1. Trang chủ
  2. » Đề thi

đề thi thử thpt quốc gia môn toán DE83 THPT lê lợi, thanh hóa (l2) w

7 183 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 707,81 KB

Nội dung

ĐỀ THI KSCL CÁC MÔN THI TỐT NGHIỆP THPT QUỐC GIA LẦN NĂM HỌC 2015 -2016 ĐỀ THI THỬ KỲ THI THPT QUỐC GIA 2016 - ĐỀ Môn: Toán – lớp 12 SỐ 83 Đề thức Thời (Thời gian làm 180 phút gianbài làm bài: 180 phút, không kể giao đề) ( Gồm có 01 trang ) oOo SỞ GD & ĐT THANH HÓA TRƯỜNG THPT LÊ LỢI x (C) x 1 a) Khảo sát biến thiên vẽ đồ thị (C) hàm số b) Viết phương trình tiếp tuyến đồ thị giao điểm đồ thị với trục tung Câu (2,0 điểm): Cho hàm số y  Câu 2(1,0 điểm): a) Giải phương trình sin2 x  2cosx   sinx b) Cho số phức z thỏa mãn z  z   4i Tìm mô đun số phức   z  10  x 2e x   e x   dx  1 x  Câu (1,0 điểm): Tính tích phân I   x  Câu (1,0 điểm): a) Giải bất phương trình log x   log x b) Một tổ có học sinh nam học sinh nữ Giáo viên chọn ngẫu nhiên học sinh để tham gia buổi trực nề nếp Tính xác suất để học sinh chọn có nam nữ 2 x  y  xy  x  y   y  x    x Câu 5: (1,0 điểm) Giải hệ phương trình   x  y   x  y   x  y  Câu (1,0 điểm) Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB  a , SA  mp ( ABCD ) , SC tạo với mp( ABCD ) góc 450 SC  2a Tính thể tích khối chóp S ABCD khoảng cách từ trọng tâm G tam giác ABC đến mp  SCD  theo a Câu (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC vuông A Gọi K điểm đối xứng A qua C Đường thẳng qua K vuông góc với BC cắt BC E cắt AB N (1;3) Tìm tọa độ đỉnh tam giác ABC biết góc  AEB  450 , phương trình đường thẳng BK x  y  15  điểm B có hoành độ lớn Câu 8: (1,0 điểm) Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(4;1;3) , B(1;5;5) đường  x 1 y  z    Viết phương trình mặt phẳng (P) qua A vuông góc với đường 15 thẳng d Tìm tọa độ điểm C thuộc d cho tam giác ABC có diện tích S ABC  thẳng d : Câu 9: (1,0 điểm) Cho số thực dương a, b, c thỏa mãn ab  ; c  a  b  c   Tìm giá trị nhỏ biểu thức P  b  2c a  2c   6ln( a  b  2c) 1 a 1 b -Hết Họ tên thí sinh SBD: (Cán coi thi không giải thích thêm, thí sinh không sử dụng tài liệu) 476 SỞ GD & ĐT THANH HÓA TRƯỜNG THPT LÊ LỢI ĐÁP ÁN ĐỀ THI KSCL CÁC MÔN THI TỐT NGHIỆP THPT QUỐC GIA LẦN NĂM HỌC 2015 -2016 Môn: Toán – lớp 12 Câu Biểu điểm ý Nội dung a Khảo sát vẽ đồ thị hàm số y  x (C) x 1 0 * TXĐ : D = R\{1}, y’ =  ( x  1)2 * Giới hạn tiệm cận : lim f ( x)  lim f ( x )  nên y = tiệm cận ngang đồ thị hàm số 0,25 x  x  lim f ( x )  , lim   nên x = tiệm cận đứng đồ thị hàm số x 1 x 1 * Bảng biến thiên x - + - y' - + y - * Hàm số nghịch biến (;1) (1;  ) , hàm số cực 0,5 trị * Đồ thị : Vẽ xác đồ thị 10 10 5 10 15 0,25 Nhận xét : Đồ thị nhận giao điểm đường tiệm cận I(1 ;1) làm tâm đối xứng b Viết phương trình tiếp tuyến đồ thị giao điểm đồ thị với trục tung: * Đồ thị cắt Oy O(0;0) * Gọi (d) tiếp tuyến đồ thị O, (d) có hệ số góc k xác định k  y '(0)  1 * Phương trình tiếp tuyến (d) cần tìm y  1( x  0)   y   x a Giải phương trình: sin2 x  2cosx   sinx Ta có sin2 x  2cosx   sinx  sinx(2cosx  1)  (2cosx  1)   ( sinx  1)(2cosx  1)   sinx    2cosx   477 0,25 0,5 0,25 0,25   x   k 2  1 2 * sinx   ; * cosx    x    k 2 ( k   )  x  3  k 2  0,25 b Số phức z thỏa mãn z  z   4i Tìm mô đun số phức   z  10 * Gọi z  a  bi (a, b  ) số phức cho, 0,25 z  a  bi  z  3(a  bi )  4a  a    z   2i 2b  4 b  * Từ giả thiết ta có hệ  0,25 * Số phức   z  10   2i  10  8  2i có mô đun   (8)2  22  17  x 2e x  e x    dx  1 x  1 + Viết lại được: I   x  2  e x  dx   22 x dx   xe x dx 1 x  x 1 Tính tích phân I   x  1 2x + Lần lượt tính I1   dx  ln I   xe x dx  x 1 + Vậy I =  ln a Giải bất phương trình log x   0,5 0,25 log x * ĐKXĐ: x  0; x  , BPT log x    log x   log x log x t  1 t2 t  Đặt t  log x ta thu BPT t    0  t t 0  t  * t  1  log x  1   x  , *  t    log x    x  * Tập nghiệm BPT S  (0; ]  (1; 4] 0,25 0,25 0,25 b Một tổ có học sinh nam học sinh nữ Giáo viên chọn ngẫu nhiên học sinh để tham gia buổi trực nề nếp Tính xác suất để học sinh chọn có nam nữ Xét phép thử T “ chọn ngẫu nhiên học sinh từ tổ có 12 học sinh” 0,25 * Số cách chọn học sinh từ 12 học sinh tổ C12  495 số phần tử không gian mẫu   495 * Gọi A biến cố ” học sinh chọn có nam nữ” Khi A biến cố ” học sinh chọn toàn nam nữ” 0,25 Ta có  A  C54  C74   35  40 P( A)  40 455 91  P( A)   P( A)   495 495 99 478 Giải hệ phương trình 2 x  y  xy  x  y   y  x    x (1)   x  y   x  y   x  y  (2) * ĐK: y  x   0,4 x  y   0, x  y   0, x   y  2x    x  0  * Xét trường hợp:    (Không  x  y    10     0,25 TM hệ) * Xét trường hợp: x  1, y  Đưa PT(1) dạng tích ta ( x  y  2)(2 x  y  1)  x y2 y  x    3x   ( x  y  2)   y  x  1  Do y  x    y  x    x  nên  y  2x    x  y   y  x    3x 0,25 * Thay y   x vào PT(2) ta x  x   x    x  x2  x   3x      x 3x  2 x  ( x  2)( x  1)   3x     x    ( x  2)   1 x   x    3x     x  (vì x  nên  1 x  ) 3x     x * x    x  2  y  (TMĐK) Nghiệm 0,25 0,25 hệ ( x; y )  (2; 4) Hình chóp S ABCD có ABCD hình chữ nhật với AB  a SA  ( ABCD ) , SC tạo với mp(ABCD) góc 450 SC  2a Tính VS ABCD khoảng cách từ trọng tâm G tam giác ABC đến mp  SCD  theo a S Giải: * Vẽ hình đúng, nêu công thức thể tích V  S ABCD SA H tính SA  AC  2a BC  AC  AB  a , A V a3 0,5 G S ABCD  AB.BC  a Từ đó: D B C 0,25 479 * G trọng tâm tam giác ABC nên GD 2   d (G, ( SCD))  d ( B, ( SCD )) BD 3 + Gọi H hình chiếu A lên SD AH   SCD  Vì AB / / mp( SCD) nên d  B,  SCD    d  A,  SCD   =AH + Trong SAD có 0,25 2a 21 1 1      AH  2 AH AS AD 4a 3a 4a 21  d (G, ( SCD))  d ( B, ( SCD )) = 21 Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC vuông A Gọi K điểm đối xứng A qua C Đường thẳng qua K vuông góc với BC cắt BC E cắt AB N (1;3) Tìm tọa độ đỉnh tam giác ABC biết  AEB  450 , phương trình đường thẳng BK x  y  15  điểm B có hoành độ lớn K Giải: (Hình vẽ) * Tứ giác ABKE nội tiếp   AKB   AEB  450 M  AKB vuông cân A   ABK  450 C  * Đường thẳng BK có vtpt n1  (3;1) ,  gọi n  (a; b) vtpt đt AB  góc BK AB N   A n1.n2 3a  b Ta có cos       3a  b  a  b  2 n1 n2 10 a  b E  b  2a  4a  6ab  4b     a  2b  + Với a  2b , chọn n  (2;1)  AB : 2 x  y    B(2;9) (Loại)  + Với b  2a , chọn n  (1;2)  AB : x  y    B(5;0) (TM) * Tam giác BKN có BE KA đường cao  C trực tâm BKN  CN  BK  CN : x  y  10  ABK KCM vuông cân   1 1 BK CK  AC  BK   BK  KM 2 2 2 7 9 M  MN  BK  M  ;   K (3;6) , 2 2 Đường thẳng AC qua K vuông góc AB  AC : x  y  A  AC  AB  A(1; 2) , C trung điểm AK  C (2; 4)  KM  480 0,25 B 0,25 0,25 0,25 Vậy: A(1;2), B(5;0), C(2;4) Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(-4; 1; 3), B(1;5;5) đường thẳng d :  x 1 y  z    Viết PT mp (P) qua A vuông góc với đường thẳng d Tìm tọa độ điểm C thuộc d cho S ABC  15  *) Đường thẳng d có VTCP ud   2;1;3  ,  P   d nên  P  nhận  ud   2;1;3  làm VTPT PT mặt phẳng  P  : 2  x    1 y  1   z  3   2 x  y  z  18  0,5 * Vì C  d nên C có tọa độ  1  2t ;1  t; 3  3t  , nhận thấy B  mp( P) 0,25 nên ABC vuông A, S ABC    15   15   AB, AC   2 * Tính véc tơ AB, AC theo tọa độ điểm nói để tìm tọa độ C… 0,25 Cho a, b, c dương thỏa mãn ab  ; c  a  b  c   Tìm GTNN biểu thức P  b  2c a  2c   6ln( a  b  2c) 1 a 1 b Giải: Ta có P   a  b  2c   a  b  2c   6ln(a  b  2c) 1 a 1 b     a  b  2c  1     6ln( a  b  2c) 1 a 1 b  0,25 Ta chứng minh BĐT quen thuộc sau: ) 1 (1)    a  b  ab ) ab  ab  (2) Thật vậy, ) 1      a  b   ab  1  a 1  b   a  b  ab    a b    ab   ab  Dầu “=” a=b ab=1 0,25 ab  ) ab   ab   Dấu “=” ab=1 1 2 Do đó,      a  b  ab  ab   ab 4 16    ab  bc  ca  c  a  c  b  c   a  b  2c    + Đặt t  a  b  2c, t  ta có P   f (t )  16  t  1  6ln t , t  0; t2 481 0,25 f '(t )  16  t   6t  16t  32  t   6t      t t3 t3 t3 Lập BBT hàm f(t) khoảng (0; ) , ta t f '(t )    f (t )  6.ln Vậy, GTNN P 3+6ln4 a = b = c =1 482 0,25

Ngày đăng: 27/06/2016, 13:20

TỪ KHÓA LIÊN QUAN

w