx+n)

Ta ki hieu dinh thge a v6 phai bai C va ma tr5n Wong ring

hai (6-1 Vi da thge P(x) = n(x + i) Ken P'" 0(x) (n+1) !, vi vay

i=0 the s6 hang a dOng cu6i &au bang (n+1) ! dgn gian ki higu

va each viek ta dirt xk= x+ k, k = 0, 1, n d dOng thg hai tit

&leg len ciaa ( ta co:

(Pw(x0), P("ax,), PT)(x.,)) ((n+1) hco + a l , , (n+1) tx„+

a do a l la hang s6 &do do Khi nhan (long cue"' ding voi

r6i Ong vao clang trail no, ta dtta ma trgn ( ) va dang

P(x 0 ) P(x ] ) P (x i) )

P (11-1) (x 0 ) Pth-e (x l ) PT-1) (x n ) (n+1)!x 0 (n+1)!x 1 (n+1)!x n (n+1)! (n+1)! (n+1)!

a l

(n+1)!

(*)

Trang 20

Deng this ba tit dUdi len caa ma Dan (*) co dang

Trang 21

6 do D„ la dinh thiic Vandermonde cua clic so" x„, x„

n-1 D6' thay D„= n(x k - x i )= n (c_i) = 11(n-o!= 1

Lbi gidi:

Nhan xet rang neh to them vim mit phan to a jj nao do cha

ma tran vuemg A mot s6 than, thi dinh thfic cha ma tran nhan

dticic se sai khac vat dinh thiic cha ma tran A mot s6 than Vi

the ne'u to hat di 2000 don vi a nhUng phan t,i bang 2001 cha A, thi tinh than le cha dinh thfic cila A khong thay d6i, nghia la:

detA = detB (mod 2) a do B = (14 hi; = 0 n6u i= j va = 1 ngu it j

Ta có:

0 1

1 0 det B =

Trang 22

nhan Bong ddu veli -1 fee cling vao cac dOng con lei ta dttuc:

detB =

1 0 0 -1 Deng vao cot thu nhat ca car cot con lai ta cO:

Trang 24

Gia A k = cosky -sinkp vOi k = 1, n-1

cosmp - sinmp sinmp cosny

ma 2000 chia het cho 4

\ray A 200° =(A) 500 =I, (I, la ma tran thin vi cep hai)

Vi du 1.17

Ma Iran vuong A e Mat(n, K), A = (ad throe goi la Ina tran phan del xang netu aii + = 0 vdi moi i, j = 1, n

Trang 25

Hay chang minh: 'rich caa hai ma tran phan doi xang A va

la mat ma tran phan doi 'ding khi va chi khi AB = -BA

Nha vay AB phan del xang <=> c, = V i, k

tt=> = vet mot i, k c> AB = -BA

Trang 26

Khai tri6n theo n clang dal) (thee dinh 12) Laplace), ta co

Mat khac, bi6n &it ma Iran C bai phep bi6n ct6i sd ca) sau: Nhan cot thu nhal vat b 1, cot thil hat Null cot thin n vet btl; r6i Ong vac) Ot thu n + j (j = 1, 2, n), ta dude ma tran D Bang sau ma dinh thiic cua D va cua C bang nhau:

Khai tri6n theo n cot cuoi (theo dinh 157 Laplace) ta có

detD = det(dij) = det(A B) (2) Tit (1) va (2) va do detC = detD nen ta co:

det(A0 B) = detA detB

Trang 27

Lari gidi:

Ni111u X = 1 thi re rang X giao ho an vdi moi ma Han

\along cling cap

Ngnoc lai, gia sit X = (X„) giao haul vdi moi ma tran yang cdp n

VOi i„ # j 0, to chiing minh x inio = 0 Mudn stay chon A = (ad trong do a joio =1 con one phan tit khac ddu bAng Thong Phan to ding i o cot j„ cim ma tran XA Wing x •' can phan tit a thing io

cot j, cim AX la 0 Tir di6u kien AX = XA suy ra =O Nhu

y X co dang:

k r 0

0 k„

Cho ma tran A = (a) a do a ] , = 1 vii moi i, j Khi do phan tit

o dung i cat j cim ma Han XA la X , con phan to 0 ding i cot j dia ma tran AX la 2 nen k, =

b a) Chung minh detA = (a-b)° (a + (n-1)b)

b) Trong trudng hOp detA s 0 Hay Huh ma trdn nghich dao A+ oda ma tran A

X=

Trang 28

Lai giai:

a) Gang the clang vao dOng this nhat ro'i nit

a + (n-1)b a clang dau, ta (Woe

1 1 1

b a b detA = (a + (n-1)b) x

b b a Lay dOng chin aria (Anil th.fie tit nhan voi -b r6i Ong vao the dong sau, ta eó:

1 0 0

0 a - b 0 detA = (a + (n-1)b) x

0 0 a - b detA = (a + (n-1)b) (a-b)" -i

h) A kha nghieh <=> detA 0 (=> a b va a + (n-Gb O Goi B = (b ii) la ma tran nghich (lac) cila A = (a„)

b b a Theo phan a) thi A i = (a-b)" -2 (a + (n-2)b)

Trang 29

A a+(n-2)1(

Vay b„ -

det A (a 1- (n -1)1).(a - b) Vol i # j = (-1)H , d do kl„ la chub thue e6p n-1,

co dupe ba' lig each x6a &Ong thu i va cat tha j eila ma tran A Do

A dovi ming nen = Gia sU rang i < j, khi do cot thfi i va dung thu j-1 cua M o gain town nhang phan t& b N6u d6i eh 6 Bong j - 1 len tren Ming dau (Mu nguyen cac dung khac), rei lai MS( nit i len 6;4 thu nhai (va van gib nguyen the cat khac), thi

Trang 30

1.3 Tim s6 tat ca the phep the a e S„ sao oho a(i) x i vol

mm i = 1, 2, n Cluing t8 rang khi n chan, so" one phep th6 clang tren la m54 3616

1.4 Ki hi8u (n, k) la secac hoan vj rim 1, 2 n ce dung k nghich the Chiing minh cong thile truy 146i sau:

(n+1, k) = (n, k) + (n k-1) + + (n, k-n)

vdi guy vac (n, j) = 0 nevu j < 0 hoac j > 9

1.5 Ta goi 45 giam ena phdp the f Ia hi5u cna s6 the phan tic khting bat dog (nghia la s6 the pilau tit i ma f(i) i) va s6 clic Yong xich <IQ dai ion him 1 trong phan tich cua f thanh tich car yang xich 458 lap

a) Chung minh f cotang tinh chat chan la vOi do giam cua no h) Chling minh rang s6 161 thidu one nhan tic trong phan tich cna f thanh tich the chuydri tri bgng 45 giAm cua f

1.6 DM \h hai s6 x va n nguyen, n x 0, to ki hi5u r(x, n) IA s6 chi khi chia x cho n : 0 r(x, n) < n Chiang minh rang nal

n > 2 va a la so? nguyen, nguytin to' d61 vdi n, thi tthing Ung ki—>r(ak, n) la mot phan tit cua S„,, k e 11, , n-1}

1.7 Cluing minh rang moi phep th6 cap k > 1, dou phan tich dupe thanh tich nhiing chuydn tri dang (1, i) vdi i = 1, k

Trang 31

1.8 Xac dinh davu cua cac phop the' sau:

b) Dinh attic ay Ion nhig la 1

c) Dinh thew c)41) ba ma cac pga'n tit la 1 hoac 0 dot gia tri IOn nheit biing 2

1.10 Tinh dinh thew cap 2n D = det(cM),

1.12 Chung to cac dinh thew sau day bang khong:

1 cosa costa cos3a

cosa costa cos3a cos4a

a)

costa cos3a cos4a cos5a

costa cos4a cos5a cos6a

Trang 32

-1 -1 -1

0 -1 -1

1

0 -1

Trang 33

1.16 Hay tinh dinh thdc sau:

1.17 Cho da thite P x) = (x - al)(x - (x - a„)

a d6 a, la cac so thvc dot mot phan biet Hay tinh climb thde sau:

P(x) P(x) P(x) x-a 1 x-a, x-a n

Trang 34

Way chang minh det J # 0 Hay tinh ma tr'nn AJ tit do suv

ra gin tri detA Hay nen hal Loan Wong to kin A ya J cite ma 1.rn cap n

1.19 a) Hay tinh dinh thing cap n san:

(x 1 1111 1)(x1 11 379)

1

x 2 + y1 (x9 + N 1)(x9 + y2)

(x n +y 1 )

(x„ +y 1 )(x 1 +y2) D„=

( 1 -2 1 \ A= -1 1 0 -2 0 1

Trang 35

1.21 (ha si:t ma trgn A e Mat(m, n, va rang A = 1 Jhisng minh rang cac ma trgn B e M(m, 1, K) va C e Mat(1,

90

vOi 4 x 0 Hay tinh A- '

1.24 Cho ma tran vuong c5p 4

cosa sincx cosa sina

cos3o sin3a 3cos3a 3sin3a cos4a sin1a 4cos4a 4sin4a Chung minh rang A khg nghich khi va chi khi a ♦ kg (Ice Z) 1.25 Cho ma trgn A = (a) e Mat (n, 1H) ma the phan tit doge cho bai tong that:

Trang 36

1.26 Gth sa X = ())) e Mat(n, R),

1-1

a do x ii 4- (-1)")! Chitng minh X' = I

01- 4, Chit Se voi aeR k e N, ki hiqu

dx• 1 i

no duck goi la Jacobien dm phep biers den do

Bay gin /cot m6i quan hq gilla n 2 ham vii va n 2 bien xii dune cho Isdi ding thiic:

Y= A.X.B, a do Y= (y i) , X = (xi),

A B e Mat(n, R) la hai ma tran the trn6c

Chung minh rAng det(J(Y, X)) = (detA)" (detB)"

1.28 Cho X = (x„) e Mat(n, R) la ma tran tam gide dudi;

va Y = X X

Chung minh rAng det(J(Y, X)) =

1.29 Cho Z lA tap cac sqinguyen; A, S hai ma tran vu8ng cap n, cac phAn t> la nhilng s6nguyen (ta vie) A, S e Mat(n, Z)) Hun nua detA = 1, det S x 0

Dal B = A S; Chung minh rAng cOs6m nguyen dding

de Bm e Mat(n, Z)

Trang 37

1.30 GM sit trong ma tran A = (a u) c Mat(n, R) da cho

rude tat ea the phan ti a d (i # j) Chang minh rang có thk dien

Mo &rang char) chinh the s60 hoc 1 de ma tran A kheng suy Bien 1.31 Tim tat ca cac ma tran A e Mat(n, K), A= (dj), 0

na tan toi ma tran nghich dao A-' cling có the phiin t5 khOng am 1.32 Cho ma tran vuong A co the phan to la s6 nguyen rim diet' kien can va du de ma train nghich dao cung c6 the

-Men to la s6 nguyen

D - HDONG DAN HOAC DAP S6

Xet T e S„ (n 2 2) gie sii i < j va T = j, T (j) =

T (k) = k vdi moi k s i, j Khi do the nglach the eaa

ji, k} Nob < k < j j/, j} Nob / i + 1, j - 1 With vey co tat ek la U - i) + (j - i - 1) = 2U - I) - 1 nghich the Vi so nghich the le nen t la phop the le

1.2 a) Phop th6 da cho phan Deb thanh hai yang xich chic lap (1 8 2) (4 6 5 7) = (1, 2) (1, 8) (4, 7) (4, 5) (4, 6)

a n , a n+1 ) ma ai =

la nhang tap con rot nhau caa A va A = A, U A2 U U U AnA

Trang 38

Xet Anki = {a = (a p a 2 , , an+1)1 = n +1}

NMI 0y so cac nghich the cna a bAng se cac nghich the cue

1 9

nghia la bling 1+ Dieu do cheng to so ea(

U Ch 2

Jhfin to cria A„,, bang (n, k)

Xet tap Ai (i = 1, , n) cis su a e Ai, a = (a, a j , a„ 4 ,) Theo dinh nghia a ; = n+1 Nhti vay (aj, khong la nghich th( vdi j < i va (x„ ai) la nghich the vdi j > i Do do a, tham gia vac

n+1-i nghich the Xet hoan vi a' = (a l — aa,_„ (>61, cCia S2 S5 nghich the maa a' bang sernghich the cna a trii NM; vay ta có met song anh tit A ; len tap cac hofin vi cua S„ co thing k-n-l+i nghich the., do do so' phan t& cera A ; IA (n, k-n-1+i) Td

do, sephan to cUa A la:

(n + 1, k) = (n, k) + (n, k-1) + (n, k-2)+ + (n, k-n)

1.5 a) Xet phan tich f = a l o a, o a,„ thanh tich cac veng xich dec lap di) dai > 1 Gia sa do dai a l, la d k; ta they f(i) # i khi

va chi khi i thuoc met trong cac yang xich do Vay do giam coal

IA d,+€1.2 M6i vOng xich dai d k phan tich dude thanh

dk -1 chuydn trf Do vay f phan tick deck thhnh d 1 + + (.16-1n chuyen trf Do do kha'ng dinh a) driec chting mink

b) Goi / a di) giam can f Theo a) f phan tich (kw thanh / chuydn trf N5u có phfin tich f thanh h chuyen tri nao do, ta phai chring minh h 2 1 Ta có bd de sau: Neu a, 13 tham gia van met yang ;rich cas phep the f, thi khi nhAn f vdi chuydn trf (a, f3) (ve ben trai hay ben phai) yang xich dji not phan thimh hai

\Tong xich d'ec lap Con neu a, tham gia vao hai vOng xich cua

Trang 39

Thep the f, thi khi nhan viii chuyen tri (a, (i), hai yang xich se Thep lai lam met (136 de nay a thing chfing minh) Tr/ do neu g

a phop the va T la met chuyen tri tin dp Mem cua g oT khong vire); qua do giam cfia g ceng them 1 Vi the nen f phAn tich luec thanh h chuyen tri thi do giam cUa f khong \wet qua h

1.6 H.D Do a va n nguyen t6 vfii nhau, nen a k khong chic het cho n vdi mm k = 1, 2 n-1 do de r(ak, n) la nhfing so

phan hied

1.7 Vi moi phep the phan tich due() thanh tich cat ghee chuyOn tri, nen chi can chfing minh bai town cho phep chuyen tri(1,j)e Sk vei 1, j # 1 Ta ce (i j) = (1, i) (1, ) (1, i)

1.8 Xem vi du 1.1

- 1-1(n+D a) DS: (-1) 2

r(1121) h) DS: (-1) 2

1.10 Iasi trien cot dau, to ca D ykk =(a2 _ " " 1 2n-2 •

le VI Vey khi thay ha; nen i + j 1e, thi cfic tich

a nc(k) khong dei, do do detA khOng del

Trang 40

1.12 a) COng dOng thu nhat vdi (long the./ ba, ta dude don

tY le vdi (long thu hai

b) Nhan dong thd nhat vdi (-1), rdi cUng vao die (long th hai va Ulf( ba, ta dupe hai dOng CY 15

1.13 Ma tran A, B e Mat(2, K) Ta có hai bat bian detAB detBA va tr(AB) = tr(BA) Vi vay:

Ngày đăng: 24/08/2016, 13:24

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w