1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi tuyển sinh vào lớp 10 THPT môn Toán sở GD&ĐT Khánh Hòa năm 2016 - 2017

2 327 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 102,87 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO KHÁNH HÒA KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN NĂM HỌC: 2016 - 2017 Môn thi: Toán (chuyên) Ngày thi: 03/06/2016 Thời gian: 150 phút - không kể thời gian phát đề) (Đề thi có 01 trang) Đề thi thức Bài (2,0 điểm) Rút gọn biểu thức P   1 1   2 2016 2 Cho a nghiệm phương trình x2 - 3x + = Không tìm giá trị a, tính giá trị biểu thức Q  a2 a4  a2 1 Bài (2,0 điểm) 2 15  x 1   x 1  Giải phương trình   4    5  x2 x 4  x2 ( x  xy )( xy  y )  25 Giải hệ phương trình   x  xy  xy  y  3( y  y ) Bài (2,0 điểm) Cho x ≥ Tìm giá trị nhỏ biểu thức S  x  x   x  x  Hãy tính tất số nguyên tố cho 8p2 + 8p2 - số nguyên tố Bài (3,0 điểm) Cho hai đường tròn (O), (O') cắt hai điểm phân biệt A B Từ điểm E nằm tia đối tia AB, kẻ đến đường tròn (O') tiếp tuyến EC ED (C, D tiếp điểm phân biệt) Các đường thẳng AC AD theo thứ tự cắt đường tròn (O) hai điểm P Q (P Q khác A) Chứng minh hai tam giác BCP BDQ đồng dạng Chứng minh CA.DQ = CP.DA Chứng minh ba điểm C, D trung điểm I đoạn thẳng PQ thẳng hàng VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Bài (1,0 điểm) Trong mặt phẳng cho 10 điểm đôi phân biệt cho điểm 10 điểm cho có điểm thẳng hàng Chứng minh ta bỏ điểm 10 điểm cho để điểm lại thuộc đường thẳng VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí   TP.HCM 13  2014  CHÍNH  MÔN: TOÁN Thời gian làm bài: 120 phút  1: (2  Giải các phương trình và hệ phương trình sau: a) 2 5 6 0  xx b) 2 2 1 0  xx c) 4 3 4 0    xx d) 23 21        xy xy 2: (1,5  a) Vẽ đồ thị (P) của hàm số 2 yx và đường thẳng (D): 2  yx trên cùng một hệ trục toạ độ. b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.  3: (1,5  Thu gọn các biểu thức sau: 33 . 9 33         xx A x xx với 0x ; 9x     22 21 2 3 3 5 6 2 3 3 5 15 15        B 1,5  Cho phương trình 22 8 8 1 0   x x m (*) (x là ẩn số) a) Định m để phương trình (*) có nghiệm 1 2 x b) Định m để phương trình (*) có hai nghiệm 1 x , 2 x thỏa điều kiện: 4 4 3 3 1 2 1 2   x x x x  5: (3,5  Cho tam giác ABC không có góc tù (AB < AC), nội tiếp đường tròn (O; R). (B, C cố định, A di động trên cung lớn BC). Các tiếp tuyến tại B và C cắt nhau tại M. Từ M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E (D thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I. a) Chứng minh rằng MBC BAC . Từ đó suy ra MBIC là tứ giác nội tiếp. b) Chứng minh rằng: FI.FM = FD.FE. c) Đường thẳng OI cắt (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt (O) tại T (T khác Q). Chứng minh ba điểm P, T, M thẳng hàng. d) Tìm vị trí điểm A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất. BÀI GIẢI  Giải các phương trình và hệ phương trình sau: a) 2 5 6 0 25 24 1 5 1 5 1 23 22 xx x hay x              b) 2 2 1 0 ' 1 1 2 1 2 1 2 xx x hay x             c) Đặt u = x 2 0 pt thành : 2 3 4 0 1 4u u u hayu       (loại) (do a + b + c =0) Do đó pt 2 11xx     Cách khác pt 22 ( 1).( 4) 0xx    2 1 0 1xx      d) 2 3 (1) 2 1 (2) xy xy         2 3 (1) 5 5 (3) ((2) 2(1)) xy x       1 1 y x       1 1 x y      2: a) Đồ thị: Lưu ý: (P) đi qua O(0;0),     1;1 , 2;4 (D) đi qua     1;1 , 2;4 ,(0;2) b) PT hoành độ giao điểm của (P) và (D) là 2 2xx    2 20xx   12x hay x    (a+b+c=0) y(1) = 1, y(-2) = 4 Vậy toạ độ giao điểm của (P) và (D) là     2;4 , 1;1  3:Thu gọn các biểu thức sau Với x 0 và x  9 ta có :     3 3 9 3 . 9 3 . 3 x x x x A x xx            1 3x   22 22 2 21 ( 4 2 3 6 2 5) 3( 4 2 3 6 2 5) 15 15 2 21 ( 3 1 5 1) 3( 3 1 5 1) 15 15 2 15 ( 3 5) 15 15 60 2 B                       Câu 4: a/ Phương trình (*) có nghiệm x = 1 2  2 2 4 1 0m    2 1m 1m   b/ ∆’ = 22 16 8 8 8(1 )mm    . Khi m = 1 thì ta có ∆’ = 0 tức là : 12 xx khi đó 4 4 3 3 1 2 1 2 x x x x   thỏa Điều kiện cần để phương trình sau có 2 nghiệm phân biệt là: 1 1 1m hay m    . Khi 1 1 1m hay m    ta có 4 4 3 3 1 2 1 2 x x x x          2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 .x x x x x x x x x x             2 2 2 2 1 2 1 2 1 2 1 2 .x x x x x x x x      (Do x 1 khác x 2 )     2 2 1 2 1 2 1 2 1 2 1 2 22 2 ( ) . ( 2 ) x x x x x x x x x x S S P S P              22 1(1 2 ) 1PP    (Vì S = 1) 0P 2 10m   (vô nghiệm) Do đó yêu cầu bài toán 1m   Cách khác Khi 0 ta có 12 1xx và 2 12 1 8 m xx   4 4 3 3 1 2 1 2 x x x x   33 1 1 2 2 .( 1) ( 1) 0x x x x     33 1 2 1 2 0x x x x    (thế 12 1xx   và 21 1xx   ) 22 1 2 1 2 ( ) 0x x x x   1 2 1 2 ( )( ) 0x x x x    (vì x 1 x 2  0) 12 xx (vì x 1 +x 2 =1  0) 1m   Câu 5 a) Ta có BAC MBC do cùng chắn cung BC Và BAC MIC do AB// MI Vậy BAC MIC , nên bốn điểm ICMB cùng nằm Trên đường tròn đường kính OM (vì 2 điểm B, C cùng nhìn OM dưới 1 góc vuông) b) Do 2 tam giác đồng THCS NGUYỄN TẤT THÀNH HƯỚNG DẪN CHẤM KSCL TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2014 - 2015 MÔN THI: TOÁN HỌC Câu Nội dung Điể m Câu 1   22 7 2 30 7 11A      11 7 60 14 11       2 11 7 7 11      11 7 7 11   =   2 2 7 11 38 0,25 0,25 0,25 Điều kiện xác định của B: 0 4 x x                 2 1 2 ( 6) 2 2 : 2 22 x x x x x x x A x xx                  2 2 2 6 22 : 2 22 x x x x x x x x xx x xx                 4 8 2 . 4 22 xx xx    2 2 x x    0,25 0,25 0,25 Câu 2 Nếu 0xy  thì 17 2 1 1007 9 2011 9 490 (1) 1 2 9 1 490 3 1007 9 x yx y y yx x                               (phù hợp) 0,5 Nếu 0xy thì 17 2 1 1004 2011 9 (1) 0 12 1 1031 3 18 yx y xy yx x                      (loại) 0,5 Nếu 0xy  thì (1) 0xy (nhận). 0,25 KL: Hệ có đúng 2 nghiệm là (0;0) và 99 ; 490 1007    0,25 Nếu 0xy  thì 17 2 1 1007 9 2011 9 490 (1) 1 2 9 1 490 3 1007 9 x yx y y yx x                               (phù hợp) 0,5 Câu 3 Gọi thời gian làm một mình xong công việc của thứ nhất là x(h, x > 7,2 ) Thời gian người thứ hai làm một mình xong công việc là y (giờ, y > 7,2 ) Trong 1 giờ, người thứ nhất làm được 1 x (cv); người thứ hai làm được 1 y (cv) & cả hai làm được 5 36 (cv) => ta có hệ phương trình: 1 1 5 36 5 6 3 4 xy xy          Giải hệ được x = 12; y = 18 Vậy 0,5 0,25 0,5 0,25 Câu 4 a) Do 12 ,xx là hai nghiệm của phương trình đã cho nên theo định lí Viet ta có: 1 2 1 2 3 , 13 2 x x x x     Ta có 1 2 1 1 2 2 C x x x x x x    1 2 1 2 2x x x x     3 2 13 2        3 26 2    55 2  b) 12 12 1 27 2 . 27 yy yy            → y 1 và y 2 là nghiệm của pt: y 2 + 1 27 y - 2 27 = 0 0,25 0,25 0,25 1,0 0,5 Câu 5 0.25 Ta có tanB = AD BD ; tanC = AD DC  tanB.tanC = 2 . AD BD DC (1) Xét 2 tam giác vuông ADC và BDH có   DAC DBH vì cùng phụ với góc C nên ta có : AD BD ADC BDH DC DH     AD DH DBDC  2 . AD AD BD DC HD  (2) Từ (1) và (2)  tanB.tanC = AD HD . 0,5 0,25 0,25 0,25 K G H E D A B C Theo câu a. ta có: 22 () 44 DB DC BC DH DA DB DC     1,0 Gọi Ax là tia phân giác góc A, kẻ BM; CN lần lượt vuông góc với Ax Ta có  sin sin 2 A BM MAB AB  suy ra .sin 2 A BM c Tương tự .sin 2 A CN b do đó ( ).sin 2 A BM CN b c   Mặt khác ta luôn có: BM CN BF FC BC a     Nên ( ).sin 2 A b c a sin 2 2. A a a bc bc     0,25 0,25 x F M N A B C Câu 6 Do a <1  2 a <1 và b <1 Nên     2 2 2 1 . 1 0 1 0a b a b a b        Hay baba  22 1 Mặt khác 0 <a,b <1  32 aa  ; 3 bb   332 baab   baba 233 1 Tương tự ta có acca cbcb 233 233 1 1   Vậy accbbacba 222333 3222  0,25 0,25 0,25 0,25 VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÀNH PHỐ HỒ CHÍ MINH THÔNG NĂM HỌC 2016 – 2017 ĐỀ CHÍNH THỨC MÔN THI: TIẾNG ANH Ngày thi: 11 tháng năm 2016 Thời gian làm bài: 60 phút (Không kể thời gian phát đề) Họ tên thí Chữ ký giám sinh: _ Chữ ký giám khảo SỐ CỦA MỖI khảo BÀI Trường: _ SỐ PHÁCH Số báo danh: _ Điểm số Điểm chữ Chữ ký giám khảo Chữ ký giám khảo SỐ PHÁCH SỐ CỦA MỖI BÀI Điểm Điểm phần Điểm phần Điểm phần Điểm phần Điểm phần Điểm phần Điểm phần I II IV V VII tổng III VI Đề thi gồm có trang Thí sinh làm đề thi I Choose the word/ phrase (A, B, C or D) that best fits the space in each sentence (2.5pts) Disneyland _its 60th birthday on Saturday 18 July, 2015 A-celebrated B-congratulated C-complicated D-complished _the 3rd day of the Lunar New Year, pupils often pay their teachers a visit A-to B-on C-in D-at VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Our little son was sleepy when we were walking to the park; , we went home early A-therefore B-however B-whose B-Not at all! Go ahead D- Really? Good! C-on D-to About 70% of the earth’s _is covered with water B-atmosphere C-ocean D-surface The teacher Van if she had ever tried calling a helpline A-said C-Sure, thanks B-in A-world D-who The small bamboo forest the entrance to the village makes it picturesque A-at C-which Speaker 1: “Excuse me Do you mind if I sit here?” – Speaker 2: “ ” A-You’re right D-although People not love nature may not love anything else in life A-whom C-moreover B-advised Speaker 1: “ ” C-asked D- suggested - Speaker 2: “Sơn Đoòng is a new tourist destination.” A- Let’s eat out this evening! B-We need a holiday, dear! C-I miss my relatives in Huế! D-I’d like to cook something special food 10 I chose to buy the house in District _avoid noise and pollution A-so that B-in order that C-so as to D-in order not II Choose the underlined word or phrase (A, B, C or D) that needs correcting (0.5 pt) 11 One of the great pleasures of to travel to another country is eating different dishes A B C D 12 The drought that caused by El Nino weather patterns is hitting Thailand and Cambodia A B C D III Read the following letter Decide if the statements from 13 to 16 are True or False, and choose the correct answer (A, B, C or D) for the questions 17 and 18 Dear Daddy, I am writing this to tell you how much you are missed and loved, especially on such a special day as today I will always remember that day – my graduation day You were standing there with tears in your eyes while I was walking towards the stage to get my diploma, a moment in time that would last foreever You are such a devoted father who has always taken very good care of family and me I now live independently, Dad, and I’ve experienced the difficulties of being and adult, and I am going to have my own children with all the burden of being a parent I understand and love you more After all, I will always be your little naughty son! Happy Father’s Day 13 This is the letter written by a man to his father 14 The father cried when his son was on his way to the stage VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí 15 The letter is sent from a son to his father on the son’s graduation day 16 The writer of this letter has no difficulty living an adult’s life 17 What is the letter mainly about? A-The writer’s study at university B- The writer’s childhood memory C- The writer’s thankfullness to the father D- The writer’s marriage life 18 Which of the following can be inferred from the letter? A-The father is quite irresponsible B-The writer is in disagreement with the father C-The writer has a lot of experience in work D-The writer very much respects the father Chú ý: Từ câu 14 đến câu 16, thí sinh phải viết đầy đủ từ True False vào ô trả lời Mọi cách viết khác không chấm điểm Đối với câu 17 18, thí sinh ghi lựa chọn (A, B, C D) vào   TP.HCM 13  2014  CHÍNH  MÔN: TOÁN Thời gian làm bài: 120 phút  1: (2  Giải các phương trình và hệ phương trình sau: a) 2 5 6 0  xx b) 2 2 1 0  xx c) 4 3 4 0    xx d) 23 21        xy xy 2: (1,5  a) Vẽ đồ thị (P) của hàm số 2 yx và đường thẳng (D): 2  yx trên cùng một hệ trục toạ độ. b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.  3: (1,5  Thu gọn các biểu thức sau: 33 . 9 33         xx A x xx với 0x ; 9x     22 21 2 3 3 5 6 2 3 3 5 15 15        B 1,5  Cho phương trình 22 8 8 1 0   x x m (*) (x là ẩn số) a) Định m để phương trình (*) có nghiệm 1 2 x b) Định m để phương trình (*) có hai nghiệm 1 x , 2 x thỏa điều kiện: 4 4 3 3 1 2 1 2   x x x x  5: (3,5  Cho tam giác ABC không có góc tù (AB < AC), nội tiếp đường tròn (O; R). (B, C cố định, A di động trên cung lớn BC). Các tiếp tuyến tại B và C cắt nhau tại M. Từ M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E (D thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I. a) Chứng minh rằng MBC BAC . Từ đó suy ra MBIC là tứ giác nội tiếp. b) Chứng minh rằng: FI.FM = FD.FE. c) Đường thẳng OI cắt (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt (O) tại T (T khác Q). Chứng minh ba điểm P, T, M thẳng hàng. d) Tìm vị trí điểm A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất. BÀI GIẢI  Giải các phương trình và hệ phương trình sau: a) 2 5 6 0 25 24 1 5 1 5 1 23 22 xx x hay x              b) 2 2 1 0 ' 1 1 2 1 2 1 2 xx x hay x             c) Đặt u = x 2 0 pt thành : 2 3 4 0 1 4u u u hayu       (loại) (do a + b + c =0) Do đó pt 2 11xx     Cách khác pt 22 ( 1).( 4) 0xx    2 1 0 1xx      d) 2 3 (1) 2 1 (2) xy xy         2 3 (1) 5 5 (3) ((2) 2(1)) xy x       1 1 y x       1 1 x y      2: a) Đồ thị: Lưu ý: (P) đi qua O(0;0),     1;1 , 2;4 (D) đi qua     1;1 , 2;4 ,(0;2) b) PT hoành độ giao điểm của (P) và (D) là 2 2xx    2 20xx   12x hay x    (a+b+c=0) y(1) = 1, y(-2) = 4 Vậy toạ độ giao điểm của (P) và (D) là     2;4 , 1;1  3:Thu gọn các biểu thức sau Với x 0 và x  9 ta có :     3 3 9 3 . 9 3 . 3 x x x x A x xx            1 3x   22 22 2 21 ( 4 2 3 6 2 5) 3( 4 2 3 6 2 5) 15 15 2 21 ( 3 1 5 1) 3( 3 1 5 1) 15 15 2 15 ( 3 5) 15 15 60 2 B                       Câu 4: a/ Phương trình (*) có nghiệm x = 1 2  2 2 4 1 0m    2 1m 1m   b/ ∆’ = 22 16 8 8 8(1 )mm    . Khi m = 1 thì ta có ∆’ = 0 tức là : 12 xx khi đó 4 4 3 3 1 2 1 2 x x x x   thỏa Điều kiện cần để phương trình sau có 2 nghiệm phân biệt là: 1 1 1m hay m    . Khi 1 1 1m hay m    ta có 4 4 3 3 1 2 1 2 x x x x          2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 .x x x x x x x x x x             2 2 2 2 1 2 1 2 1 2 1 2 .x x x x x x x x      (Do x 1 khác x 2 )     2 2 1 2 1 2 1 2 1 2 1 2 22 2 ( ) . ( 2 ) x x x x x x x x x x S S P S P              22 1(1 2 ) 1PP    (Vì S = 1) 0P 2 10m   (vô nghiệm) Do đó yêu cầu bài toán 1m   Cách khác Khi 0 ta có 12 1xx và 2 12 1 8 m xx   4 4 3 3 1 2 1 2 x x x x   33 1 1 2 2 .( 1) ( 1) 0x x x x     33 1 2 1 2 0x x x x    (thế 12 1xx   và 21 1xx   ) 22 1 2 1 2 ( ) 0x x x x   1 2 1 2 ( )( ) 0x x x x    (vì x 1 x 2  0) 12 xx (vì x 1 +x 2 =1  0) 1m   Câu 5 a) Ta có BAC MBC do cùng chắn cung BC Và BAC MIC do AB// MI Vậy BAC MIC , nên bốn điểm ICMB cùng nằm Trên đường tròn đường kính OM (vì 2 điểm B, C cùng nhìn OM dưới 1 góc vuông) b) Do 2 tam giác đồng www.VNMATH.com ĐỀ VÀ HƯỚNG DẪN GIẢI THI VÀO 10 PHÚ THỌ 18-6-2013 Câu 1 a) Tính A= 49162  b) Trong các hình sau : hình vuông; hình bình hành; hình chữ nhật; hình thang cân. Những hình nào có hai đường chéo bằng nhau ĐS a) A=1 b)HV ; HCN ; HTC

Ngày đăng: 20/06/2016, 11:34

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w