1. Trang chủ
  2. » Giáo án - Bài giảng

cac dang toan ham so lương giac

3 1,2K 14
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 189 KB

Nội dung

Các dạng toán I. Tìm tập xác định của hàm số lượng giác Chú ý : 1) A B có nghĩa khi A 0 ≠ ; A có nghĩa khi A 0 ≥ 2) 1 sinx 1 ; -1 cosx 1− ≤ ≤ ≤ ≤ 3) sin 0 ; sinx = 1 x = 2 ; sinx = -1 x = 2 2 2 x x k k k π π π π π = ⇔ = ⇔ + ⇔ − + 4) os 0 ; osx = 1 x = 2 ; osx = -1 x = 2 2 c x x k c k c k π π π π π = ⇔ = + ⇔ ⇔ + 5) Hàm số y = tanx xác định khi 2 x k π π ≠ + Hàm số y = cotx xác định khi x k π ≠ BT Tìm tập xác định của các hàm số sau 1) y = cosx + sinx 2) y = cos 1 2 x x + + 3) y = sin 4x + 4) y = cos 2 3 2x x− + 5) y = 2 os2xc 6) y = 2 sinx− 7) y = 1 osx 1-sinx c+ 8) y = tan(x + 4 π ) 9) y = cot(2x - ) 3 π 10) y = 1 1 sinx 2 osxc − II. Xét tính chẵn, lẻ của các hàm số lượng giác Chú ý : cos(-x) = cosx ; sin(-x) = -sinx ; tan(-x) = - tanx ; cot(-x) = -cotx sin 2 (-x) = [ ] 2 sin(-x) = (-sinx) 2 = sin 2 x PP: Bước 1 : Tìm TXĐ D ; Kiểm tra ,x D x D x∈ ⇒ − ∈ ∀ Bước 2 : Tính f(-x) ; so sánh với f(x) . Có 3 khả năng − = →   − = − →   − ≠ ± →  0 0 0 ( ) ( ) ch½n ( ) ( ) lÎ Cã x ®Ó ( ) ( ) kh«ng ch¼n, kh«ng lÎ f x f x f f x f x f f x f x f BT Xét tính chẳn, lẻ của các hàm số sau 1) y = -2cosx 2) y = sinx + x 3) y = sin2x + 2 4) y = 1 2 tan 2 x 5) y = sin x + x 2 6) y = cos 3x III. Xét sự biến thiên của hàm số lượng giác Chú ý : Hàm số y = sinx đồng biến trên mỗi khoảng 2 ; 2 2 2 k k π π   − + π + π  ÷   Hàm số y = sinx nghịch biến trên mỗi khoảng 3 2 ; 2 2 2 k k π π   + π + π  ÷   Hàm số y = cosx đồng biến trên mỗi khoảng ( ) 2 ; 2k k−π + π π Hàm số y = cosx nghịch biến trên mỗi khoảng ( ) 2 ; 2k kπ π + π Hàm số y = tanx đồng biến trên mỗi khoảng ; 2 2 k k π π   − + π + π  ÷   Hàm số y = cotx nghịch biến trên mỗi khoảng ( ) ;k kπ π + π BT * Xét sự biến thiên của các hàm số 1) y = sinx trên ; 6 3 π π   −  ÷   2) y = cosx trên khoảng 2 3 ; 3 2 π π    ÷   3) y = cotx trên khoảng 3 ; 4 2 π π   − −  ÷   4) y = cosx trên đoạn 13 29 ; 3 6 π π       5) y = tanx trên đoạn 121 239 ; 3 6 π π   −     6) y = sin2x trên đoạn 3 ; 4 4 π π   −     7) y = tan3x trên khoảng ; 12 6 π π   −  ÷   8) y =sin(x + 3 π ) trên đoạn 4 2 ; 3 3 π π   −     * Xét sự biến thiên của các hàm số Hàm số Khoảng 3 ; 2 π   π  ÷   ; 3 3 π π   −  ÷   23 25 ; 4 4 π π    ÷   362 481 ; 3 4 π π   − −  ÷   y = sinx y = cosx y = tanx y = cotx Chú ý Hsố y = f(x) đồng biến trên K ⇒ y = A.f(x) +B ®ång biÕn trªn K nÕu A > 0 nghÞch biÕn trªn K nÕu A < 0    * Lập bảng biến thiên của hàm số 1) y = -sinx, y = cosx – 1 trên đoạn [ ] ;−π π 2) y = -2cos 2 3 x π   +  ÷   trên đoạn 2 ; 3 3 π π   −     IV. Tìm GTLN, GTNN của hàm số lượng giác * Loại 1 Chú ý : 1 sinx 1 ; -1 cosx 1− ≤ ≤ ≤ ≤ ; 0 ≤ sin 2 x ≤ 1 ; A 2 + B ≥ B BT Tìm GTLN, GTNN của các hàm số 1) y = 2sin(x- 2 π ) + 3 2) y = 3 – 1 2 cos2x 3) y = -1 - 2 os (2x + ) 3 c π 4) y = 2 1 os(4x )c+ - 2 5) y = 2 sinx 3+ 6) y = 5cos 4 x π + 7) y = 2 sin 4sinx + 3x − 8) y = 2 4 3 os 3 1c x− + * Loại 2 Chú ý : Hàm số y = f(x) đồng biến trên đoạn [ ] ;a b thì [ ] [ ] a ; a ; ax ( ) ( ) ; min ( ) ( ) b b m f x f b f x f a= = Hàm số y = f(x) nghịch biến trên đoạn [ ] ;a b thì [ ] [ ] a; a; ax ( ) ( ) ; min ( ) ( ) b b m f x f a f x f b= = BT Tìm GTLN, GTNN của các hàm số 1) y = sinx trên đoạn ; 2 3 π π   − −     2) y = cosx trên đoạn ; 2 2 π π   −     3) y = sinx trên đoạn ;0 2 π   −     4) y = cos π x trên đoạn 1 3 ; 4 2       . PP: Bước 1 : Tìm TXĐ D ; Kiểm tra ,x D x D x∈ ⇒ − ∈ ∀ Bước 2 : Tính f(-x) ; so sánh với f(x) . Có 3 khả năng − = →   − = − →   − ≠ ± →  0 0 0 ( ) (

Ngày đăng: 31/05/2013, 00:21

TỪ KHÓA LIÊN QUAN

w