1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Case lam sang benh truyen nhiem

609 607 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Peter M Lydyard Michael F Cole John Holton William L Irving Nino Porakishvili Pradhib Venkatesan Katherine N Ward This edition published in the Taylor & Francis e-Library, 2010 To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk Vice President: Denise Schanck Editor: Elizabeth Owen Editorial Assistant: Sarah E Holland Senior Production Editor: Simon Hill Typesetting: Georgina Lucas Cover Design: Andy Magee Proofreader: Sally Huish Indexer: Merrall-Ross International Ltd ©2010 by Garland Science, Taylor & Francis Group, LLC This book contains information obtained from authentic and highly regarded sources Reprinted material is quoted with permission, and sources are indicated A wide variety of references are listed Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use All rights reserved No part of this book covered by the copyright heron may be reproduced or used in any format in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems—without permission of the publisher The publisher makes no representation, express or implied, that the drug doses in this book are correct Readers must check up to date product information and clinical procedures with the manufacturers, current codes of conduct, and current safety regulations ISBN 0-203-85687-2 Master e-book ISBN ISBN 978-0-8153-4142-0 Library of Congress Cataloging-in-Publication Data Case studies in infectious disease / Peter M Lydyard [et al.] p ; cm Includes bibliographical references SBN 978-0-8153-4142-0 Communicable diseases Case studies I Lydyard, Peter M [DNLM: Communicable Diseases Case Reports Bacterial Infections Case Reports Mycoses Case Reports Parasitic Diseases-Case Reports Virus Diseases Case Reports WC 100 C337 2009] RC112.C37 2009 616.9 dc22 2009004968 Published by Garland Science, Taylor & Francis Group, LLC, an informa business 270 Madison Avenue, New York NY 10016, USA, and Park Square, Milton Park, Abingdon, OX14 4RN, UK Visit our web site at http://www.garlandscience.com Peter M Lydyard, Emeritus Professor of Immunology, University College Medical School, London, UK and Honorary Professor of Immunology, School of Biosciences, University of Westminster, London, UK Michael F Cole, Professor of Microbiology & Immunology, Georgetown University School of Medicine, Washington, DC, USA John Holton, Reader and Honorary Consultant in Clinical Microbiology, Windeyer Institute of Medical Sciences, University College London and University College London Hospital Foundation Trust, London, UK William L Irving, Professor and Honorary Consultant in Virology, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, UK Nino Porakishvili, Senior Lecturer, School of Biosciences, University of Westminster, London, UK and Honorary Professor, Javakhishvili Tbilisi State University, Tbilisi, Georgia Pradhib Venkatesan, Consultant in Infectious Diseases, Nottingham University Hospitals NHS Trust, Nottingham, UK Katherine N Ward, Consultant Virologist and Honorary Senior Lecturer, University College Medical School, London, UK and Honorary Consultant, Health Protection Agency, UK Preface The idea for this book came from a successful course in a medical school setting Each of the forty cases has been selected by the authors as being those that cause the most morbidity and mortality worldwide The cases themselves follow the natural history of infection from point of entry of the pathogen through pathogenesis, clinical presentation, diagnosis, and treatment We believe that this approach provides the reader with a logical basis for understanding these diverse medically-important organisms Following the description of a case history, the same five sets of core questions are asked to encourage the student to think about infections in a common sequence The initial set concerns the nature of the infectious agent, how it gains access to the body, what cells are infected, and how the organism spreads; the second set asks about host defense mechanisms against the agent and how disease is caused; the third set enquires about the clinical manifestations of the infection and the complications that can occur; the fourth set is related to how the infection is diagnosed, and what is the differential diagnosis, and the final set asks how the infection is managed, and what preventative measures can be taken to avoid the infection In order to facilitate the learning process, each case includes summary bullet points, a reference list, a further reading list and some relevant reliable websites Some of the websites contain images that are referred to in the text Each chapter concludes with multiple-choice questions for self-testing with the answers given in the back of the book In the contents section, diseases are listed alphabetically under the causative agent A separate table categorizes the pathogens as bacterial, viral, protozoal/worm/fungal and acts as a guide to the relative involvement of each body system affected Finally, there is a comprehensive glossary to allow rapid access to microbiology and medical terms highlighted in bold in the text All figures are available in JPEG and PowerPoint® format at www.garlandscience.com/gs_textbooks.asp We believe that this book would be an excellent textbook for any course in microbiology and in particular for medical students who need instant access to key information about specific infections Happy learning!! The authors March, 2009 Acknowledgments In writing this book we have benefited greatly from the advice of many microbiologists and immunologists We would like to thank the following for their suggestions in preparing this edition William R Abrams (New York University College of Dentistry, USA); Abhijit M Bal (Crosshouse Hospital, UK); Keith Bodger (University of Liverpool, UK); Carolyn Hovde Bohach (University of Idaho, USA); Robert H Bonneau (The Pennsylvania State University College of Medicine, USA); Dov L Boros (Wayne State University, USA); Thomas J Braciale (University of Virginia Health Systems, USA); Stephen M Brecher (VA Boston Healthcare System USA); Patrick J Brennan (Colorado State University, USA); Christine M Budke (Texas A&M University, USA); Neal R Chamberlain (A.T Still University of Health Sciences/KCOM, USA); Dorothy H Crawford (University of Edinburgh, UK); Jeremy Derrick (University of Manchester, UK); Joanne Dobbins (Bellarmine University, USA); Michael P Doyle (University of Georgia, USA); Sean Doyle (National University of Ireland); Gary A Dykes (Food Science Australia); Stacey Efstathiou (University of Cambridge, UK); Roger Evans (Raigmore Hospital, UK); Ferric C Fang (University of Washington School of Medicine, USA); Robert William Finberg (University of Massachusetts Medical School, USA); Joanne Flynn (University of Pittsburgh School of Medicine, USA); Scott G Franzblau (University of Illinois at Chicago, USA); Caroline Attardo Genco (Boston University School of Medicine, USA); Geraldo Gileno de Sá Oliveira (Oswaldo Cruz Foundation, Brazil); John W Gow (Glasgow Caledonian University, UK); Carlos A Guerra (University of Oxford, UK); Paul Hagan (University of Glasgow, UK); Anders P Hakansson (SUNY at Buffalo, USA); Tim J Harrison (University College London, UK); Robert S Heyderman (Liverpool School of Tropical Medicine, UK); Geoff Hide (University of Salford, UK); Stuart Hill (Northern Illinois University, USA); Stephen Hogg (University of Newcastle, UK); Malcolm J Horsburgh (University of Liverpool, UK); Michael Hudson (University of North Carolina at Charlotte, USA); Karsten Hueffer (University of Alaska Fairbanks, USA); Paul Humphreys (University of Huddersfield, UK); Ruth Frances Itzhaki (University of Manchester, UK); Aras Kadioglu (University of Leicester, UK); A V Karlyshev (Kingston University, UK); Ruth A Karron (Johns Hopkins University, USA); Stephanie M Karst (Louisiana State University Health Sciences Center, USA); C M Anjam Khan (University of Newcastle, UK); Peter G.E Kennedy (University of Glasgow, UK); Martin Kenny (University of Bristol, UK); H Nina Kim (University of Washington, USA); George Kinghorn (Royal Hallamshire Hospital, UK); Michael Klemba (Virginia Polytechnic Institute and State University, USA); Brent E Korba (Georgetown University Medical Center, USA); Awewura Kwara (Warren Alpert Medical School of Brown University, USA); Jerika T Lam (Loma Linda University, USA); Robert A Lamb (Northwestern University, USA); Audrey Lenhart (Liverpool School of Tropical Medicine, UK); Michael D Libman (McGill University, Canada); David Lindsay (Virginia Technical University, USA); Dennis Linton (University of Manchester, UK); Martin Llewelyn (Brighton and Sussex Medical School, UK); Diana Lockwood (London School of Hygiene & Tropical Medicine, UK); Francesco A Mauri (Imperial College, UK); Don McManus (Queensland Institute of Medical Research, Australia); Keith R Matthews (University of Edinburgh, UK); Ernest Alan Meyer (Oregon Health and Science University, USA); Manuel H Moro (National Institutes of Health, USA); Kristy Murray (The University of Texas Health Science Center, USA); Tim Paget (The Universities of Kent and Greenwich at Medway, UK); Andrew Pekosz (Johns Hopkins University, USA); Lennart Philipson (Karolinska Institute, Sweden); Gordon Ramage (University of Glasgow, UK); Julie A Ribes (University of Kentucky, USA); Alan Bernard Rickinson (University of Birmingham, UK); Adam P Roberts (University College London, UK); Nina Salama (Fred Hutchinson Cancer Research Center and University of Washington, USA); John W Sixbey (Louisiana State University Health Sciences Center-Shreveport, USA); Deborah F Smith (York Medical School University of York, UK); John S Spencer (Colorado State University, USA); Richard Stabler (London School of Hygiene & Tropical Medicine, UK); Catherine H Strohbehn (Iowa State University, USA); Sankar Swaminathan (University of Florida Shands Cancer Center, USA); Clive Sweet (University of Birmingham, UK); Clarence C Tam (London School of Hygiene & Tropical Medicine, UK); Mark J Taylor (Liverpool School of Tropical Medicine, UK); Yasmin Thanavala (Roswell Park Cancer Institute, USA); Christian Tschudi (Yale University, USA); Mathew Upton (University of Manchester, UK); Juerg Utzinger (Swiss Tropical Institute, Switzerland); Julio A Vázquez (National Institute of Microbiology, Institute of Health Carlos III, Spain); Joseph M Vinetz (University of California, San Diego, USA); J Scott Weese (University of Guelph, Canada); Lee Wetzler (Boston University School of Medicine, USA); Peter Williams (University of Leicester, UK); Robert Paul Yeo (Durham University, UK); Qijing Zhang (Iowa State University, USA); Shanta M Zimmer (Emory University School of Medicine, USA); Prof G Janossy (University College, London, UK) vii Table of Contents Case Aspergillus fumigatus Case 24 Neisseria gonorrhoeae 303 Case Borrelia burgdorferi and related species 19 Case 25 Neisseria meningitidis 315 Case Campylobacter jejuni 33 Case 26 Norovirus 329 Case Chlamydia trachomatis 41 Case 27 Parvovirus 339 Case Clostridium difficile 63 Case 28 Plasmodium spp 347 Case Coxiella burnetti 73 Case 29 Respiratory syncytial virus 361 Case Coxsackie B virus 99 Case 30 Rickettsia spp 371 Case Echinococcus spp 107 Case 31 Salmonella typhi 383 Case Epstein-Barr virus 115 Case 32 Schistosoma spp 393 Case 10 Escherichia coli 129 Case 33 Staphylococcus aureus 403 Case 11 Giardia lamblia 139 Case 34 Streptococcus mitis 419 Case 12 Helicobacter pylori 149 Case 35 Streptococcus pneumoniae 429 Case 13 Hepatitis B virus 161 Case 36 Streptococcus pyogenes 439 Case 14 Herpes simplex virus 177 Case 37 Toxoplasma gondii 453 Case 15 Herpes simplex virus 187 Case 38 Trypanosoma spp 463 Case 16 Histoplasma capsulatum 197 Case 39 Varicella-zoster virus 475 Case 17 Human immunodeficiency virus 217 Case 40 Wuchereria bancrofti 485 Case 18 Influenza virus 235 Case 19 Leishmania spp 249 Case 20 Leptospira spp 261 Glossary 495 Case 21 Listeria monocytogenes 269 Answers to Multiple Choice Questions 513 Case 22 Mycobacterium leprae 277 Figure Acknowledgments 566 Case 23 Mycobacterium tuberculosis 291 Index 573 viii Pathogens by type and body systems affected Guide to the relative involvement of each body system affected by the infectious organisms described in this book: the organisms are categorized into bacteria, viruses, and protozoa/fungi/worms Organism Resp MS GI H/B GU CNS CV Skin Syst 1+ 1+ L/H Bacteria Borrelia burgdorferi 4+ Campylobacter jejuni 4+ Chlamydia trachomatis 2+ 2+ Clostridium difficile 4+ 4+ Coxiella burnetti 4+ Escherichia coli 4+ 4+ Helicobacter pylori 4+ 4+ 4+ 4+ 4+ Listeria monocytogenes 2+ 4+ Mycobacterium leprae 4+ 4+ 4+ 2+ 4+ Neisseria meningitidis 2+ 4+ Rickettsia spp 4+ 4+ Salmonella typhi 4+ 4+ 1+ 1+ 2+ 1+ 1+ 4+ Streptococcus pyogenes 4+ 4+ Streptococcus mitis Streptococcus pneumoniae 2+ 2+ Neisseria gonorrhoeae Staphylococcus aureus 4+ 4+ Leptospira spp Mycobacterium tuberculosis 2+ 4+ 1+ 4+ 3+ 4+ 4+ 3+ Viruses Coxsackie B virus 1+ 1+ 4+ 1+ Epstein-Barr virus Hepatitis B virus 4+ 2+ 4+ 4+ Herpes simplex virus 2+ 4+ 4+ Herpes simplex virus 4+ 2+ 4+ 2+ Human immunodeficiency virus Influenza virus 2+ 4+ 1+ Norovirus 1+ 4+ Parvovirus 2+ Respiratory syncytial virus 4+ Varicella-zoster virus 2+ 3+ 4+ 2+ 4+ 2+ INFECTIOUS ORGANISMS BY BODY SYSTEM Protozoa/Fungi/Worms Aspergillus fumigatus 4+ Echinococcus spp 2+ Giardia lamblia Histoplasma capsulatum 1+ 4+ 4+ 3+ 1+ Leishmania spp 4+ 4+ 4+ 4+ 4+ 4+ Toxoplasma gondii Trypanosoma spp 4+ 4+ Plasmodium spp Schistosoma spp 2+ 2+ 4+ Wuchereria bancrofti 4+ 4+ 4+ 4+ The rating system (+4 the strongest, +1 the weakest) indicates the greater to lesser involvement of the body system KEY: Resp = Respiratory: MS = Musculoskeletal: GI = Gastrointestinal H/B = Hepatobiliary: GU = Genitourinary: CNS = Central Nervous System Skin = Dermatological: Syst = Systemic: L/H = Lymphatic-Hematological ix 584 INDEX escape mutants, 221 genome (ssRNA), 218, Fig.17.4 gp41, 218, 228 gp120, 218 integrase, Fig.17.5 inhibitors, 228, Tab.17.3 lability, 218 life cycle, 227, Fig.17.5 lipid envelope, 218 p24 (capsid protein), 218, 226 peptide processing/presentation, 219, 222, Fig.17.7 person to person spread, 218 increased, HSV-2 infection associated, 191, 192 protease, Fig.17.5 inhibitors, 228, Tab.17.3 proteins, Fig.17.5 receptors and coreceptors, 218–219, Fig.17.5 co-receptors (CCR5, CXCR4), 219, Fig.17.7 DC-Sign, 219, Fig.17.7 inhibitors, 228, Tab.17.3 replication cycle, 227, Fig.17.5 in dendritic cells, gonococci effect, 308 inhibition, 227–228 replication rate, 228 reservoir (T cells), 220, 222 reverse transcriptase, 228, Fig.17.5 RNA detection, 226 spread within body, 219–220 structure, 218, Fig.17.4 transmission routes, 218 vertical transmission, 218 see also AIDS; HIV infection HIV-1, 218, 220, Fig.17.5 HIV-2, 218, 221 HIV infection acute phase, 221–222, 223–224, Fig.17.9 case history, 217, Fig.17.1 Fig.17.2, Fig.17.3 chronic phase, 222, Fig.17.9 clinical presentation, 223–224, Tab.17.2 clinical stages (WHO), 224, Tab.17.2 diagnosis, 226 ‘diagnostic window,’ 226 differential diagnosis, 226, Tab.9.2 epidemiology, 220–221, Fig.17.8 gonococcal co-infection, 308 histoplasmosis with, 204 host response, 221–223 immune response antibodies, 221, 226 innate, 218 increased spread, HSV-2 infection associated, 191, 192 incubation period, 223 latency, 222, 224, Fig.17.9 leishmaniasis with, 254 lipopolysaccharide levels, 223 long-term nonprogressors, 222 malaria with, 353 management, 227–229 HAART, 217, 228, 229 see also Antiretroviral drugs mortality, 220 Mycobacterium leprae co-infection, 281 parvovirus B19 infection with, 342 phases, 221–223 prevention, 229–230 progression to AIDS, 222, 224 see also AIDS rapid testing kits, 226 resistance to, CCR5 mutations, 219 Salmonella co-infection, 385 seropositivity, 217 T cell infection see CD4+ T cells ‘testing HIV-positive,’ 226 Toxoplasma gondii co-infection, 457 tuberculosis with, 293–294 vaccines, 229–230 viral load measurement, 226 reduction, 221, Fig.17.9 viremia, 220, 221, 222, 230, Fig.17.9 ‘set point’ (point of equilibrium), 222, 230, Fig.17.9 VZV reactivation, 478 see also AIDS; HIV HLA B27, Campylobacter jejuni infection, 36 HLA class I/II antigens see Major histocompatibiity complex (MHC) HLA DR, tuberculosis and, 295 HLA DR2 lepromatous leprosy, 281 Lyme disease, 24 HLA DR3, lepromatous leprosy, 281 HLA DR4, Lyme disease, 24 H-lamp-1, H-lamp-2, 305 Hoagland’s criteria, 122 Hodgkin’s lymphoma, EBV association, 121 Homosexuals Chlamydia trachomatis infection, 45, 46 HBV transmission, 162 HIV infection, 217, 219 Horizontal gene transfer Salmonella enterica, 384 Salmonella Typhi, 384 Streptococcus pneumoniae, 434 viridans streptococci, 424 Host defense mechanisms epithelium, 405–406 nasopharynx, 319 respiratory tract, 432 urinary tract, 306 see also Innate immunity ‘Host mimicry,’ Schistosoma, 396 HSV-1 see Herpes simplex virus (HSV-1) Human astrovirus, gastroenteritis, Tab.26.1 Human granulocytic ehrlichiosis (HGE), 26 Human herpesvirus (HHV4) see Epstein-Barr virus (EBV) Human herpesvirus (HHV8), 224 Human immunodeficiency virus see HIV; HIV infection Human metapneumovirus, 361, Tab.29.1 Hyaluronidase, 442, Tab.33.1 Hydatid cyst, 107 antigens from, 109 aspergilloma vs, 12 ‘daughter,’ 108 diagnosis, 110 formation, 108 histopathology, Fig.8.3 liver, 108, 110, 111 management, 111 pulmonary, 107, 110, Fig.8.1 rupture, 110 sites, 107, 108, 110 Hydatid disease, 108 ‘Hydatid sand,’ 111 Hydrocele, Wuchereria bancrofti infection, 488 Hydrocephalus communicating, meningococcal disease, 321 meningococcal disease, 321 Toxoplasma gondii infection, 456 Hydrogen peroxide, produced by Streptococcus pneumoniae, 431, 433 Hydronephrosis, progressive disseminated histoplasmosis, 203 Hydrops fetalis, parvovirus B19 infection, 342, 343 Hygiene Staphylococcus aureus infection prevention, 412 toxoplasmosis prevention, 458–459 Hyperemia, Aspergillus fumigatus infections, Hypergastrinemia, 154 Hyperpepsinogenemia, 154 Hypersensitivity Histoplasma capsulatum infections, 201, 209 type I (immediate) Aspergillus fumigatus infections, 6, 7, Fig.1.4 hydatid cyst rupture, 110 type III Aspergillus fumigatus infections, 6, schistosomiasis, 396 type IV (delayed) see Delayed-type hypersensitivity Hypersplenism, visceral leishmaniasis, 254 Hypertension, 134, 445 Hyphae, Aspergillus fumigatus, 3, Hypoalbuminemia, Rickettsia infection, 377 Hypochlorhydria, Giardia infection associated, 144 Hypochondrial tenderness, infectious mononucleosis, 115 Hypoesthesia, leprosy, 283 Hypogammaglobulinemia, 101, 142 Hypokalemia, norovirus gastroenteritis, 334 Hyponatremia, 334, 377 Hypopigmentation, leprosy, 283, 284 Hypotension, Rickettsia infection, 375 Hypovolemia, Rickettsia infection, 375 Hypoxemia, 9, 202, 366 Hypoxia, RSV bronchiolitis, 365 Ibuprofen, histoplasmosis management, 209 ICAM-1, up-regulation, Rickettsia infection, 375 Icterus, acute HBV infection, 161, 164–165, Fig.13.1 Idiopathic thrombocytopenic purpura EBV infection, 120 Helicobacter pylori infection, 155 Rickettsia infection vs, 378 IgA see Immunoglobulin A (IgA) IgA1 protease actions/mechanism, 305, 320 lysosome-associated membrane protein cleavage, 305 Neisseria gonorrhoeae, 305, 306 Neisseria meningitidis, 305, 306, 320 Streptococcus mitis, 420, 421 Streptococcus pneumoniae, 431 subversion of mucosal sIgA, 306, 320 IgA nephropathy, Campylobacter jejuni infection, 37 Imidazole, histoplasmosis, 208, 209 Immune complex disease Rickettsia infection vs, 378 schistosomiasis, 396 Immune complexes, Fig.27.2 acute glomerulonephritis (post-streptococcal), 445 African trypanosomiasis, 467 Aspergillus fumigatus infections, Jarisch-Herxheimer reaction, in Leptospira infection, 265 lepromatous leprosy, 281 Lyme disease, 24 parvovirus B19 infection, 340, Fig.27.1 Immune complex glomerulonephritis, Coxiella burnetii infection, 83 Immune-electron microscopy, noroviruses, 334, Fig.26.5 Immune-paresis, Escherichia coli UTI, 134 Immunoblotting, western see Western blotting Immunocompromised patients Aspergillus fumigatus infections, chickenpox (varicella), 478, 479 Coxiella burnetii infection (Q fever), 81, 82, 83, 90 HBV infection, 166, 170 histoplasmosis, 203 HSV-2 infections, 190–191 listeriosis, 272, 273 RSV infection, 364, 365 shingles (zoster), 479 Staphylococcus aureus infection, 405, 409 Streptococcus pneumoniae infection, 432 toxoplasmosis, 456, 457 VZV infections, 478 Immunodeficiency in AIDS, 222 chronic HBV infection, 166 histoplasmosis, 201, 202, 208 severe combined, invasive aspergillosis, Immunodiffusion, histoplasmosis diagnosis, 205 Immunofluorescence assay (IFA) Chlamydia trachomatis infection, 53 Coxiella burnetii infection, 86 EBV infections, 123 HSV-2 infection, 191 influenza, 241, Fig.18.5 Lyme disease, 26 method, Fig.18.5 Rickettsia infection, 378 Toxoplasma gondii infection, 457 Immunoglobulin, normal human Clostridium difficile infection, 69 parvovirus B19 management, 343 Immunoglobulin A (IgA) aspergillosis, INDEX Chlamydia trachomatis infection, 46, 53–54 Clostridium difficile infection, 66–67 Coxiella burnetii infection (Q fever), 80, 82 diagnostic levels, 73, 86, 89, Tab.6.1 in genitourinary tract, 306 Giardia lamblia, 142 Helicobacter pylori infection, 153 polymeric, 319 protease see IgA1 protease RSV infections, 364 secretory (sIgA) CbpA of Streptococcus pneumoniae binding, 431 E coli infection, 134 functions, 319–320 meningococcal infections, 319–320 nasopharynx, 319–320 Neisseria gonorrhoeae infection, 305, 306 sIgA (subclass 2), 305 Streptococcus mitis infections, 421 virus neutralization, 319–320 Immunoglobulin E (IgE) aspergillosis, 6, 10 Bancroftian filariasis, 487 echinococcosis, 109 schistosomiasis, 395–396 Immunoglobulin G (IgG) Chlamydia trachomatis infection, 46, 53–54 Clostridium difficile infection, 66–67 Coxiella burnetii infection (Q fever), 80, 82 diagnostic levels, 73, 85–86, 89, Tab.6.1 echinococcosis, 109 Giardia lamblia, 142 Helicobacter pylori infection, 153, 156 leishmaniasis, 254 Leptospira infection (leptospirosis), 263 Lyme disease, 24, 27 malaria, 351 meningococcal disease, 320 parvovirus B19 infection, 339, 340, 342 RSV infections, 364 schistosomiasis, 396, 398 Staphylococcus aureus infection, 406 transplacental transfer, 320, 351 Immunoglobulin M (IgM) Chlamydia trachomatis infection, 46, 53–54 Coxiella burnetii infection (Q fever), 80, 82 diagnostic levels, 73, 85–86, Tab.6.1 echinococcosis, 109 Helicobacter pylori infection, 153 leprosy, 281 Leptospira infection (leptospirosis), 263 Lyme disease, 24, 27 meningococcal disease, 320 parvovirus B19 infection, 339, 340, 342 RSV infections, 364 Staphylococcus aureus infection, 406 Immunohistochemistry Coxiella burnetii infection (Q fever), 85 invasive aspergillosis, 10 Rickettsia infections, 378 Immunohistology, Coxiella burnetii infection (Q fever), 85 Immunologically privileged sites, 455–456 Immunomodulators, leprosy treatment, 285 Immunoprecipitation, Histoplasma capsulatum, 205 Immunosuppressed patients Staphylococcus aureus infections, 405 see also Immunocompromised patients Immunosuppression, by Plasmodium sporozoites, 351 Impetigo, 406, Fig.33.2, Tab.33.2 mixed Streptococcus pyogenes and S aureus, 444 Streptococcus pyogenes, 441, 444, 446 differential diagnosis, 446 Inclusion conjunctivitis, Chlamydia trachomatis, 50 Indian tick typhus, Tab.30.3 Indirect immunofluorescence, Coxiella burnetii, 86 Indoleamine 2,3-dioxygenase (IDO), 47, 375 Indoor residual spraying (IRS), 354 Infants ‘floppy,’ E coli UTI, 134 HBV infection, 162, 165, 166 pneumonia, Chlamydia trachomatis, 50 RSV infection, 362, 363, 365, 367 see also Neonates Infarctions, 9, 421 Infectious mononucleosis, CMV or Toxoplasma gondii causing, 457 Infectious mononucleosis (primary EBV infection) antibodies, 117–118, Fig.9.3 anti-VCA, 117–118, 122–123, Fig.9.3 antibody tests, 122–123 case history, 115, Fig.9.1 children, 117 clinical consequences (cancers and XLPD), 121–122 clinical presentation, 120–122, Fig.9.1 complications, 120 diagnosis, 122–123, Fig.9.5 differential diagnosis, 123–124, 457, Tab.9.2 follicular exudate on tonsil, Fig.9.2 Hoagland’s criteria, 122 host response, 117–120 incubation period, 116 management, 124 pathogenesis, 118–119 pregnancy, 123 prevention, 124 seroconversion, 117 see also Epstein-Barr virus (EBV) Infective endocarditis see Endocarditis Infertility, Chlamydia trachomatis, 44, 49 Inflammatory bowel disease, 37, 155 Inflammatory mediators, pro-inflammatory Aspergillus fumigatus infections, Lyme disease, 24, 25 see also Cytokines Inflammatory reaction African trypanosomiasis, 467–468 Campylobacter jejuni infection, 35 Chlamydia trachomatis infection, 46, 48 chronic, Chlamydia trachomatis, 48 Clostridium difficile infection, 66 echinococcosis, 109 Helicobacter pylori infection, 152, Fig.12.7 histoplasmosis, 202 HSV-1 infection, 180 HSV-2 infection, 190 lepromatous leprosy, 281 nontyphoidal Salmonella, 386 Salmonella, 386, 387 schistosomiasis, 395, 396 tuberculoid leprosy, 280 Influenza annual outbreaks, 236–237 antibodies produced in, 240, 241 case history, 235 clinical presentation, 240 diagnosis, 241–242, Fig.18.5 epidemics, 236–237 epidemiology, 236–239, Fig.18.2 host response, 239–240 immune response, 241 adaptive, 240 innate, 239 management, 242–244 amantadine/rimantadine, 242–243 neuraminidase inhibitors, 243–244 stockpiling of drugs, 243–244 pandemics, 237, Tab.18.1 preparedness, 243–244, 245 pneumonia, 240 prevention, 244–245 Russian, 239 vaccines, 244–245 inactivated, 244 live attenuated, 244 target groups for (UK/USA), 244–245, Tab.18.2 WHO surveillance, 244 see also Influenza virus Influenza A virus, 236 antigenic drift, 237, 239 antigenic shift, 237, 239 avian, 238 H1N1, 237, 238 laboratory origin, 239 H2N2, 237, 238 H3N2, 237, 238 H5N1, 238, 239 amantadine resistance, 243 585 diagnosis, 242 mortality, 241 oseltamivir-resistant, 244 viremia, 240 monoclonal antibodies, 235 new subtypes/antigenic shift, 237–239 pandemic viruses, Tab.18.1 subtypes, 236 see also Influenza virus Influenza B virus, 236 antigenic drift, 237, 239 Influenza C virus, 236 ‘Influenza-like illness,’ 236–237, 241 Influenza virus, 235–248 amantadine resistance, 243 antibodies to, 240 antigenic drift, 237, 239, 240, 244 antigenic shift, 237–239, 244 mechanisms, 238–239 cell culture, 242 characteristics, 235–236 classification, 235 cytolytic effect on epithelial cells, 239 cytopathic effect, 242 detection, 241–242 entry and spread within body, 236 genetic reassortment, 238–239, Fig.18.4 genome (RNA, segmented), 235, 238–239, Fig.18.1, Fig.18.4 hemagglutinin (HA), 236, Fig.18.6 gene mutations, 237 role, 236 structure and epitopes, 237, Fig.18.3 immune evasion mechanism, 237, 239, 240 lipid envelope, 236 M1 (matrix) protein, Fig.18.1 M2 ion channel protein, 236, Fig.18.1 anti-influenzal agent action, 242 mutations, amantadine resistance, 243 monoclonal antibodies, 241 neuraminidase (NA), 236 A, B and C types, 236 gene mutations, 237 role/actions, 243, Fig.18.6 new strains emerging, 237 nucleocapsid, 236, Fig.18.1 nucleoprotein, 235–236, 240, Fig.18.1 person to person spread, 236, 238 receptors (sialic acid residues), 236, Fig.18.6 replication, 236, 238 ribonucleoprotein (RNP), 236 spontaneous mutations, 237 structure, 235–236, Fig.18.1 transmission (droplet), 236 see also Influenza; Influenza A virus Innate immunity aspergillosis, 4–5 Campylobacter jejuni infection, 35 Chlamydia trachomatis infection, 46 Coxiella burnetii infection (Q fever), 78–79 coxsackie B virus infection, 100 giardiasis, 141–142 gonococcal infection, 306–307 HBV infection, 163 histoplasmosis, 200–201 HIV infection, 218 influenza, 239 Lyme disease, 24 malaria, 351 meningococcal disease, 319 Salmonella Typhi, 386–387 Staphylococcus aureus infection, 405–406 Insecticides malaria prevention, 354 tsetse fly control, 471, Fig.38.11 In situ hybridization, invasive aspergillosis, 10 Integrase inhibitors, HIV infection, 228, Tab.17.3 Interferon HBV infection response, 163 HSV-2 infection response, 189 production, RSV infection, 362 Salmonella infection, 387 Interferon-alpha (IFN-a) adverse effects, 170 HBV infection management, 169–170, Tab.13.3 586 INDEX induction by influenza virus, 240 mechanism of action, 169 pegylated HBV infection management, 170, Tab.13.3 HCV infection management, 171 Interferon-b (IFN-b), HSV-2 infection, 189 Interferon-g (IFN-g) African trypanosomiasis, 467 Aspergillus fumigatus infections, cells producing, 455 Chlamydia trachomatis infection, 44, 47, 48 mechanism of action, 47 Coxiella burnetii infection (Q fever), 79–80 coxsackie B virus infection, 100 echinococcosis, 109 giardiasis, 142 Histoplasma capsulatum infections, 201, 209 Leishmania infection, 252 Listeria monocytogenes infections, 272 Mycobacterium tuberculosis infection, 295, Fig.23.5 natural killer cells producing, 272 Neisseria meningitidis infection, 320 Plasmodium infection, 351 Rickettsia infection, 375 schistosomiasis, 396 Streptococcus pyogenes infection, 442 Toxoplasma gondii infection, 455 tuberculoid leprosy, 280 Interleukin-1 (IL-1) E coli infection, 133 Mycobacterium tuberculosis infection, 295 Neisseria meningitidis infection, 320 Plasmodium infection, 351 Salmonella infection, 387 schistosomiasis, 396 Streptococcus mitis infection, 422 Streptococcus pneumoniae infections, 433 Streptococcus pyogenes infection, 442 toxoplasmosis, 455 Interleukin-1a (IL-1a), Rickettsia infections, 375 Interleukin-1b (IL-1b) Neisseria gonorrhoeae infection, 306 polymorphisms, Helicobacter pylori infection risk, 153 Interleukin-2 (IL-2) Salmonella infection, 387 Streptococcus pyogenes infection, 442 toxoplasmosis, 455 Interleukin-3 (IL-3), Histoplasma capsulatum growth inhibition, 200 Interleukin-4 (IL-4) Aspergillus fumigatus infections, BCG vaccine effect, 299 echinococcosis, 109 Histoplasma capsulatum infections, 201 leishmaniasis, 253 schistosomiasis, 396 Interleukin-5 (IL-5), Aspergillus fumigatus infections, Interleukin-6 (IL-6) induction by influenza virus, 240 Neisseria gonorrhoeae infection, 306 Neisseria meningitidis infection, 320 Salmonella infection, 387 Streptococcus pyogenes infection, 442 synthesis, E coli infection, 133 Interleukin-8 (IL-8) Aspergillus fumigatus infections, Chlamydia trachomatis infection, 46 Clostridium difficile infection, 66 Neisseria gonorrhoeae infection, 306 nontyphoidal Salmonella infection, 386 Salmonella infection, 387 synthesis, E coli infection, 133 Interleukin-10 (IL-10) actions/functions, 24, 456 Aspergillus fumigatus infections, Coxiella burnetii infection (Q fever), 80 echinococcosis, 109 Histoplasma capsulatum infections, 201 leishmaniasis, 253 Listeria monocytogenes infections, 272 production stimulation, Borrelia burgdorferi, 24 Rickettsia infection, 375 toxoplasmosis, 456 Wuchereria bancrofti infections, 487 Interleukin-12 (IL-12) Histoplasma capsulatum infections, 201 Leishmania infection, 252 toxoplasmosis, 455 Interleukin-13 (IL-13), schistosomiasis, 396 Interleukin-15 (IL-15) Aspergillus fumigatus infections, toxoplasmosis, 455 Interstitial nephritis Campylobacter jejuni infection, 37 chronic, Escherichia coli, 134 Leptospira infection, 263 Intestinal epithelial cells, shedding, defense against Giardia lamblia, 141 Intestinal villi, damage in norovirus gastroenteritis, 333–334, Fig.26.4 Intestine granulomatous inflammation, schistosomiasis, 397 Schistosoma in, 394 see also entries beginning gastrointestinal tract Intravascular devices, Staphylococcus aureus, 412 Intravenous immune globulin see Immunoglobulin, normal human Iron acquisition Neisseria gonorrhoeae, 305 Neisseria meningitidis, 305, 318 requirement, Histoplasma capsulatum, 200 Ischemic necrosis, invasive aspergillosis, Isoenzyme typing, Leishmania, 249 Isolation (of patients) Clostridium difficile infection prevention, 69 Mycobacterium tuberculosis infection, 298–299 norovirus gastroenteritis control, 336 Isoniazid, tuberculosis, 298 Itraconazole, 208–209 allergic bronchopulmonary aspergillosis, 13 histoplasmosis, 208 invasive aspergillosis, 13 Ivermectin, 491 Ixodes global distribution, 20, Fig.2.3 vectors for Borrelia burgdorferi, 20–22 Ixodes pacificus, 20 Ixodes persulcatus, 20 Ixodes ricinus, 20, 26 Ixodes scapularis (blacklegged tick), 20, Fig.2.5 Japanese tick typhus, Tab.30.3 Jarisch-Herxheimer reaction, Leptospira infection, 265 Jaundice causes, 167–168 Coxiella burnetii infection, 82 EBV infection, 120 echinococcosis, 110 HBV infection, 161, 164–165, Fig.13.1 Leptospira infection, 264–265 Salmonella infections, 387 signs, 165, Fig.13.1 K39 dipstick test, 255 Kala-azar, 250, 254 see also Leishmaniasis Kallikrein, Escherichia coli lipopolysaccharide effect, 130 Kaposi sarcoma, 217, 224, Fig.17.3 causative virus, 224 treatment, 230 Kaposi sarcoma-associated herpesvirus (KSHV), 224 Katayama syndrome, 396–397 KATEX, Leishmania detection, 254 Kato-Katz technique, 398 Kaufman-White serotyping, Salmonella, 384, 388, Fig.30.2 Kenya tick typhus, Tab.30.3 Keratitis Aspergillus, Chlamydia trachomatis, 50 HSV-2, 188 zoster, ulcerating, 479, 481 Keratoconjunctivitis, chronic, Chlamydia trachomatis infection, 50 Ketoconazole, histoplasmosis, 208, 209 Ketodeoxyoctonate (KDO), Escherichia coli lipopolysaccharide, 129–130 ‘Kissing disease’ see Infectious mononucleosis (primary EBV infection) Kovac’s oxidase test, Fig.25.4 Kupffer cells Coxiella burnetii infection, 76, 80 Leptospira infection, 263 oxygen burst inhibition by Plasmodium, 351 Salmonella infections, 387 b-lactamase extended-spectrum (ESBLs), Escherichia coli UTI, 135 plasmid-encoded Neisseria meningitidis, 323 Staphylococcus aureus, 410 Lactate dehydrogenase (LDH), malaria diagnostic kit, 353 Lactoferrin, 141, 306, 319 Lamina propria HIV infection of dendritic cells, 221 host defense mechanisms, 319 infiltration by Helicobacter pylori, 153, Fig.12.7 inflammatory reaction Campylobacter jejuni infection, 35 Clostridium difficile infection, 66 Helicobacter pylori infection, 153, Fig.12.7 Listeria monocytogenes infection, 271 norovirus antigen in cells, 334 polymeric IgA role in virus clearance, 319 Salmonella entering, 385, 386–387 Lamivudine (3TC), HBV infection management, 170 Lancefield typing system, Streptococcus pyogenes, 440 Langerhans cells, HIV infection, 219 Lansoprazole, Helicobacter pylori infection, 156 Latex agglutination Leishmania, 254 Neisseria meningitidis, 322 Staphylococcus aureus, 410 Streptococcus pyogenes, 445, Fig.36.11 Legionella, classification, 371 Legionella micdadei infection, Coxiella burnetii infection vs, 87 Legionella pneumophila infection, Coxiella burnetii infection vs, 87 Legionnaires’ disease, Leptospira infection vs, 265 Leishmania, 249–259 activated C kinase receptor (LACK), 252 amastigotes, 249, 251, 252, 254, Fig.19.2, Fig.19.4, Fig.19.8 antibodies to, 254, 255 antigens, 255 detection, 254, 255 characteristics, 249 classification, 249, Tab.19.1 Donovan body, 254, Fig.19.8 entry and spread within body, 250 enzymes and gp63, 252 immune evasion mechanisms, 252 K39 antigen and dipstick test, 255 kinetoplast, 254, Fig.19.8 life cycle, 251, Fig.19.4 lipophosphoglycan, 252 neutrophil failure to kill, 252 person to person spread, 250–251 phagocytosis, 250, 252 promastigotes, 249, 251, 252, Fig.19.3, Fig.19.4 transmission, 251–252 see also Leishmaniasis Leishmania braziliensis, 250, 253 Leishmania donovani, 250, 252, 253 Leishmania infantum, 249, 250, 253 Leishmanial skin test, 254 Leishmania major, 252 Leishmania panamensis, 250, 253 Leishmania recidivans, 253 Leishmaniasis case history, 249, Fig.19.1 clinical presentation, 249, 253–254, Fig.19.1 cutaneous, 250, 252, Tab.19.1 clinical features, 253, Fig.19.6 epidemiology, 251, 252 diagnosis, 249, 254–255, Fig.19.2 differential diagnosis, 255 INDEX epidemiology, 251–252 HIV co-infection, 254 host response, 252–253 immune response, 252, 253, 254 antibodies, 254, 255 Leishmania species causing, Tab.19.1 management, 249, 255–256 mucocutaneous, Tab.19.1 clinical features, 253, Fig.19.7 epidemiology, 251, 252 post kala-azar dermal (PKDL), 250, 254 prevention, 256 transmission, 250 visceral, 249, 250, Tab.19.1 clinical features, 253–254, Fig.19.1 epidemiology, 251 as zoonosis, 250 Leonine facies, 282 Leproma, 282 Lepromatous leprosy see Leprosy Lepromin test, 285 Leprosy borderline lepromatous, 282, Fig.22.4 borderline tuberculoid, 281, 282, Fig.22.4 case history, 277, Fig.22.1 children, 279 classification by severity, 282 clinical presentation, 283 clinical spectrum, 282–283, Fig.22.4 diagnosis, 278, 283–285 delays, 285 disability prevention, 286 endemic, 279, 284 epidemiology, 279–280, Fig.22.3 host response, 280–281 immune response, 280–281, Fig.22.4 antibody-mediated, 281, 284 cell-mediated, 280–281 IgM, 281 incubation period, 279 indeterminate (IL), 282 lepromatous (LL), 279–280, 282, Fig.22.4 clinical features, 277, 283, Fig.22.1 immune response, 281 management, 285–286 low completion rates, 286 mid-borderline (BB), 282, Fig.22.4 multibacillary, 279, 282–283 diagnosis, 283–284 treatment, 285 paucibacillary, 282 diagnosis, 284 treatment, 285 pregnancy, 281 prevention, 286 registration for treatment, 280 rehabilitation, 286 reversion to less severe forms, 282 risk factors, 279 socioeconomic impact, 286 stigma, 285 tuberculoid (TT), 279–280, 282, Fig.22.4 clinical features, 283 immune response, 280–281 inflammatory reaction, 280 mild, 281 type (reversal), 281, 282 type 2, 281, 282 vaccines, 286 see also Mycobacterium leprae Leptin, Clostridium difficile infection, 66 Leptomeninges, Trypanosoma brucei invasion, 468 Leptospira, 261–268 animal reservoir, 261 antibodies to, 263 characteristics, 261 classification/taxonomy, 261, Tab.20.1 culture, 264 entry into body, 261, 264 flagella, 261, Fig.20.2 lipopolysaccharide, 263 lipoproteins, 264 morphology, 261, Fig.20.1 outer membrane proteins, 264 pathogenic serovars, 261, Tab.20.1 peptidoglycan, 264 sources/distribution, 261 spread within body, 262 see also Leptospira infection (leptospirosis) Leptospira biflexa, 261 Leptospira canicola, 261 Leptospira infection (leptospirosis) case history, 261 clinical presentation, 264 diagnosis, 264–265 cross-reactions, 265 differential diagnosis, 265 epidemiology, 262–263 host response, 263–264 immune phase, 264 immune response, 263–264 IgM and IgG, 263 incubation period, 264 leptospiremic phase, 264 management, 265 occupational/recreational exposure, 263 pathogenesis, 263–264 prevention, 265 seroconversion failure, 265 as zoonosis, 261 see also Leptospira Leptospira interrogans, 261, Tab.20.1 Leptospira interrogans serovar Autumnalis, 264 Leptospira interrogans serovar Canicola, 264 Leptospira interrogans serovar Grippotyphosa, 264 Leptospira interrogans serovar Icterohaemorrhagiae, 264 Leptospira interrogans serovar Pomona, 264 Leptospira pomona, 261 Leukemia chronic myeloid, 409 infectious mononucleosis differential diagnosis, 124 invasive aspergillosis, VZV reactivation, 478 Leukocyte esterase, 303 Leukopenia human granulocytic ehrlichiosis, 26 leishmaniasis, 254 progressive disseminated histoplasmosis, 203 rickettsial pox, 377 Salmonella infections, 388 Leukotriene C4, Aspergillus fumigatus infections, Levamisole, leprosy treatment, 285 Levofloxacin Helicobacter pylori infection, 157 leprosy, 285 tuberculosis, 298 Lewis b blood group, 151, 333 Lice, Fig.30.5 Rickettsia transmission, 373, Fig.30.5, Tab.30.1 Lipases, Staphylococcus aureus, Tab.33.1 Lipid A Escherichia coli, 129–130 Neisseria meningitidis lipooligosaccharide, 320 Salmonella, Fig.31.2 Lipoarabinomannan, Mycobacterium tuberculosis cell wall, 291, Fig.23.3 Lipocalin, 306 Lipooligosaccharide (LOS) Neisseria gonorrhoeae, 304, 306 Neisseria meningitidis see Neisseria meningitidis Lipopolysaccharide (LPS) Campylobacter jejuni, 33, 35 Chlamydia trachomatis, 42 Coxiella burnetii, 75 Escherichia coli see Escherichia coli Helicobacter pylori, 149 Leptospira, 263 plasma levels in HIV infection, 223 Salmonella, 387, Fig.31.2 Lipoteichoic acid Streptococcus pneumoniae, 430–431, Fig.35.5 Streptococcus pyogenes, 439, 440 Listeria beta-hemolytic, 273 growth and growth media, 273, Tab.21.2 species, 269 Listeria adhesion protein (LAP), 271 Listeria ivanovii, 269, 273 587 Listeria monocytogenes, 269–276 Act A, 271 adhesion molecules, 270, 271 antibodies to, 272, 273 carriage/carriers, 270 characteristics, 269 colony appearance, Fig.21.1, Fig.21.6 detection, 273 entry and spread within body, 270, 271 fetal infections, 270, 272 flagella, 269, Fig.21.2 growth media, 269, 273, Tab.21.2 immune evasion mechanisms, 271, 272, Fig.21.4 internalin (InlA, B), 271 intra-axonal spread, 270, 272 intracellular pathogen, 270 mis-identification, 273 morphology, 269, Fig.21.2 motility, 269, Fig.21.2, Fig.21.4 phagocytosis, 271 phospholipase, 271 placental transfer, 270 protein 60, 271 serotypes, 269 source of infection, 269–270 food types associated with, 270, Fig.21.3 see also Listeriosis Listeria PALCAM agar, Tab.21.2 Listeria seeligeri, 273 Listeria selective agar, Tab.21.2 Listeria selective supplements, Tab.21.2 Listeriolysin O, 271, 273 Listeriosis bacteremia, 272, 274 case history, 269 clinical presentation, 272–273 diagnosis, 273 differential diagnosis, 274 epidemiology, 270 host response, 270–272 immune response, 272, 273 evasion, 271, 272, Fig.21.4 immunocompromised patients, 272, 273 management, 274 meningitis, 270, 272, 273, 274 meningoencephalitis, 272, Fig.21.5 neonates, 272 pregnancy, 270, 272 prevention, 274 risk factors, 270–271 septicemia, 270 see also Listeria monocytogenes Liver biopsy, schistosomiasis, 393 failure, acute, HBV infection, 165 functions, 165, 166 hydatid cyst, 108, 110, 111 in Leptospira infection, 263 Schistosoma, 394 transplantation, HBV infection, 169 Liver cell necrosis, acute Q fever, 80 Liver fibrosis ‘clay pipe stem,’ 397, Fig.32.8 schistosomiasis, 393, 396, 397, Fig.32.8 Loin pain, Escherichia coli UTI, 134, 135 Lone star tick (Amblyomma americanum), Fig.2.5 Long-lasting insecticidal nets (LLINs), 354 Lowenstein-Jensen medium, 292, 297, Fig.23.4 Lower motor neuron infections, poliomyelitis, 101 Lower respiratory tract infections see Respiratory tract infections LPM agar, Tab.21.2 Lumbar puncture contraindications, 102, 315 in meningococcal disease, 315 Lumbosacral spinal ganglia, HSV-2 infections, 178, 188 Lung collapse, RSV infection, 365 consolidation, Streptococcus pneumoniae infection, 420, Fig.35.1 damage, Streptococcus pneumoniae, 432–433 emphysematous changes, histoplasmosis, 204 granulomatous inflammation, schistosomiasis, 397 hydatid cyst, 107, 110, Fig.8.1 588 INDEX hyperinflation, RSV infection, 361, 365, 366, Fig.29.1 in Leptospira infection, 263 Lung cavitations histoplasmosis, 203, 204 tuberculosis, 291, 296, Fig.23.1 Lung fibrosis allergic bronchopulmonary aspergillosis (ABPA), 8, 10 histoplasmosis, 202 Wuchereria bancrofti infection, 488 Lung surfactant protein D, Lutzomyia, Leishmania spread, 250 Lyme disease case history, 19, Fig.2.1 causative agent see Borrelia burgdorferi chronic, 26 clinical features, 25–26, Fig.2.1 diagnosis, 26–27 differential diagnosis, 27 epidemiology, 22–23 incidence in Europe, Tab.2.1 host response, 24–25 adaptive immunity, 24–25 IgG, and IgM 24, 27 innate immunity, 24 outcomes, 25 incubation period, 25 late disease, 25, Tab.2.3 management, 27, Tab.2.2, Tab.2.3 monoclonal antibodies, 24 pathogenesis, 25 pregnancy, 22 prevention, 27–28 seropositivity, 25 transmission by ticks, 20–22 vaccines, 28 Western blot, 26–27 LYMErix™ vaccine, Lyme disease, 28 Lymphadenitis, lymphogranuloma venereum, 52 Lymphadenopathy African trypanosomiasis, 468 cervical EBV infection, 115, 120, 123 infectious mononucleosis, 115, 120 streptococcal pharyngitis, 439, 443 hilar/mediastinal, histoplasmosis, 202, 204, 206 HIV infection, 223 inguinal, HSV-2 infection, 190 leprosy, 283 Lyme disease, 25 lymphogranuloma venereum, 50, 54 persistent generalized, 224 preauricular, 51 Rickettsia infection, 371 toxoplasmosis, 456, 457 differential diagnosis, 457, Tab.37.1 Lymphangiectasia, Wuchereria bancrofti infection, 487 Lymphangitis Histoplasma capsulatum causing, 197 Wuchereria bancrofti infection, 488 Lymphatic filariasis, 486–487, 488 see also Bancroftian filariasis Lymphatic vessels damage, Wuchereria bancrofti infection, 488 dilatation, Wuchereria bancrofti infections, 487, Fig.40.1 Lymphedema, Wuchereria bancrofti infection, 485 488, Fig.40.1 Lymph nodes, HIV infection, 223 Lymphocytes ‘atypical,’ EBV infection, 118–119, 122, Fig.9.5 see also B cell(s); T cell(s) Lymphocytoma, Borrelia burgdorferi, Tab.2.3 Lymphocytosis Salmonella infections, 388 Salmonella Typhi infection, 383 Lymphogranuloma venereum (LGV), 42 Chlamydia trachomatis serovars, Tab.4.1 see also Chlamydia trachomatis clinical diagnosis, 51–52 clinical features, 50 differential diagnosis, 54 epidemiology, 45–46 ocular, 51 stages (primary-tertiary), 51–52 Lymphoid organs, primary, HIV infection, 223 Lymphoid tissue, HIV infection, 219 pathological changes, 222–223 Lymphoma B-cell, EBV association, 121 EBV association, 121, 122 Hodgkin’s, EBV association, 121 infectious mononucleosis differential diagnosis, 124 MALT, 155 nonHodgkin’s, in AIDS, 224 tuberculosis vs, 298 VZV reactivation, 478 ‘Lymphoma belt,’ 121 Lysosome-associated membrane protein (h-lamp-1), 305 Lysosomes Chlamydia trachomatis infection and, 43–44 defensins and cathelicidin secreted, 406 fusion prevention by Toxoplasma gondii, 455 h-lamp1 and h-lamp-2 in, 305 phagosome fusion see Phagolysosome formation Trypanosoma killing, 466 Lysozyme, 319 Maastriche Guidelines, Helicobacter pylori infection diagnosis, 156 Mac-1 receptor, 24 Macroconidia, Histoplasma capsulatum, 198, Fig.16.3 Macrolide antibiotics Coxiella burnetii infection (Q fever), 88 Lyme disease, Tab.2.2 Macrophage activation cytokines released, 252, 294, 455 glycosylphosphatidylinositol causing, 468 Mycobacterium tuberculosis, 294, 295 outcomes, 294 alveolar see Alveolar macrophage apoptosis, Mycobacterium tuberculosis, 292 bactericidal effectors, 295 inhibition by Mycobacterium tuberculosis, 295 Borrelia burgdorferi infection, 24 bronchoalveolar, Aspergillus fumigatus infection, Chlamydia trachomatis infection, 46 foamy, Coxiella burnetii infection (Q fever), 81 Histoplasma capsulatum infections, 199, 200, Fig.16.6 HSV-2 infections, 189 influenza virus infection, 236 killing mechanisms Listeria monocytogenes, 272 Mycobacterium tuberculosis, 294, 295, Fig.23.5 Salmonella, 387 Leishmania phagocytosis, 250, 252 Listeria monocytogenes infection, 271, 272 liver see Kupffer cells MHC class II molecules, 455 Mycobacterium leprae uptake/infection, 277, 278, 279 Mycobacterium tuberculosis growth, 292, 293, 294 granuloma formation, 296, Fig.23.6 Neisseria gonorrhoeae uptake, 306 Salmonella entering, 385, 386–387 Toxoplasma gondii infection, 455 Macules chickenpox development, 478 erythematous, leprosy, 282, 283 Lyme disease rash, 25 Maculopapules meningococcal disease, 321 see also Rash Maculopathy, ocular histoplasmosis, 208, 209 Madarosis, leprosy, 283 Magnetic resonance imaging (MRI), 11, 177, 181 Major histocompatibility complex (MHC) class I antigens Chlamydia trachomatis infection, 47–48 down-regulation by coxsackie B virus, 101 HBV infection, 164 induced by interferon-alpha, 169 Mycobacterium tuberculosis infection, 295 toxoplasmosis, 455 class II antigens Chlamydia trachomatis infection, 46, 48 EBV co-receptor, 116, 119 on macrophage, toxoplasmosis, 455 Mycobacterium tuberculosis infection, 295 Malabsorption, giardiasis, 142, 143 Malabsorption syndrome, 143 Malachite green, Lowenstein-Jensen medium, 292 Malaria anemia, 352 case history, 347 cases in UK, 350 cerebral, 352 chemoprophylaxis, 355 clinical presentation, 352–353 complications, 352–353 diagnosis, 353, Fig.28.5 differential diagnosis, 353 epidemiology, 347, 350, Fig.28.4 factors decreasing infection rates, 350 fever (cyclical), 349, 352, Fig.28.3 HIV co-infection, 353 host response, 350–352 immune response, IgG, 351 immunity, 351 information/precautions for travelers, 355 management, 353–354 mortality, 350 pathogenesis, 352 in pregnancy, 350 prevention, 354–355 resistance to, 349, 350 uncomplicated, 352 vaccine development/strategies, 355 see also Plasmodium Mannitol-salt agar, Staphylococcus aureus, 409, Fig.33.10 Mannose-binding lectin, Neisseria meningitidis infections, 320 Mannose-binding receptor, 24, 132, 292 Maraviroc, HIV infection, 228 Mast cells, activation/degranulation Staphylococcus aureus infection, 407 Wuchereria bancrofti infection, 487 Mastocytosis, 156 Matrix metalloproteinases, schistosomiasis, 396 M cells, Salmonella entering, 385 Meat, undercooked, Toxoplasma gondii transmission, 454–455, 458–459 Mediterranean spotted fever, Tab.30.3 Megacolon, Chagas’ disease, 469, Fig.38.10 Megaesophagus, Chagas’ disease, 469 Meglumine antimonate, leishmaniasis, 255–256 Melanins, Melarsoprol, African trypanosomiasis, 470, Tab.38.1 Membrane attack complex (MAC) inactivated, by Borrelia burgdorferi, 24 Neisseria gonorrhoeae infection, 307 Meningitis aseptic, causes, 322 Aspergillus, bacterial, causes, 315, 322 bacterial vs viral, 102–103, Fig.7.2 coxsackie B virus infection, 99, 102, 103 disseminated gonococcal infection, 308 enteroviruses causing, 102–103 Haemophilus influenza serotype b (Hib), 315 herpes simplex virus, 103 HIV infection, 223 Leptospira infection, 264, 265 listeriosis, 270, 272, 273, 274 Lyme disease, 25 meningococcal, 315 differential diagnosis, 322 epidemiology, 318–319 rash, 103 Mollaret’s, 190 mumps virus, 103 Neisseria meningitidis infections, 321 progressive disseminated histoplasmosis, 203 Streptococcus pneumoniae, 315, 431, 433 tuberculous, 296, 298 viridans streptococci, 424 ‘Meningitis belt,’ 319 Meningococcal disease bacteremia see Meningococcemia INDEX case history, 315, Fig.25.1 clinical presentation, 321 complications, 321 cytokines release during, 320 differential diagnosis, 322 epidemiology, 318–319 groups/types, 321 host response, 319–320 immune response, 319–320 adaptive, 316, 319–320 IgM and IgG, 320 innate, 319 meningococcal killing, 316, 320 sIgA, 319–320 management, 322–324 contacts/carers, 323–324 meningitis see Meningitis, meningococcal neonatal, 320 pathogenesis, 320–321 prevention, 324 septicemia, case history, 315, Fig.25.1 vaccines, 324 capsule role, 317 MCV4, and MPSV4, 324 recommendations, 324 serogroup C conjugate, 318, 324 see also Neisseria meningitidis Meningococcal meningitis see Meningitis, meningococcal Meningococcal sepsis, fulminant (FMS), 321 Meningococcemia, 315 disseminated gonococcal infection vs, 309 onset/clinical presentation, 321 outcomes, 320, 321 Meningococcus see Neisseria meningitidis Meningoencephalitis Chagas’ disease, 469 coxsackie B virus infection, 102 Listeria monocytogenes infection, 272, Fig.21.5 tick-borne encephalitis (TBE) virus, 26 Methacholine sweat test, 284 Methicillin mechanism of action, 410 Staphylococcus aureus resistance mechanism, 410 Methicillin-resistant Staphylococcus aureus (MRSA) case history, 403 community-acquired (CA-MRSA), 405, 410 resistance mechanism, 410 risk factors, 405 vancomycin resistance, 410–411 Methoprene, 355 Metronidazole Clostridium difficile infection, 68–69, Tab.5.1 giardiasis, 144–145 Helicobacter pylori infection, 157 Microagglutination, Coxiella burnetii, 87 Microaleurioconidia, 198 Microbicides, HIV infection prevention, 229 Microbiota, 309 Microcephaly, Toxoplasma gondii, 456 Micrococcus, 410 Microconidia, Histoplasma capsulatum, 198, 199, Fig.16.3 Microglial cells HIV infection, 219 Listeria monocytogenes infection, 272 in toxoplasmosis, 456 Microscopic agglutination test (MAT), Leptospira infection, 264–265 Military personnel, norovirus gastroenteritis, 332 Milk-borne infections Campylobacter jejuni, 34 Coxiella burnetii, 74 Miller Fisher syndrome, Campylobacter jejuni infection, 35, 36, 37 Miltefosine, leishmaniasis, 256 Mini-cassettes, 304 Minocycline, leprosy, 285 MIP-1b, release by neutrophils in leishmaniasis, 252 Miscarriage see Abortion, spontaneous Mites, Fig.30.6 Rickettsia and Orientia transmission, Fig.30.6, Tab.30.1 Modified Thayer-Martin (MTM) medium, 309, 321 Molecular mimicry, coxsackie B virus, 101 Mollaret’s meningitis, 190 Monoclonal antibodies Borrelia burgdorferi, 24 Chlamydia trachomatis, 56 Clostridium difficile, 69 Helicobacter pylori, 156 HSV-2, 191 infliximab, 197 influenza virus, 235, 241 Lyme disease, 24 RSV, 367, Fig.29.2 Monocytes Coxiella burnetii infection, 78, 81, Fig.6.5 recruitment, Aspergillus fumigatus infections, Mononuclear phagocytic system leishmaniasis, 250 malaria, 352 Salmonella infections, 385, 387 VZV infection, 475 see also Macrophage Monospot test, 122 Montenegro skin test, 255 Moraxella catarrhalis, 309 Morphologic index (MI), leprosy diagnosis, 284 Morulae, 26 Mosquito breeding, prevention methods, 491 control, 491 Wuchereria bancrofti transmission, 485–486, Fig.40.3 see also Anopheles mosquito Motor nerve damage, zoster, 479 Mouth ulcers, chronic progressive histoplasmosis, 204, Fig.16.7 MSCRAMMS, 403, 404 Muco-ciliary escalator, 239, 319, 432 Mucosal associated lymphoid tissue (MALT) lymphoma, 155 Mucosal surfaces HSV-1 infection, 178 HSV-2 infection, 188, 189 influenza virus infection, 236 Mucosal ulcers, chronic progressive histoplasmosis, 204, Fig.16.7 Mucositis, acute, 424 Mucous membranes, commensals, 403, 409 Mucus host defense in respiratory tract, 319 removal, ABPA treatment, 13 respiratory tract, influenza virus effect, 239 RSV infections, 365 Multidrug-resistant tuberculosis (MDR-TB), 298 Multidrug therapy (MDT), leprosy, 285 Multi-locus enzyme electrophoresis (MLEE) Campylobacter jejuni, 33 Clostridium difficile, 64 Listeria monocytogenes, 269 Neisseria meningitidis, 319 Multilocus sequence typing, Neisseria meningitidis, 319 Multinucleate giant cells Histoplasma capsulatum growth, 199 RSV infection, 362, Fig.29.3, Fig.29.4 tuberculosis, 295 Multi-organ damage, malaria, 352 Multiple myeloma, 8, 478 Mumps virus, meningitis, 103 Mupirocin, Staphylococcus aureus infections, 412 Muramic acid, lacking from chlamydiae, 42 Muscle infections, coxsackie B virus infection, 102 Musculoskeletal injury, loin pain, pyelonephritis vs, 135 Myalgia acute pulmonary histoplasmosis, 202 Campylobacter jejuni infection, 36 Coxiella burnetii infection (Q fever), 81 EBV infection, 120 influenza, 240 Leptospira infection, 261 Lyme disease, 25 lymphogranuloma venereum, 50 meningococcal disease, 321 Rickettsia infection, 371 Salmonella infections, 387 Streptococcus mitis infection, 419 Mycelium, Aspergillus fumigatus, 589 Mycetoma, 12 Aspergillus see Aspergilloma Mycobacteriaceae, 277 Mycobacterial antigen (PPD), 298 Mycobacterium, species, 292 Mycobacterium leprae, 277–290, 292 acid-fast, 277, 284 adhesins (PGL-I), 278, 279 cell wall, 278 characteristics, 277–278 division rate, 279 drug resistance, 284, 285 entry and spread within body, 278–279 genes and pseudogenes, 278 genome, 278 M tuberculosis comparison, 278, Tab.22.1 HIV co-infection, 281 host metabolism dependence, 278 immune evasion mechanisms, 277 person to person spread, 279 phenolic glycolipid I (PGL-I), 278, 279, 280, 281 antibodies, 284 propagation, 278, 292 reservoir, 278 staining, 277, Fig.22.2 temperature requirement for growth, 279 transmission, 279 see also Leprosy Mycobacterium smegmatis, 292 Mycobacterium tuberculosis, 291–302 antigen persistence, 296 carriage, latent state, 293 cell wall composition, 291, Fig.23.3 characteristics, 291–292 culture, 292 drug resistance, 298, 299 elimination by host, 295, Fig.23.7 entry and spread within body, 292–293, Fig.23.7 extracellular multiplication, 292 growth in Lowenstein-Jensen medium, 292, 297, Fig.23.4 growth in macrophage, 292, 293, 294 immune evasion mechanisms, 294, 295 infections see Tuberculosis infectious dose, 295 killing mechanisms by macrophage, 294, 295, Fig.23.5 leprosy protection, 286 macrophage activation, 294 mycolatearabinogalactan-peptidoglycan cell wall (MAPc), 291, Fig.23.3 persistence, 295 person to person spread, 293 phagocytosis, 292, 294 receptors, 292 slow growth rate, 292, 297 smear-positive/smear-negative, 293 transmission, 293, Fig.23.7 Ziehl-Neelsen staining, 291, 297, Fig.23.2 see also Tuberculosis Mycolic acid, Mycobacterium tuberculosis cell wall, 291, Fig.23.3 Mycosis, 197 Myelin sheath, cross-reacting antibodies to gangliosides of, 36, 37, Fig.3.2 Myelitis, Leptospira infection, 264 Myelopathy, HIV infection, 223 Myiasis, leishmaniasis vs, 255 Myocarditis Chagas’ disease, 469 coxsackie B virus infection, 101, 102 influenza, 241 Rickettsia infection, 375, 376 toxoplasmosis, 456 Myopericarditis, Borrelia burgdorferi, 25 Myositis, toxoplasmosis, 456 NADPH oxidase, 294 NADPH oxidase-dependent killing, Aspergillus fumigatus infections, Nail, splinter hemorrhage, 419, Fig.34.1 Nasal cavities, anatomy and host defense mechanism, 319 Nasopharyngeal aspirates/washes, RSV infection diagnosis, 366 590 INDEX Nasopharyngeal cancer (NPC), EBV association, 121–122 Nasopharyngeal secretions, sIgA in, 319 Nasopharynx, innate immune system, 319 Natural killer (NK) cells CD4+ T cell loss effect on, 222 coxsackie B virus infection, 100 EBV infection, 116, 118 HBV infection response, 163 interferon-g produced, toxoplasmosis, 455 Listeria monocytogenes killing, 272 Neisseria meningitidis infection, 320 Rickettsia infections, 375 VZV infection, 477 Necrosis see Tissue necrosis Necrotizing fasciitis, 442, 444, Fig.36.8 differential diagnosis, 447 Needles/syringes, HBV transmission via, 162 Needlestick injuries, HBV transmission via, 162–163 Neisseria capnophilic nature, 304 catalase positive, 309, 316, 322 commensals, 304 Neisseria gonorrhoeae, 303–314 adherence mechanisms, 304, 305 adhesins, 304, 305 carbohydrate utilization, 309, 322, Fig.24.9 catalase positive, 309, 316, 322 characteristics, 304–305 co-infection with Chlamydia trachomatis, 49, 306 colony appearance, 308–309, Fig.24.6, Fig.24.7 commensal, 304 complement-mediated killing, 306–307 culture, 308–309, 321 media, 308–309, Fig.24.6, Fig.24.7 entry and spread within body, 305–306 envelope and outer membrane, 304 fluoroquinolone resistance, 310 Gram stain, 309, Fig.24.2, Fig.24.4, Fig.24.8 identification, 309, 322 IgA1 protease, 305, 306 immune evasion mechanisms, 305, 306 iron acquisition, 305 lipooligosaccharide (LOS), 304, 306 opacity-associated proteins (Opa), 304–305 outer membrane proteins, 304, 307 oxidase-positive, 309, 316 person to person spread, 306 phase variation of pili, 304 PI.A porin molecules, 307 PilC protein, 304 pili, 304 pilin (PilE), and pilE gene, 304 pilS (silent) and pilS locus, 304 porin proteins (protein IA and IB), 305, 307 tissue tropism mechanism, 304 truncated genes, 304 vertical transmission, 306, 308 virulence, 305 see also Gonococcal infection Neisseria lactamica, 309 Neisseria meningitidis, 304, 315–328 adherence mechanisms, 316, 318, 320 adhesins, 316 antibiotic resistance, 323 antigenic variation, 316, 317 asymptomatic carriage, 318 attachment, 316, 317, 318 capnophilic nature, 316 capsule, 317–318 cross-reactions with other bacteria, 320 serogroup B, 324 carbohydrate utilization, 309, 322, Fig.25.9 carriage rates, 318, 320 catalase positive, 309, 316, 322 characteristics, 315–318 colony appearance, 321, Fig.25.6, Fig.25.7, Fig.25.8 commensal, 316 culture, 309, 321, Fig.25.6, Fig.25.7, Fig.25.8, Fig.25.9 media, 321–322, Fig.25.6, Fig.25.7, Fig.25.8 diagnosis, 321–322 entry and spread within body, 318 envelope and outer membrane, 304, 316, Fig.25.5 Gram stain, 315, Fig.25.2, Fig.25.3 habitat (nasopharynx), 316 ‘hyperinvasive lineages,’ 319 identification, 309, 322, Fig.25.9, Fig.25.10 IgA1 protease, 305, 306, 320 immune evasion mechanisms, 316, 320 infections see Meningococcal disease iron acquisition, 305, 318 killing, mechanisms, 320 lipooligosaccharide (LOS), 304, 316, 318, 320 lipid A component, 320 low/high LOS sialylation, 316 pathogenic role, 320 release and cytokine release, 320 noncapsulate strains, 317 opacity-associated proteins (Opa), 317 outer-membrane proteins (OMPs), 317, 318 324 oxidase-positive, 309, 316, 322, Fig.25.4 penicillin susceptibility decrease, 323 person to person spread, 318 phagocytosis resistance, 316 phase variation, 316, 317 pili, 316, 318 pilin (PilE), and pilE gene, 316 hypervariable C-terminal domain, 316 pilS (silent) and pilS locus, 317 porin proteins (PorA, PorB), 317 prevalence of serogroups, 318–319 reduction modifiable protein (Rmp), 317 serogroup A, 317, 318, 324 serogroup B, 317, 318, 324 serogroup C, 317, 318, 324 serogroup W-135, 317, 318, 324 serogroup X, 317, 318 serogroup Y, 317, 324 susceptibility to antibodies, 316 tissue tropism, 317 transmission, 318, 319, 324 truncated genes, 316–317 vaccine see Meningococcal disease, vaccines virulence determinants, 317–318 Nematodes, Wuchereria bancrofti, 485 Neonates chickenpox, 479 coxsackie B virus infection, 102 Escherichia coli urinary tract infection, 132, 134 HIV screening, 226 HSV-2 infection, 179, 190, Fig.15.3 listeriosis, 272 Neisseria meningitidis infections, 320 Staphylococcus aureus infection, 405 Nephrotic syndrome, malaria, 352 Nerve(s) damage diagnosis, in leprosy, 284 leprosy, 280, 281, 283 function loss, leprosy, 281, 282, 283 inflammation, leprosy, 284 Listeria monocytogenes infection, 272 Nerve cell bodies, VZV latency, 476, 478 Neuralgia, post-herpetic (PHN), 479 Neuraminidase (NA) influenza virus see Influenza virus inhibitors, 243–244 Streptococcus pneumoniae, 431 Neurological disease, Lyme disease, 19, 25 treatment, Tab.2.3 Neuropathy, HIV infection, 223 Neurotensin, Clostridium difficile infection, 66 Neutropenia chemotherapy-induced, Aspergillus fumigatus infections, invasive aspergillosis, 5, 8, 13 viridans streptococcal infection, 424 Neutrophil(s) apoptosis, in leishmaniasis, 252 Aspergillus fumigatus infections, 4–5 chemotaxis inhibition, by Staphylococcus aureus, 404 failure to kill Leishmania, 252 Neisseria gonorrhoeae uptake, 306 recruitment Aspergillus fumigatus infections, 4, Streptococcus pneumoniae, 433 Neutrophil extracellular traps (NETs), 404, 442 Neutrophilia Escherichia coli associated, 129 Leptospira infection, 261 NFkB, activation,, Salmonella infection, 387 Nifurtimox, Chagas’ disease, 470–471, Tab.38.1 Nikolsky’s sign, 408 Nitric oxide (NO) damage induced by, Rickettsia infection, 375 Giardia lamblia infections, 141 inactivation, by Giardia lamblia, 141 production, Mycobacterium tuberculosis infection, 295 release, Histoplasma capsulatum infections, 200 201 Nitric oxide synthase, inducible (iNOS), 47, 294, 375 Nitrofuran derivatives, giardiasis, 144 Nitroimidazoles, giardiasis, 144 Nonnucleoside RT inhibitors (NNRTIs), 228, Tab.17.3 Nonsecretors, Escherichia coli UTI, 132 Non-steroidal anti-inflammatory drugs (NSAIDs), 209 histoplasmosis management, 209 infectious mononucleosis, 124 peptic ulcers associated, 156 Nonulcer dyspepsia (NUD), Helicobacter pylori infection, 155 Normoblasts, abnormal, parvovirus B19 infection, 340 Noroviruses, 329–338 characteristics, 330–331 detection, 334, Fig.26.5 entry and spread within body, 331 genetic variability (high mutation rate), 330, 332–333 genogroup II genotype 4, 333 genogroups, 330 genome (ssRNA), 330 infectious dose, 332 mouse, replication site, 334 person to person spread, 331 receptors, 333 resistance to disinfectants/environment, 330–331 shedding, 336 structure, 330, Fig.26.2 transmission, 332, Fig.26.3 prevention, 335–336 Norovirus gastroenteritis, Tab.26.1 antibodies, 331, 332 antibody seroconversion, 334 case history, 329–330 clinical presentation, 334 complications, 334 control measures, 330, 335–336 diagnosis, 334 differential diagnosis, 335 epidemiology, 331–332 high attack rate, 329, 330 host response, 332–333 immune-electron microscopy, 334, Fig.26.5 immunity to re-infection, 332 incubation period, 331 investigations, 329–330 management, 335 outbreaks, 331–332 duration, 329, 330 persistent, 332 setting for, 329, 332, Fig.26.3 time course, 329–330, Fig.26.1 pathogenesis, 333–334, Fig.26.4 prevention, 335 susceptibility, factors, 333 viral load, 336 volunteer studies, 332, 333 North Asian tick typhus, Tab.30.3 Norwalk viruses, 330 see also Noroviruses Nosocomial infections RSV, 363 Staphylococcus aureus (and MRSA), 306, 405, 412 NRAMP, 294 Nucleases, Staphylococcus aureus, Tab.33.1 Nucleic acid amplification tests (NAATs), Chlamydia trachomatis, 52–53 Nucleoside and nucleotide RT inhibitors (NRTIs), 228, Tab.17.3 Numbness, leprosy, 282, 283 INDEX O antigens Escherichia coli, 130, Fig.10.4 Salmonella, 384, Fig.30.2 Occupational infections Coxiella burnetii infection (Q fever), 76, 90 Leptospira infection, 263 Ocular histoplasmosis syndrome, 204, 208 Ocular infections Chlamydia trachomatis, 45 see also Keratitis Ofloxacin Chlamydia trachomatis infection, 55 leprosy, 285 Oliguria, Leptospira infection, 261, 264 Omeprazole, Helicobacter pylori infection, 156 Onchocerciasis, 491 Oncogenes, viral, EBV, 117 Oncosphere, Echinococcus eggs, 108, 109 Onygenales, 197 Oocysts, Toxoplasma gondii, 453–454, Fig.37.2, Fig.37.3 Opacity-associated proteins (Opa) see under Neisseria gonorrhoeae Ophthalmia neonatorum, 45, 308, 310 notifiable disease (UK), 310 Ophthalmic zoster, 479 Opportunistic infections, AIDS, 224, Tab.17.1 Opsonization avoidance, by Staphylococcus aureus, 406 Borrelia burgdorferi phagocytosis without, 24 Histoplasma capsulatum, 199 Listeria monocytogenes infections, 272 Schistosoma, 396 Staphylococcus aureus, 406 Streptococcus mitis, 421 Streptococcus pneumoniae, 432 Optochin susceptibility test for Streptococcus pneumoniae, 433, Fig.35.7 viridans streptococci, 420, 422, Fig.34.4 Orientia, 371 cell wall, 371 geographical distribution, 373, Tab.30.2 infections associated and vectors, Tab.30.1 Orientia tsutsugamushi, 372, Tab.30.2, Tab.30.3 Oropharyngeal infections HSV, 178, 179, 188, Tab.14.1 influenza virus, 236 Oropharynx commensals Stomatococcus mucilaginosus, 410 Streptococcus mitis, 420, 421 viridans streptococci, 420 Streptococcus pyogenes infections, 440–441 Orthomyxoviridae, 235 Oseltamivir, influenza, 243–244 Osler node, 419, 422 Osteomyelitis Aspergillus infection, 9, Fig.1.6 Coxiella burnetii infection, 83 differential diagnosis, Tab.33.2 disseminated gonococcal infection, 308 enteric fever complication, 388 leprosy, 283 Staphylococcus aureus, 407, 408, Tab.33.2 Otitis media RSV infection, 365 Streptococcus pneumoniae, 430, 433 Otomycosis, Aspergillus, Overcrowding, Helicobacter pylori infection, 151 Oxford Listeria agar, Tab.21.2 Oxidase-positive bacteria Neisseria gonorrhoeae, 309, 316 Neisseria meningitidis, 309, 316, 322 Oxidative stress, Rickettsia infections, 375 Oxygen, humidified, RSV infection management, 367 Oxygen free radicals see Reactive oxygen species (ROS) PAIR (puncture, aspiration, injection, reaspiration), echinococcosis management, 111 Palivizumab, RSV infection prevention, 367 PAMPs (pathogen-associated molecular pattern receptors), 292 Pancreatitis, Campylobacter jejuni infection, 36 Pancytopenia EBV infection, 120 leishmaniasis, 249, 254 toxoplasmosis, 453 Panton-Valentine leukocidin (PVL), 404, 405 Papilledema, toxoplasmosis, 453 Papules chickenpox development, 478 cutaneous leishmaniasis, 253, Fig.19.6 disseminated gonococcal infection, 308 leprosy, 283 Lyme disease rash, 25 lymphogranuloma venereum, 50, 51 rickettsial pox, 377 Papulo-nodular lesions, cutaneous leishmaniasis, 253, Fig.19.6 Parainfluenza virus type 3, bronchiolitis, 366 Paralytic ileus, 388 Paramyxoviruses, 361 see also Respiratory syncytial virus (RSV) Paraplegia, Staphylococcus aureus infection, 409 Paratyphoid fever clinical features, 387–388 management and prevention, 389 see also Salmonella Paratyphi Parenteral feeding, norovirus gastroenteritis, 334 Paresthesiae, HSV-2 infection, 190 Paronychia, HSV-2, 188 Parvoviridae, 339 Parvovirus B19, 339–346 bone marrow site of replication, 340, Fig.27.2 characteristics, 339 detection, 342 entry and spread within body, 339 genome (ssDNA), 339, 340 genotypes, 339 host cell dependency, 340 infection see Parvovirus B19 infection person to person spread, 339 in rapidly dividing cells, 340 receptors, 340 shedding, 339 Parvovirus B19 infection aplastic crisis, 342, 343 case history, 339, Fig.27.1 course of infection, 340, Fig.27.2 diagnosis, 342 differential diagnosis, 341-342, 343 epidemics, 340 epidemiology, 340 fetal, 339, 340, 342, 343 HIV co-infection, 342 host response, 340 immune response, 340 IgG and IgM, 339, 340, 342 management, 343 passive immunization, 343 pathogenesis, 340 pregnancy, 339, 340, 342, 343 rash, 339, 340, 341, 343, Fig.27.1, Fig.27.3 self-limiting nature of, 342, 343 seroconversion, 341 vaccines (experimental), 343 viremia, 339, Fig.27.2 volunteer studies, 340 Pathogen-associated membrane patterns (PAMPs) Aspergillus fumigatus, Borrelia burgdorferi, 24, 25 Salmonella, 387 Pathogen-associated molecular pattern receptors (PAMPs), 292 Pathogenicity islands (PAIs) Escherichia coli, 132 Helicobacter pylori, 149, Fig.12.2 Salmonella enterica, 383–384 Salmonella Typhi, 383–384, 387 Streptococcus pyogenes, 440 Pattern recognition receptors (PRRs), Mycobacterium tuberculosis, 292 Paul-Bunnell test, 122 Pelvic inflammatory disease (PID) Chlamydia trachomatis, 44, 49 gonorrhoeae-related, 304, 307, 310 Penciclovir, herpes simplex encephalitis, 183 Penicillin resistance Staphylococcus aureus, 410–411 591 Streptococcus pneumoniae, 434 Staphylococcus aureus susceptibility, 410–411 Streptococcus pyogenes infections, 448 Penicillinase, 410 see also b-lactamase Penicillin-binding proteins (PBPs), 410 Streptococcus pneumoniae, 434, Fig.35.5 Penicillin G Lyme disease, Tab.2.2 Neisseria meningitidis infection, 323 Penis, CD4+ dendritic cells, HIV infection, 219, Fig.17.6 Pentamidine, African trypanosomiasis, Tab.38.1 Pentavalent antimony compounds, leishmaniasis, 255–256 Pentraxin-3, Peptic ulcer disease, 154, 155 acute stress ulcers, 156 Peptidoglycan chlamydiae, 42 Mycobacterium tuberculosis, 291, Fig.23.3 Staphylococcus aureus cell wall, 403, Fig.33.1 Perforin, 295 Perforin-dependent cytotoxicity, Rickettsia infections, 375 Pericarditis histoplasmosis, 202, 203 meningococcal disease, 321 Peri-hepatitis, 307 Periodontal disease, subacute bacterial endocarditis risk, 422 Peripheral nerve neuropathy, Lyme disease, 25 Peripheral nerve thickening, leprosy, 284 Periportal fibrosis, 397 Persistent generalized lymphadenopathy, 224 Personal protective equipment, Clostridium difficile infection prevention, 69 Pertussis, RSV bronchiolitis vs, 366 Petechiae infectious mononucleosis, 115 Leptospira infection, differential diagnosis, 265 meningococcal disease, 321 subacute bacterial endocarditis, 422 Peter’s patches, Salmonella infections, 387 Petriellidium, mycetoma, 12 Phage typing, Salmonella, 384 Phagocytes activation, by Leishmania, 252 see also Macrophage; Neutrophil(s) Phagocytosis Aspergillus fumigatus, Chlamydia trachomatis, 43 Helicobacter pylori, 152 Histoplasma capsulatum, 200, Fig.16.6 inhibition by Aspergillus fumigatus, by Staphylococcus aureus, 404 Leishmania, 250, 252 Mycobacterium tuberculosis, 292 resistance, Neisseria meningitidis, 316 Salmonella, 385, 386–387 Streptococcus mitis, 421 Streptococcus pneumoniae, 430, 432 Streptococcus pyogenes, 441, 442 Phagolysosome formation avoidance Listeria monocytogenes, 271, 272 Mycobacterium leprae, 277 Mycobacterium tuberculosis, 294 Salmonella Typhi, 387 Staphylococcus aureus, 406 Toxoplasma gondii, 455 Coxiella burnetii, 75, 78–79, Fig.6.5 leishmaniasis, 252 Phagosomes Aspergillus fumigatus infections, h-lamp1 and h-lamp-2 in, 305 leishmaniasis, 252 Listeria monocytogenes escape, 271, 272, Fig.21.4 Listeria monocytogenes in, 271 maturation, Neisseria meningitidis, 317 Mycobacterium leprae escape, 277 Mycobacterium tuberculosis infection, 292, 294 Pharyngeal edema, infectious mononucleosis, 124 Pharyngitis 592 INDEX bacterial, 439 EBV infection, 120, Tab.9.2 Leptospira infection, 264 Neisseria gonorrhoeae infection, 307 streptococcal, 439, Fig.36.1, Tab.9.2 Streptococcus mitis infection, 422 Streptococcus pyogenes see Streptococcal pharyngitis viral, 439, Tab.9.2 Pharynx Streptococcus pneumoniae colonization, 432 Streptococcus pyogenes colonization, 440 Phase variation Neisseria gonorrhoeae, 304 Neisseria meningitidis, 316, 317 Phenolic glycolipid I (PGL-I) antibodies, 284 Mycobacterium leprae, 278, 279, 280, 284 Phlebotomus, 250, Fig.19.5 Phosphocholine, Streptococcus pneumoniae binding, 431, 432 Phospholipase, Listeria monocytogenes, 271 Phospholipase A2, Rickettsia, 373 Photophobia Coxiella burnetii infection (Q fever), 81 coxsackie B virus infection, 99, 102 leprosy, 283 Leptospira infection, 264 rickettsial pox, 377 Picornaviridae, 99 Picornaviruses, 168 Pili Neisseria gonorrhoeae, 304 Neisseria meningitidis, 316, 318 Streptococcus pyogenes, 440 Pilin (PilE), 304, 316 Pinocytosis, Chlamydia trachomatis entry, 43 Placentitis, Coxiella burnetii infection (Q fever), 84 Plasmids, Salmonella Typhi, 384 Plasmodium, 347–359 adhesion, 347–348, 349, 352 asexual development, 349, Fig.28.2 characteristics, 347 detection, 353, Fig.28.5 Duffy binding proteins, 349, 350 entry and spread within body, 347–349 factors decreasing infection rates, 350 gametocytes, 349, 351, Fig.28.2 hypnozoites, 349, Fig.28.2 immune evasion mechanisms, 350–351 insecticide resistance, 354 life cycle, 347–349, 353, Fig.28.2, Fig.28.5 drugs targeting stages, 354 erythrocytic stage, 349, 351, 354, Fig.28.2 liver stage (pre-erythrocytic stage), 347–348, 354, Fig.28.2 ‘ring’ stage, 349, 353, Fig.28.5 vector stage, 349, Fig.28.2 merozoites, 349, 350, 351, Fig.28.2 release and fever, 349, Fig.28.3 merozoite surface proteins (MSPs), 349, 355 micro-/macrogametocytes, 349 ookinetes and oocysts, 349, Fig.28.2 person to person spread, 350 receptors, 348, 349, 350 resistance to, 349, 350 sexual development, 349, Fig.28.2 sporozoites, 347–348, 350, Fig.28.2 antigens for vaccines, 355 immunosuppression by, 351 surface circumsporoite protein (CSP), 347–348 transmission, 347, 350 trophozoites, 349, 353, Fig.28.2, Fig.28.5 see also Malaria Plasmodium falciparum, 347, 349 chloroquine resistance, 354 global incidence, 350, Fig.28.4 malaria complications, 352 ring forms, 353, Fig.28.5 see also Malaria Plasmodium knowlesi, 347 Plasmodium malariae, 347, 352, 353 Plasmodium ovale, 347, 348, 353 Plasmodium vivax, 347, 348, 349 detection, 353 resistance to, 349 Platelet-activating factor (PAF), Streptococcus pneumoniae binding, 432 Platelets, Aspergillus fumigatus infections, Pleural effusions histoplasmosis, 202, 204, 208 Staphylococcus aureus, 403 Pleural thickening, aspergilloma, 10, 12 Pleurisy, Streptococcus pneumoniae infection, 429, 433 Pleuritic pain, Streptococcus pneumoniae infection, 429 Pneumococcal disease see Streptococcus pneumoniae infection Pneumococcus see Streptococcus pneumoniae Pneumocystis jiroveci pneumonia aspergilloma after, HIV infection, 217, Fig.17.2 management, 230 Pneumocytes, influenza virus infection, 236 Pneumolysin, 431, 433 Pneumonia Aspergillus fumigatus causing, 1, bacterial causes, 434 causes and features in children, Tab.29.1 Chlamydia trachomatis, 45, 50 Coxiella burnetii infection, 75, 82, 84, 88, Fig.6.8 coxsackie B virus, 102 differential diagnosis, 434 HIV infection differential diagnosis, 226 influenza, 240 Leptospira infection, 261 meningococcal disease, 321 necrotizing, Staphylococcus aureus PVL role, 404 Rickettsia infection, 375 RSV infection, 364, 365, 367 secondary bacterial, in influenza, 240 Staphylococcus aureus, 407 Streptococcus pneumoniae, 430, 433 varicella, 478, 479 viral, differential diagnosis, 434 viridans streptococci, 424 Pneumonitis histoplasmosis, 202, 208 Toxoplasma gondii, 457 Pneumotropic virus, influenza virus, 236 Podoconiosis, 489 ‘Point of care tests,’ RSV infection, 366, 367 Poliomyelitis, 101–102, Fig.7.1 prevention, 103–104 Polioviruses, 99, Tab.7.1 vaccines, 103–104 Poly-Ig (pIg) receptor, Streptococcus pneumoniae binding, 431–432 Polymerase chain reaction (PCR) Aspergillus fumigatus, 12 Campylobacter jejuni, 37 Chlamydia trachomatis, 52 Clostridium difficile, 68 Coxiella burnetii, 73, 87 enteroviruses, 103 giardiasis diagnosis, 144 Helicobacter pylori, 156 hepatitis C virus (HCV), 168 herpes simplex encephalitis (HSV-1), 177 Histoplasma capsulatum, 207 HIV infection, 226 HSV-2, 187, 191 influenza, 241 leishmaniasis, 249 Leptospira, 265 Lyme disease, 26 Mycobacterium leprae, 284 Mycobacterium tuberculosis, 297–298 Neisseria meningitidis, 322 noroviruses, 334 parvovirus B19, 342 Plasmodium, 353 real-time HIV infection, 226 influenza, 241–242 Rickettsia, 377–378 RSV, 366 Salmonella, 384 Salmonella Typhi, 389 toxoplasmosis, 453 VZV, 480 Polymyalgia rheumatica, subacute bacterial endocarditis vs, 423 Polysaccharide, 434 capsules, Streptococcus pneumoniae, 430, 434, Fig.35.5 Polysialic acid, Neisseria meningitidis serogroup B capsule, 324 Porin proteins Neisseria gonorrhoeae, 305, 307 Neisseria meningitidis, 317 Portal hypertension, schistosomiasis, 397 Post-herpetic neuralgia (PHN), 479 Post kala-azar dermal leishmaniasis (PKDL), 250, 254 Post-Lyme disease syndrome, treatment, Tab.2.3 Post-transplant lymphoproliferative disease (PTLD), 121 Pott’s disease, 296 Praziquantel echinococcosis prevention, 111 schistosomiasis, 393, 398 Preauricular lymphadenopathy, 51 Prednisone, 88, 209 Pregnancy aciclovir in, 480 antibiotics avoided, 490 antibiotics used in, 54, 55, 88 Bancroftian filariasis, 487 chickenpox, 479, 480 Chlamydia trachomatis infection, 49, 54, 55 Coxiella burnetii infection, 81, 83–84, 88 ectopic see Ectopic pregnancy Escherichia coli UTI, 132, 135 giardiasis, 145 infectious mononucleosis, 123 leprosy, 281 listeriosis, 270, 272 Lyme disease, 22 malaria, 350 parvovirus B19 infection, 339, 340, 342, 343 toxoplasmosis, 456, 458 Premature infants, RSV infection, 367 Primaquine, malaria, 354 Probiotics, Clostridium difficile infection, 69 Proctitis, lymphogranuloma venereum, 50 Proctocolitis, lymphogranuloma venereum (LGV), 52 Prostaglandin E2, chronic Q fever, 79–80 Prostaglandins, African trypanosomiasis, 468 Prostatitis Chlamydia trachomatis, 54 progressive disseminated histoplasmosis, 203 Protease, HIV, Fig.17.5 Protease inhibitors, HIV infection, 228, Tab.17.3 Protein-losing enteropathy, 143 Proteobacteria, Coxiella burnetii, 74 Proteus, 134, 378 Proteus OX-2, OX-19, 378 Proton pump inhibitors (PPI), Helicobacter pylori infection, 156–157 Pruritus, rectal Neisseria gonorrhoeae infection, 307 Pseudallescheria infection, invasive aspergillosis vs, 10 Pseudomembranous colitis, 63, 67–68 endoscopy/histology, Fig.5.1 Public hygiene, poor, Helicobacter pylori infection, 151 Pulmonary abscess, aspergilloma vs, 12 Pulmonary aspergillosis see Aspergillosis Pulmonary edema malaria, 352 Rickettsia infection, 375 Pulmonary nodules, histoplasmosis, 202, 203 Pulse field gel electrophoresis (PFGE) Listeria monocytogenes, 269 Salmonella, 384 Purified protein derivative (PPD), 298 Pus Staphylococcus aureus infections, 406 Streptococcus pyogenes, 442 Pyelonephritis differential diagnosis, 135 Escherichia coli causing, 129, 131, 134, 135 Pyoderma see Impetigo Pyrazinamide, tuberculosis, 298 Pyrexia see Fever Pyrexia of unknown origin (PUO) causes, 389 INDEX enteric fever, 388 listeriosis, 274 Pyriform (pear-shaped) bodies, babesiosis, 26 Pyrimethamine, toxoplasmosis, 458 Pyrogen, endogenous, TNF as, 352, 433 see also Tumor necrosis factor-a (TNF-a) L-Pyrrolidonyl arylamide (PYR), 445, Fig.36.10 PYR test, Streptococcus pyogenes, 445, Fig.36.10 Pyuria Chlamydia trachomatis infection, 49 ‘sterile,’ 135 Q fever, 73 see also Coxiella burnetii infection Queensland tick typhus, Tab.30.3 Quellung test, 434 Quinacrine, giardiasis, 145 Quinine, malaria, 354 Quinolones, Rickettsia infections, 378 Rac, inactivation, by Clostridium difficile toxins, 63, 67 Radiculomyelopathy, HSV-2 infection, 190 Radionuclide brain scanning, in herpes simplex encephalitis (HSE), 181 Rales, 202, 429 Raltegravir, HIV infection, 228 Ranitidine bismuth citrate, Helicobacter pylori infection, 157 RANTES, Rickettsia infection, 375 Rash African trypanosomiasis, 468 ampicillin-induced, 120, 123, Fig.9.1 ‘bull’s eye,’ 25, Fig.2.1, Fig.2.6 coxsackie B virus infection, 101 dermatomal distribution, 476 differential diagnosis, 378 in pregnancy, 343 Rickettsia infections, 378 disseminated gonococcal infection, 308 erythematous, parvovirus B19 infection, 339, Fig.27.1 infectious mononucleosis, 120, Fig.9.1 leprosy, 277 maculopapular endemic/scrub typhus, 377 enteric fever, 388 HIV infection, 223 Leptospira infection, 264 Rickettsia infections, 376 meningococcal meningitis, 103, 315, 321, Fig.25.1 nonblanching purpuric, meningococcal disease, 103, 315, 321, Fig.25.1 noninfectious causes, 378 parvovirus B19 infection, 340, 341, 343, Fig.27.2, Fig.27.3 progressive disseminated histoplasmosis, 203 purpuric, Coxiella burnetii infection, 83 Rickettsia infection, 375, 376, 377 rickettsial pox, 377 Salmonella Typhi infection, 383 scarlet fever, 443, Fig.36.5 smallpox, 480 Staphylococcus aureus, 408 streptococcal pharyngitis, 443, Fig.36.5 Streptococcus pyogenes infection, 442 vesicular chickenpox, 475, 478, 480, Fig.39.1, Fig.39.4 shingles, 476, 479, Fig.39.5 RAST, allergic bronchopulmonary aspergillosis, 10 RDNA detection, Coxiella burnetii, 87 Reactive arthritis Campylobacter jejuni infection, 36 Chlamydia trachomatis, 51 Reactive oxygen species (ROS) degradation, Coxiella burnetii, 79 Histoplasma capsulatum infections, 200 inactivation, by Giardia lamblia, 141–142 inhibition, Aspergillus fumigatus, Leishmania infection, 252 Mycobacterium tuberculosis infection, 294 Plasmodium infection, 351 release, E coli infection, 134 Rickettsia infections, 375 Salmonella resistance to, 387 Toxoplasma gondii susceptibility, 455 Recreation-linked infections, Leptospira infection, 263 Rectal biopsy, schistosomiasis, 393 Recto-vaginal fistulae, lymphogranuloma venereum, 50 Rehabilitation, leprosy, 286 Reiter’s syndrome, Chlamydia trachomatis, 51 Renal calculi-associated infections, Proteus, 134 Renal failure babesiosis, 26 malaria, 352 Renal vein thrombosis, 135 Reoviruses, gastroenteritis, Tab.26.1 Respiratory burst, 4, 200, 351 Respiratory epithelial cells influenza virus effect, 239 RSV infection, 362, Fig.29.2, Fig.29.3, Fig.29.4 Respiratory function tests, histoplasmosis, 205 Respiratory secretions, RSV shedding, 362, 363, 365 Respiratory syncytial virus (RSV), 361–370 antigenic drift-like process, 362, 365 characteristics, 361–362 culture, 366, Fig.29.3 entry and spread within body, 362 envelope, 361 F protein, 361, 362, 364 monoclonal antibodies to, 367 G protein, 361, 362, 364, 367 monoclonal antibodies to, 367, Fig.29.2 mutation of surface glycoproteins, 362, 365 nucleocapsid, 361 persistence on surfaces, 363 person to person spread, 363 phagocytosis, 362 receptor, 362 replication, 362 in respiratory epithelial cells, 362, Fig.29.2, Fig.29.3, Fig.29.4 RNA polymerase, 362 shedding, 362, 363, 364 strains (A and B), 361–362 syncytia formation, 362, Fig.29.3, Fig.29.4 transmission, 363 Respiratory syncytial virus (RSV) infection bronchiolitis, 361, 365, Fig.29.1 incidence, 363 management, 367 pathogenesis, 365 case history, 361, Fig.29.1, Fig.29.2 clinical presentation, 365 complications, 365 diagnosis, 365–366 differential diagnosis, 366 epidemiology, 363 England and Wales, Fig.29.5 hospital admission, risk factors, 367 host response, 364–365 immune response, 362 antibodies, 364 T-cell response, 364–365 immunocompromised patients, 364, 365 immunoprophylaxis, 367 incubation period, 362 influenza differential diagnosis, 241 management, 367 pneumonia, 364, 365, 367 prevention, 367 re-infection, 364, 365 seasonal occurrence, 363 vaccines, 367 Respiratory tract, host defense mechanisms, 432 Respiratory tract infections coxsackie B virus, 102 influenza virus, 236 see also Influenza lower tract causes/features in children, Tab.29.1 see also Pneumonia RSV, 361–370 Streptococcus pneumoniae, 430 Restriction fragment length polymorphism (RFLP) Campylobacter jejuni, 33 Rickettsia infections, 378 Reticulocytes decline, parvovirus B19 infection, 340, 342 Plasmodium vivax infection, 349 593 Retinal hemorrhages (Roth spots), 419, Fig.34.1 Retroviruses, HIV, 218 Reverse transcriptase/transcription HBV, 162, 169 HIV, 228, Fig.17.5 low fidelity rates and HIV mutation, 228 Reverse transcription (RT) inhibitors classes (NRTIs and NNRTIs), 228, Tab.17.3 HBV infection management, 169, 170, Tab.13.3 HIV infection, 227–228, Tab.17.3 Reverse transcription (RT)-PCR, 334 leprosy diagnosis, 284 noroviruses, 334 Rickettsia infection, 378 Reye’s syndrome, 124 Rheumatic fever see Acute rheumatic fever (ARF) Rheumatoid arthritis, 197 parvovirus B19 infection vs, 341–342 subacute bacterial endocarditis vs, 423 Rhinitis, Chlamydia trachomatis, 50 Rhinorrhea, influenza, 240 Rhinosinusitis, acute invasive (aspergillosis), Rho, inactivation, by Clostridium difficile toxins, 63, 67 Ribavirin HCV infection management, 171 nebulized, RSV infection, 367 Ribotyping Clostridium difficile, 64, Fig.5.5 Listeria monocytogenes, 269 Salmonella, 384 Rickettsia, 371–381 adhesins, 372–373 Arp2/3 complex, 373 cell wall, 371 characteristics, 371–372 classification, 371 cross-reactions with Proteus, 378 culture, 377–378 entry and spread within body, 372–373, Fig.30.2 genome and sequencing of, 371–372 host cell product utilization, 372 htrA and gltA genes, 378 infections associated and vectors, Tab.30.1 obligate intracellular nature, 371 OmpA, and OmpB, 373, 375, 378 person to person spread, 373 phospholipase A2, 373 RickA proteins, 373 Sca2 (surface cell antigen), 373 signaling systems, 373 transmission, 372, 373 type IV secretion apparatus, 372 see also Rickettsia infections Rickettsia africae, 376, Tab.30.2, Tab.30.3 Rickettsia akari, Tab.30.2, Tab.30.3 Rickettsia australis, Tab.30.2, Tab.30.3 Rickettsiaceae, 74, 371 Rickettsia conori, 371, 372, 375, 376, Tab.30.2, Tab.30.3 Rickettsia felis, 373, Tab.30.2 Rickettsia helvetica, 376, Tab.30.2 Rickettsia honei, Tab.30.2, Tab.30.3 Rickettsia infections antibodies in, 375 case history, 371, Fig.30.1 clinical presentations, 376–377 complications, 376–377 diagnosis, 377–378 differential diagnosis, 378 endemic disease, 373 epidemiology, 373–374 geographical distribution, 373, Fig.30.7, Tab.30.2 eponyms, Tab.30.3 host response, 375 immune response, 375 incubation period, 376, 377 management, 378 prevention, 378 seropositivity, 373 see also Rickettsia; Spotted fevers; Typhus Rickettsia japonica, Tab.30.2, Tab.30.3 Rickettsiales, 371, Fig.30.7 Rickettsial pox, 377, Tab.30.3 Rickettsia prowazekii, 371, 372, Tab.30.2, Tab.30.3 594 INDEX Rickettsia rickettsii, 375, 376, Tab.30.2, Tab.30.3 Rickettsia sibirica, Tab.30.2, Tab.30.3 Rickettsia slovaca, 376, Tab.30.2 Rickettsia typhi, 371, 372, Tab.30.2, Tab.30.3 Rifampicin leprosy, 285 Rickettsia infections, 378 tuberculosis, 298 Rifampin, Clostridium difficile infection, 69 Rimantadine, influenza, 242–243 Rocky Mountain spotted fever (RMSF), 376, Tab.30.3 Romana’s sign, 468, Fig.38.9 Rosaceae, Helicobacter pylori infection, 155 Rose spots, Salmonella infections, 387, 388, Fig.31.3 Rotaviruses, gastroenteritis, Tab.26.1 Roth spots, 419, Fig.34.1 Sabin-Feldman dye test, 457 Sabin vaccine, 103 Sabouraud dextrose agar (SDA), Histoplasma capsulatum growth, 198, Fig.16.2 Saccharomyces boulardiae, 69 Sacral nerve root ganglia, HSV infection, 178, 188 Safe sexual practices see Sexual health/safer sex Salivarian transmission, trypanosomes, 464 Salk vaccine, 103–104 Salmonella, 383–392, 389 adhesion via fimbriae, 385 antigens, 384, Fig.30.2 cell wall, 384, 387, Fig.30.2 characteristics, 383–384 culture/growth, 388, Fig.31.1, Fig.31.4 entry and spread within body, 384–385 flagella, 384 H antigen and phases H1 and H2, 384, 388, Fig.31.2 immune evasion mechanisms, 387 infecting dose, 384 infections see Enteric fever; Gastroenteritis; Salmonella infection K (capsular) antigens, 384 Kaufman-White serotyping, 384, 388, Fig.30.2 lipopolysaccharide (LPS), 387, Fig.31.2 macrophage killing of, 387 nomenclature, 383 nontyphoidal, 383 clinical features of infection, 388 diagnosis of infection, 388–389 entry and spread within body, 385 inflammatory reaction to, 386 management of infections, 389 person to person spread, 386 virulence plasmids, 384 O antigens, 384, 388, Fig.30.2 pathogenicity islands, 383–384, 387 person to person spread, 385–386 replication, 385 selective media for, 388 shedding/release, 385 typhoidal see Salmonella Typhi typing methods, 384 virulence plasmids, 384, Fig.31.2 Salmonella enterica, 383 horizontal gene tansfer, 384 pathogenicity islands (PAIs), 383–384 subspecies and serovars, 383, Fig.31.2 type III secretion system, 384, 385, 387 Salmonella enterica subsp enterica serovar Enteritidis, 383 Salmonella enterica subsp enterica serovar Typhi, 383 see also Salmonella Typhi Salmonella Enteritidis, epidemiology of infections, 386 Salmonella Enteritidis PT4 (phage type 4), 386 Salmonella infection clinical features, 387–388 diagnosis, 388–389 differential diagnosis, 37 HIV co-infection, 385 host response, 386–387 immune response, 386–387 pathogenesis, 387 see also Enteric fever; Gastroenteritis; Salmonella Salmonella Paratyphi diagnosis, 388–389 infection, 387–388 management/prevention of infection, 389 person to person spread, 385–386 Salmonella Typhi, 383–392 adherence to CFTM, 385 antibiotic resistance, 389 antibodies to, 389 bacteria-mediated endocytosis, 385, 386–387 carriers, 385 diagnosis, 388–389 endemicity, 385, 386 entry and spread with body, 384–385 genome, 383 horizontal gene transfer, 384 host response to, 386–387 immune evasion, 387 immune response, 386–387 adaptive, 387 innate, 386–387 infection, 387–388, 389 see also Enteric fever ingestion/transmission, 385–386 movement from gastrointestinal tract, 385 pathogenesis of disease, 387 pathogenicity islands, 383–384, 387 person to person spread, 385–386 plasmid (pHCM1), 384 resistance to infection by, 385 vaccines, 389 Vi antigen, 384, 386, 387 vaccines, 389 see also Salmonella Salmonella Typhimurium, 383, 384, 386 Salpingitis Chlamydia trachomatis, 48 Chlamydia trachomatis infection, 49 gonorrhoeae, 306 Sandflies control, 256 Leishmania transmission, 250, Fig.19.5 SAP, X-linked lymphoproliferative disease, 121 Sapoviruses, 330 gastroenteritis, Tab.26.1 structure, Fig.26.2 Sarcoidosis, 9, 203, 298 Scalded skin syndrome see Staphylococcal scalded skin syndrome (SSSS) Scarlet fever, 443 clinical features, 444, Fig.36.5 Schistosoma, 393–402 in bladder, 394, 397 cercariae, 393–394, 395, 396, Fig.32.4 characteristics, 393–394 drug resistance, 398 eggs, 397 granuloma around, 396, 397, Fig.32.6, Fig.32.7 numbers and appearance, 395, Fig.32.5 shedding, 397–398 entry and spread within body, 393–394 glutathione-S-transferase, 396 glyceraldehyde-3-phosphate, 396 immune evasion and ‘host mimicry,’ 396 in intestine, 394, 397 life cycle, 393–394, Fig.32.3 miracidia, 395 morphology, 393, Fig.32.2 person to person spread, 394–395 schistosomula, 394, 395, 398 sporocysts, 395 see also Schistosomiasis Schistosoma haematobium, 393, 394–395 clinical features of infection, 397 diagnosis of infection, 397–398 eggs, 395, Fig.32.5 eosinophilic inflammation around, 397, Fig.32.7 Schistosoma intercalatum, 393 Schistosoma japonicum, 393, 395 clinical features of infection, 397 eggs, 395, Fig.32.5 Schistosoma mansoni, 393, 394–395 clinical features of infection, 397 eggs, 395, Fig.32.5 Schistosoma mekongi, 393 Schistosomiasis case history, 393, Fig.32.1 clinical presentation, 396–397 diagnosis, 393, 397–398 differential diagnosis, 398, Tab.32.1 epidemiology, 395 esophageal varices, 393, Fig.32.1 granuloma, 396, Fig.32.6 host response, 395–396 IgE, 395–396, 398 IgG subtypes, 396, 398 IgM, 398 immunity to re-infection, 395 inflammatory response, 395, 396 liver fibrosis, 393 management, 393, 398 mass chemotherapy (WHO), 399 prevention, 398–399 re-infection rates, 395 vaccine development, 398 see also Schistosoma Schistosomula, 394, 395, 398 Schwann cells apoptosis, 280 Mycobacterium leprae replication in, 277, 279 280 Scotoma, toxoplasmosis, 456 Scrub typhus, 377, Tab.30.1, Tab.30.3 Seasonal infections, Campylobacter jejuni infection, 35 Seizures coxsackie B virus infection, 102 herpes simplex encephalitis, 177, 180 HSV-1 infection, 177, 180 listeriosis, 273 meningococcal disease, 321 progressive disseminated histoplasmosis, 203 Rickettsia infections, 376 toxoplasmosis, 453 tuberculosis, 296 Sensory loss leprosy, 282, 283 testing, in leprosy, 284 Sensory nerve damage, zoster, 479 Sepedonium, Histoplasma capsulatum vs, 207 Sepsis, viridans streptococci, 424 Septic arthritis differential diagnosis, Tab.33.2 meningococcal disease, 321 Staphylococcus aureus, 407, Tab.33.2 Septicemia Campylobacter jejuni, 35 chickenpox complication, 478 listeriosis, 270 Septic shock disseminated gonococcal infection, 308 Staphylococcus aureus, 403, 408 Serology Chlamydia trachomatis, 53–54 Coxiella burnetii infection (Q fever), 85–86 enteroviruses, 103 Leishmania, 254, 255 leprosy, 278, 284 Listeria monocytogenes, 273 malaria diagnosis, 353 Mycobacterium tuberculosis, 298 Rickettsia, 371, 377–378 schistosomiasis, 393 Streptococcus pneumoniae, 434 Streptococcus pyogenes, 445–446 Toxoplasma gondii, 453, 457 Trypanosoma cruzi, 469 Wuchereria bancrofti, 485 Severe combined immunodeficiency (SCID), invasive aspergillosis association, Sewage, norovirus gastroenteritis associated, 331,355 Sexual health/safer sex Chlamydia trachomatis infection prevention, 55 HIV infection prevention, 229 Neisseria gonorrhoeae infection prevention, 310 Sexually transmitted infections Chlamydia trachomatis, 44, 45–46 EBV, 117 Giardia lamblia, 140 gonorrhoeae, 303 HBV, 162 HIV, 218 INDEX HSV-2, 188, 191 Neisseria gonorrhoeae, 306 Sexual partner notification, Chlamydia trachomatis, 41, 55 Shellfish, norovirus gastroenteritis, 331, 335 Shell-vial assay, Rickettsia, 378 Shigella infection, differential diagnosis, 37 Shingles (zoster), 475 clinical features, 479 diagnosis, 480 immunocompromised patients, 479 incidence, 477 loin pain, pyelonephritis vs, 135 management, 480–481 pathogenesis, 478 rash, 475, Fig.39.5 see also Varicella zoster virus (VZV) Shock Neisseria meningitidis infections, 320, 321 Streptococcus pyogenes infections, 442 see also Septic shock Sialic acid residues influenza virus receptors, 236, Fig.18.6 lipooligosaccharide variants of Neisseria meningitidis, 316 Siberian tick typhus, Tab.30.3 Sickle cell trait, 350 Sigmoidoscopy, schistosomiasis, 393 Signaling systems Clostridium difficile, 64 Rickettsia, 373 Silicates, podoconiosis, 489 Sinusitis, 7, 433 Skin biopsy Leishmania amastigotes, Fig.19.2 leprosy, 284 commensals, 403, 409, 440 host defense mechanism, 405–406 Skin infections Aspergillus, gonococcal, 308, Fig.24.5 Staphylococcus aureus, 406, Fig.33.2, Fig.33.3, Fig.33.4, Fig.33.7 Skin lesions black, tick bites, 371, 376, Fig.30.1 leprosy, 277, 283, 284, Fig.22.1, Fig.22.2 see also Rash Skin tests, Histoplasma capsulatum, 206–207 Slapped cheek syndrome, 341, Fig.27.3 see also Parvovirus B19 infection S-layer, Campylobacter fetus subsp fetus, 35 Sleeping sickness, 468 see also African trypanosomiasis Smallpox, rash, 480 Small round structured viruses (SRSVs), 330 see also Noroviruses Snails, 395 control methods, 398 as Schistosoma intermediate host, 394–395 Sodium stibogluconate, leishmaniasis, 255–256 Soil Histoplasma capsulatum spread, 198, 209 Leptospira spread, 261 Sore throat, EBV infection, 115 South American trypanosomiasis see Chagas’ disease Space-occupying effects, tuberculous granulomas, 296 Space-occupying lesions, herpes simplex encephalitis vs, Tab.14.2 Sparfloxacin, leprosy, 285 SPATE (serine protease autotransporters of Enterobacteriaceae), 133 Species barrier, viruses crossing, 238 Spectinomycin, gonococcal infection, 310, Box.24.1 Spiramycin, toxoplasmosis, 458 Spirochetemia, Lyme disease, 25 Spirochetes borreliae, 19 Leptospira, 261 Splenic rupture, EBV infection, 120 Splenomegaly African trypanosomiasis, 468 babesiosis, 26 Coxiella burnetii infection, 83 EBV infection, 116, 120 Plasmodium infections, 352 visceral leishmaniasis, 253–254 Splinter hemorrhage, 419, 422, Fig.34.1 Spores, Aspergillus fumigatus, 2, 3, Fig.1.3 Sporotrichum, mycetoma, 12 Sporozoites, Toxoplasma gondii, 454, Fig.37.3 Spotted fevers, 376–377, Tab.30.1, Tab.30.3 causative agent and vector, Tab.30.1 Sputum blood-tinged, 429, 433 culture Histoplasma capsulatum, 206 Streptococcus pneumoniae, 429, 433, Fig.35.2 examination, aspergillosis, 10, 11, 12, Fig.1.8 Squamous cell carcinoma, bladder, 397 Staphylococcal scalded skin syndrome (SSSS), 405, 408, Fig.33.8 differential diagnosis, Tab.33.2 Staphylococcal toxic shock syndrome, 405, 408 Fig.33.7, Tab.33.2 Staphylococcus cell wall, 403, Fig.33.1 coagulase-negative (CNS), 410 coagulase-positive see Staphylococcus aureus as microbiota of skin/mucous membranes, 403, 409 species, 403 Staphylococcus aureus, 403–418 alpha-toxin, 404 antibiotic resistance, 306, 410–411 antibiotic (penicillin) susceptibility, 410–411 beta-toxin, 404 capsular polysaccharides, 404, 406 carotenoids, 406 catalase, Tab.33.1 test, 409–410, Fig.33.11 cell wall, 403, Fig.33.1, Tab.33.1 characteristics, 403–405 coagulase secretion, 404, 410 detection, 410, Fig.33.12 colony color, 406, 409 as commensal, 403, 409 culture, 409, Fig.33.9, Fig.33.10 cytotoxins released, 404 delta-toxin, 404 detection/identification, 409–410, Fig.33.8 enterotoxins, 404–405, 407, Tab.33.1 entry and spread within body, 405 enzymes secreted, 404, 406, Tab.33.1 exfoliative (epidermolytic) toxins, 404–405, 407, 408, Tab.33.1 exotoxins, 404–405, 406, Tab.33.1 facultative anerobic nature, 409 gamma-toxin, 404 GISA (glycopeptide-intermediate), 410–411 hemolysins, 404 immune evasion mechanisms, 404 infection see Staphylococcus aureus infection infectious dose, 412 mannitol fermentation, 409, 410, Fig.33.10 methicillin-resistant see Methicillin-resistant Staphylococcus aureus (MRSA) methicillin-sensitive, 405, 412 ‘microcapsules,’ 404 MSCRAMMs, 403, 404 Panton-Valentine leukocidin (PVL), 404, 405 person to person spread, 405 protein A, 403, 404, 406, 410 resistance to drying, 403 serotypes, 404 shedding and transmission, 405 staphylokinase, 404, 406 superantigens, 404–405, 407–408 toxins, 404–405, 407–408, Tab.33.1 mechanism of action, 407–408 transmission by fomites, 403 virulence and virulence factors, 306, Tab.33.1 VISA (vancomycin-intermediate), 410–411 Staphylococcus aureus infection bacteremia, 406, Tab.33.2 case history, 403 children, 405, 408 clinical presentation, 408–409 community-acquired, 404 diagnosis, 409–410 595 determinative tests, 409–410 differential diagnosis, Tab.33.2 epidemiology, 405 food poisoning, 407 host response, 405–408 immune response, 405–406 cell-mediated, 408 IgM and IgG, 406 innate, 405–406 immunocompromised patients, 405, 409 management, 410–412 methicillin-resistant see Methicillin-resistant Staphylococcus aureus (MRSA) methicillin-sensitive (MSSA), 405, 412 mortality, 409 neonates, 405 pathogenesis, 406–408 pneumonia, 407 prevention, 412 host defense, 405–406 skin, 306, Fig.33.2, Fig.33.3, Fig.33.4, Fig.33.7 Staphylococcus aureus sepsis (SAS), 408, 409 Staphylococcus epidermidis, 403 coagulase negative, 410, Fig.33.12 Staphylococcus saprophyticus, 403 Staphylokinase, 404, 406 Staphylothrombin, 404 Stercorarian transmission, trypanosomes, 464 Sterility, Chlamydia trachomatis associated, 49 Still’s disease, leishmaniasis vs, 255 Stomatococcus mucilaginosus, 410 Stool giardiasis, 143 samples, giardiasis diagnosis, 144, Fig.11.3, Fig.11.4 Stool antigen test, Helicobacter pylori, 156 Strawberry tongue, 444, Fig.36.5 Streptococcal pharyngitis, 439, 443–444, Fig.36.1, Tab.9.2 complications, 443–444, Fig.36.5 differential diagnosis, 446 management, 448 Streptococcal toxic shock-like syndrome, 422 Streptococcal toxic shock syndrome (STSS), 442, 444, 447 Streptococci group A see Streptococcus pyogenes Lancefield group A, 445 Lancefield groups C and G, 445 ‘mitis group,’ 420 see also Streptococcus mitis viridans (a-hemolytic), 420 antibiotic resistance, 424 cell wall, 420–421 detection/isolation and identification, 422, 433–434 growth on blood agar, 420, Fig.34.3 horizontal gene transfer, 424 infections associated, 422, 424 optochin susceptibility test, 420, Fig.34.4 see also Streptococcus mitis; Subacute bacterial endocarditis (SBE) Streptococcus bovis, 421 Streptococcus cristatus, 420 Streptococcus gordonii, 420 Streptococcus infantis, 420 Streptococcus mitis, 419–427 antibiotic resistance, 424 antibodies to, 421 bacteremia, 421 blood culture, 419, 422, Fig.34.2 cell wall, 420–421 characteristics, 420–421 colonization of oropharynx, 420, 421 colony color/appearance, 420, Fig.34.3, Fig.34.4 C-polysaccharide and phosphocholine, 420 detection/identification, 420, 422, Fig.34.3, Fig.34.4 entry and spread within body, 421 growth on blood agar, 420, Fig.34.3 IgA1 protease, 420, 421 infections clinical features, 422 diagnosis, 422–423 management/prevention, 423–424 596 INDEX opportunistic, 421 see also Subacute bacterial endocarditis (SBE) person to person spread, 421 S pneumoniae relationship, 420 Streptococcus oralis, 420 Streptococcus parasanguinis, 420 Streptococcus peroris, 420 Streptococcus pneumoniae, 429–438 adherence, 431–432 adhesins, 431 antigenic types, 430 autolysins (LytA), 431, 433 autolysis induction, 433 bullet-shaped diplococci, 420, 429, Fig.35.2, Fig.35.3 carriers, 432 CbpA (SpsA), 431 cell wall, 430–431, Fig.35.5 characteristics, 430–431 choline-binding proteins (CBPs), 431, Fig.35.5 colonization of pharynx, 432 colony appearance, 430, Fig.35.4 conjugate vaccines, 315 culture on blood agar, 430, 433, Fig.35.4, Fig.35.6 cytotoxin (pneumolysin), 431, 433 detection/identification, 433–434, Fig.35.6, Fig.35.7 entry and spread within body, 431–432 Gram stain, 429, Fig.35.2 Fig.35.3 hemolysins, 431 horizontal gene transfer, 434 hydrolases (LytB and LytC), 431, 433 IgA1 protease, 431 immune evasion mechanisms, 431, 432 incomplete hemolysis, 430, Fig.35.6 mucoid strains, 430, Fig.35.4 neuraminidase (NA), 431 nonmucoid strain, 433, Fig.35.6 optochin susceptibility test, 433, Fig.35.7 PcpA, 431 penicillin resistance, 434 person to person spread, 432 phagocytosis, 430, 432 polysaccharide capsule, 430–431, 434, Fig.35.5 PspA, 431 serotypes, 434 Streptococcus mitis relationship, 420 virulence determinants, 430, Tab.35.1 Streptococcus pneumoniae infection, 432 antibodies, 432 bacteremia, 433 case history, 429, Fig.35.1 clinical presentation, 433 diagnosis, 433–434 differential diagnosis, 434 host response, 432–433 immune response, 432 immunocompromised patients, 432 management, 434 meningitis, 315, 431, 433 mortality, 430 pathogenesis, 432–433 prevention, 434–435 types, 430 vaccines, 434–435 7-valent conjugate, 435 23-valent, 434 Streptococcus pyogenes, 439–452 adhesins, 440, 441 adhesion, 440, 441, 442 antibodies to, 445–446 antigen detection, 445 bacitracin sensitivity, 445, Fig.36.9 capsule (hyaluronic), 440, 442 carriage, 440 cell wall, 439, Fig.36.4 characteristics, 439–440 culture on blood agar, 439, 445 culture on trypticase soy agar, 440, Fig.36.3 detection/identification, 445–446 entry and spread within body, 440–441 erythromycin resistance, 448 exotoxins, 442 F protein (fibronectin-binding protein), 440, 441, 442 Gram stain, 439, Fig.36.2 group-specific carbohydrate, 440 hemolysins, 442 immune evasion, 441–442 Lancefield typing system, 440 latex agglutination, 445, Fig.36.11 lipoteichoic acid, 439, 440 M1 and M3 serotypes, 444 M protein, 439–440, 441, 442 antibodies, 445–446 class I and II, 440 nephritogenic types, 445 serotypes, 440 opacity factor (OF), 440 pathogenicity islands (PAIs), 440 penicillin sensitivity, 448 person to person spread, 441 phagocytosis, 441, 442 pili, 440 pyrogenic exotoxin speA, speC, 444 pyrogenic exotoxin SpeB, 441, 442–443 PYR test, 445, Fig.36.10 serotype M1T1, 442 streptolysins O and S, 440, 442, Fig.36.3 superantigens, 442 T antigen, 440 transmission by droplets/fomites, 441 virulence factors, 439, Tab.36.1 Streptococcus pyogenes infection acute glomerulonephritis, 440, 445 bacteremia, 444 case history, 439, Fig.36.1 clinical presentations, 443–445 diagnosis, 445–446 differential diagnosis, 446–448 glomerulonephritis, 440 host response, 441–443 invasive, 444 local, 443–444 management, 448 pharyngitis see Streptococcal pharyngitis prevention, 448 secondary complications, 440 sequelae, 444–445 Streptococcus sanguinis, 420 ‘Streptococcus viridans,’ 420 see also Streptococci, viridans Streptokinase, Streptococcus pyogenes, 442 Streptolysin O, 440, 442, Fig.36.3 antibodies (ASO titer), 446 Streptolysin S, 440, Fig.36.3 Streptomyces, mycetoma, 12 Stress, VZV reactivation, 478 Stress ulcers, acute, 156 ‘String’ test, giardiasis, 144 Stroke, 155, 422 Subacute bacterial endocarditis (SBE) case history, 419, Fig.34.1, Fig.34.2 clinical presentation, 422 diagnosis, 422–423 differential diagnosis, 422–423 management, 423–424 pathogenesis, 422 risk factors, 422 Streptococcus bovis causing, 421 Streptococcus mitis causing, 420 see also Streptococcus mitis Subconjunctival hemorrhage, 419, Fig.34.1 Substance P Clostridium difficile infection, 66 Staphylococcus aureus infection, 407 Subungual hemorrhage, 419, 422, Fig.34.1 Sulfadiazine, toxoplasmosis, 458 Sulfadoxine-pyrimethamine combinations, 354 Superantigens Staphylococcus aureus, 404–405, 407–408 Streptococcus pyogenes, 442 ‘Superbugs,’ Clostridium difficile, 66 Superior vena cava (SVC) syndrome, acute pulmonary histoplasmosis, 202 Superoxide dismutase, Coxiella burnetii infection, 79 Suramin, African trypanosomiasis, Tab.38.1 Swimmers’ itch, 396 Swimming, norovirus gastroenteritis associated, 331 Sydenham’s chorea, 445 Syncytia formation, RSV infection, 362, Fig.29.3, Fig.29.4 see also Multinucleate giant cells Systemic lupus erythematosus (SLE), 308, 423 Tachycardia Helicobacter pylori infection, 149 RSV bronchiolitis, 361 Tachypnea Chlamydia trachomatis infection, 50 invasive aspergillosis, RSV bronchiolitis, 361 Tachyzoites, Toxoplasma gondii, 454, 456, 458, Fig.37.3, Fig.37.4 Tactile test, leprosy, 284 Tamm Horsfall protein, 134, 306 Tampons, toxic shock syndrome, 408 Tapeworms, 107 3TC (lamivudine), 170 T cell(s) activation continuous, tuberculosis, 295, 296 HIV infection, 223 Mycobacterium tuberculosis, 292–293 antigen presentation, Histoplasma capsulatum infections, 201 Aspergillus fumigatus infections, 5–6 CD4+ see CD4+ T cells cytokines, 201, 295 cytotoxic (CD8+) see CD8+ T cells EBV infection, 116 Histoplasma capsulatum infections, 201 influenza, 240 leprosy, 281, Fig.22.4 Leptospira infections, 263 memory EBV infection, 119, 120, Fig.9.4 HSV-2 infections, 189 proliferation, EBV infection, 118, Fig.9.4 regulatory, Aspergillus fumigatus infections, Th0 cell differentiation, HIV infection, 222 Th1 Aspergillus fumigatus infections, BCG vaccine and, 299 Chlamydia trachomatis infection, 47 Coxiella burnetii infection (Q fever), 79 cytokines, 5, 47, 109, 133, 281, Fig.22.4 E coli infection, 133 echinococcosis, 109 function/actions, Fig.17.10 HIV infection, Fig.17.10 Leishmania infections, 252, 253 Listeria monocytogenes infections, 272 Mycobacterium tuberculosis infection, 295 overactivity, X-linked lymphoproliferative disease, 121 Th1 and Th2 balance Aspergillus fumigatus infections, Coxiella burnetii infection (Q fever), 80 lepromatous leprosy, 281 Th2 Aspergillus fumigatus infections, Borrelia burgdorferi infection, 24 Coxiella burnetii infection (Q fever), 80 cytokines, 6, 109, 281, Fig.22.4 down-regulation, histoplasmosis, 201 EBV infection, 120 echinococcosis, 109 HIV infection, Fig.17.10 Leishmania infections, 252, 253 Wuchereria bancrofti infections, 487 X-linked lymphoproliferative disease, 121 tuberculosis, 295 T-cell lymphomas, EBV association, 116 Teichoic acid Staphylococcus aureus cell wall, 403, Fig.33.1 Streptococcus pneumoniae, 430–431, Fig.35.5 Tenesmus lymphogranuloma venereum (LGV), 52 rectal Neisseria gonorrhoeae infection, 307 Tenosynovitis, disseminated gonococcal infection, 308 Terminal ileitis, Campylobacter jejuni, 35 Testicular atrophy, leprosy, 283 INDEX Tetracycline Coxiella burnetii infection, 88, 89 Rickettsia infections, 378 trachoma, 55 Thalidomide, leprosy, 285 Thayer-Martin (T-M) agar medium detection, 308–309 Neisseria gonorrhoeae culture, 309, Fig.24.7 3-Thia-cytidine (lamivudine), 170 Thrombin coagulase binding, 404 Streptococcus mitis, 422 Thrombocytopenia Aspergillus fumigatus infections, chickenpox complication, 479 EBV infection, 120 human granulocytic ehrlichiosis, 26 leishmaniasis, 254 Leptospira infection, 261, 264 Neisseria meningitidis infection, 321 progressive disseminated histoplasmosis, 203 Rickettsia infection, 375, 377 Thrombosis African trypanosomiasis, 467 Coxiella burnetii infection (Q fever), 84 invasive aspergillosis, malaria, 352 meningococcal disease, 321 Rickettsia infection, 375, 376 Staphylococcus aureus, 408 Wuchereria bancrofti infections, 485 Thymidine kinase aciclovir phosphorylation, 182, 192 gene mutations, 192 HSV-1, 182 HSV-2, 192 penciclovir phosphorylation, 183 VZV, 480 Thymocytes, HIV infection, 223 Tick-borne encephalitis (TBE) virus, 26 Ticks, Fig.30.3 avoidance/precautions against, 27–28 bites, appearance, 371, 376, Fig.30.1 Coxiella burnetii transmission, 74 diseases transmitted by, 26 feeding method, 373 life cycle, 20–21, Fig.2.4 Lyme disease transmission, 20–22 Rickettsia transmission, 373, Fig.30.3, Tab.30.1 salivary gland proteins (Salp15), 22, 24 sizes of genera, Fig.2.5 see also Ixodes Tinnitus, histoplasmosis, 202 Tissue inhibitors of matrix metalloproteinases (TIMPs), schistosomiasis, 396 Tissue necrosis central, meningococcal disease, 321 E coli infection, 134 Histoplasma capsulatum, 199, 206 Leptospira infection, 263 Listeria monocytogenes infections, 271 RSV bronchiolitis, 365 tuberculosis, 295 Toll-like receptors (TLRs) Aspergillus fumigatus, Borrelia burgdorferi, 24, 25 down-regulation, Wuchereria bancrofti infections, 487 HIV infection, 223 Mycobacterium tuberculosis, 292 Salmonella infections, 387 TLR1, tuberculoid leprosy, 280 TLR2, 4, 280 TLR4, Coxiella burnetii infection, 75, 78 E coli infection, 133 Histoplasma capsulatum hsp60 binding, 199 TLR9, HSV-2 infections, 189 tuberculoid leprosy, 280 Tongue, strawberry, 444, Fig.36.5 Tonsils EBV infection, 116 inflamed, streptococcal pharyngitis, 439, Fig.36.1 TORCH, 457 Torulopsis, mycetoma, 12 Toxic megacolon Campylobacter jejuni infection, 36 Clostridium difficile infection, 63, 68 nontyphoid salmonella infection, 388 Toxic shock-like syndrome, streptococcal, 422 Toxic shock syndrome staphylococcal, 405, 408, Fig.33.7, Tab.33.2 streptococcal, 442, 444, 447 Toxic shock syndrome toxin (TSST-1), 405, 406, 407–408 Toxoplasma gondii, 453–462 antibodies to, 455, 457 bradyzoites, 454, 456 characteristics, 453 entry and spread within body, 453–454, 455–456 HIV co-infection, 457 life cycle, 453–454, Fig.37.3 in macrophage, 455 oocysts, 453–454, Fig.37.2, Fig.37.3 parasitophorous vacuole, 455 person to person spread, 455 reactivation, 456 seropositivity for, 455 sporozoites, 454, Fig.37.3 tachyzoites, 454, 456, 458, Fig.37.3, Fig.37.4 transmission, 454–455 cats feces, 454, 455 vertical transmission, 455 Toxoplasmosis antibodies, 455, 457 case history, 453, Fig.37.1 chorioretinitis see Chorioretinitis chronic, 456 clinical presentations, 456–457 cysts, 454, Fig.37.5 sites, 454 diagnosis, 457 differential diagnosis, 457, Tab.37.1 infectious mononucleosis vs, Tab.9.2 encephalitis, 453 Fig.37.1, 457, Tab.37.1 experimental mouse model, 455 fetal infection, 456, 458 host response, 455–456 immunocompromised patients, 456, 457 management, 458 in pregnancy, 456 management, 458 primary infection (children/adults), 456–457 reactivation, 456 seroconversion, 455, 458 Trachoma, 42 annual mass treatment, 55 clinical features, 50–51 differential diagnosis, 54 endemicity, 45 epidemiology, 45 global distribution, Fig.4.3 management, 55 pathogenesis, 48 prevention/elimination, 55–56 risk factors and prevention, 55–56 serovars associated, Tab.4.1 see also Chlamydia trachomatis Transcriptional transactivators, X antigen, of HBV, 162 Transcription-mediated amplification (TMA) tests, Chlamydia trachomatis, 52 Transesophageal echocardiogram, subacute bacterial endocarditis, 419 Transferrin receptor, down-regulation, Chlamydia trachomatis infection, 47 Transforming growth factor-b (TGF-b) Coxiella burnetii infection (Q fever), 80 release by macrophage in leishmaniasis, 252 schistosomiasis, 396 Streptococcus pyogenes infection, 442 Wuchereria bancrofti infection, 487 Trans-stadial transmission, Rickettsia, 373 Transthoracic echocardiography (TTE), Coxiella burnetii infection, 73, Fig.6.1 Travelers malaria, 350 precautions giardiasis prevention, 145 HAV infection prevention, 171 597 histoplasmosis prevention, 210 malaria prevention, 355 Neisseria meningitidis infection prevention, 324 Salmonella infections, 386 Salmonella Typhi infections, 386 schistosomiasis, 398 Traveler’s diarrhea, Giardia lamblia, 141 Trehalose dimycolate, Mycobacterium tuberculosis cell wall, 291, 294, Fig.23.3 Trematodes, Schistosoma, 393 Triatoma infestans, 464, Fig.38.4 Triatomine bugs, 464, Fig.38.4 control, 471 Trichiasis, Chlamydia trachomatis infection, 45, 50, Fig.4.4 Trigeminal ganglia HSV-1 infection, 178, 180 zoster, 479, 481 tRNA, absence, Chlamydia trachomatis, 42 Tropical pulmonary eosinophilia (TPE), 488 Trypanosoma, 463–474 characteristics, 463 entry and spread within body, 463–464 life cycle, 464–465, Fig.38.6 nonpathogenic species, 466 person to person spread, 464–465 vectors, 464, Fig.38.4, Fig.38.5 zoonotic infection, 464 Trypanosoma brucei, 463, Fig.38.2 antigenic variation, 467, Fig.38.8 CNS invasion, 463–464, 468 immune evasion mechanisms, 467 immune response to, 467 killing of, 466 life cycle, 464–465, Fig.38.6 metacyclic trypomastigotes, 464 transmission and spread within body, 463–464 variant specific glycoproteins (VSGs), 467, 468 see also African trypanosomiasis Trypanosoma brucei gambiense, 463, 466, 468, Tab.38.1 Trypanosoma brucei rhodesiense, 463, 466, 468, Tab.38.1 antigenic variation, 467, Fig.38.8 serum resistance-associated protein (SRA), 466 Trypanosoma cruzi, 463, Fig.38.3, Tab.38.1 amastigotes, 464 cross-reactive antigens (with host), 468 detection, 463 host response, 468 intracellular, 468 life cycle, 464, Fig.38.7 mucin-type glycoprotein and GPI, 468 pseudocyst, 464 trypomastigote, 464 see also Chagas’ disease Trypanosomal chancre, 468 Trypanosomiasis African see African trypanosomiasis South American see Chagas’ disease Trypticase soy agar, Streptococcus pyogenes culture, 440, Fig.36.3 Tryptophan depletion, Toxoplasma gondii sensitivity, 455 Rickettsia metabolism, 375 Tsetse fly, 464, Fig.38.5 traps/control, 471, Fig.38.11 Tubercles, tuberculous granulomas, 293, 295 Tuberculoid leprosy see Leprosy Tuberculoma, 298 Tuberculosis active disease, 295, Fig.23.7 case history, 291, Fig.23.1 children, 299 clinical presentation, 296 clinical spectrum, 296, Fig.23.7 containment phase, 295 diagnosis, 297–298 gold standard (culture), 292, 297 skin test, 299 differential diagnosis, 298 chronic pulmonary histoplasmosis vs, 203 elimination of M tuberculosis, 295, Fig.23.7 epidemiology, 293–294 global distribution/cases, Tab.23.1 granulomas, 293, 295, Fig.23.7 cavitation, 296 598 INDEX formation, 295–296, Fig.23.6 HIV co-infection, 293–294 host response, 294–296 immune response cell-mediated, 293, 295, 296 determining host response, 296 intestinal, 293 laryngeal, 293 latent, 293 management, 298–299 quadruple therapy, 298 meningitis, 296, 298 miliary, 293 mortality, 293 multidrug-resistant (MDR-TB), 298, 299 notifiable disease (UK), 299 post infection stage, 295 prevention, 299 primary infections, 292–293, 295, Fig.23.7 pulmonary, 293 reactivation, 296, Fig.23.7 risk factors, 294, 295 vaccines, 299 see also Mycobacterium tuberculosis Tubular necrosis, Leptospira infection, 263 Tularemia, Leptospira infection vs, 265 Tumor necrosis factor-a (TNF-a) African trypanosomiasis, 467 Aspergillus fumigatus infections, Chlamydia trachomatis infection, 48 Clostridium difficile infection, 66 Coxiella burnetii infection, 79 Histoplasma capsulatum infections, 201 Leishmania infections, 252 Leptospira infections, 265 Mycobacterium tuberculosis infection, 295 Neisseria gonorrhoeae infection, 306 Neisseria meningitidis infection, 320 Plasmodium infection, 351 as pyrogen, 352, 433 Rickettsia infection, 375 schistosomiasis, 396 Streptococcus pneumoniae infections, 433 Streptococcus pyogenes infection, 442 Toxoplasma gondii, 455 Type III secretion system Campylobacter invasive antigens (Cia) and, 35 Salmonella enterica, 384, 385, 387 Type IV secretion apparatus Helicobacter pylori, 149, Fig.12.3 Rickettsia, 372 Typhidot test, Salmonella Typhi, 389 Typhim Vi vaccine, 389 Typhoid fever see Enteric fever ‘Typhoid Mary,’ 385 Typhus, 376, Tab.30.3 causative agents and vector, Tab.30.1 clinical features, 377 epidemic, 377, Tab.30.3 murine (endemic), 377, Tab.30.3 scrub, 377, Tab.30.1, Tab.30.3 Ulcers cutaneous leishmaniasis, 253, Fig.19.6 genital see Genital ulcers mouth/mucosal, chronic progressive histoplasmosis, 204, Fig.16.7 peptic see Peptic ulcer disease stress, acute, 156 Urea breath test, Helicobacter pylori, 156 Urease test, rapid, Helicobacter pylori, 156 Uremia, Leptospira infection, 261 Urethral discharge, gonorrhoeae, 303, 307, Fig.24.1 Urethritis gonococcal, 303, 307, 309 nongonococcal Chlamydia trachomatis, 49 differential diagnosis, 54 post-gonococcal, 49 Urinary tract, host defense mechanisms, 306 Urinary tract infections (UTIs) causative bacteria, 131 Chlamydia trachomatis see Chlamydia trachomatis infection epidemiology, 132 Escherichia coli causing see Escherichia coli infection risk factors, 132 Urine bacteria numbers, 134–135 blood in, differential diagnosis, Tab.32.1 culture, Escherichia coli, 129, 134–135, Fig.10.1 Schistosoma eggs in, 393, 397–398 white cell casts, 135 Urolithiasis, 135 Urticaria, 277 Uvula, redness, infectious mononucleosis, 115 Vaccines, subunit, preparation method, 170 Vaginal discharge, Neisseria gonorrhoeae, 307 Vaginitis, gonococcal infection differential diagnosis, 309 Valaciclovir herpes simplex encephalitis, 183 VZV infections, 480 Vancomycin, 412 Clostridium difficile infection, 68–69, Tab.5.1 Staphylococcus aureus resistance, 410–411 Streptococcus pneumoniae infection, 434 Vancomycin-resistant enterococci (VRE), 411 Vanilloid receptor (VR1), Clostridium difficile infection, 66 Varicella see Chickenpox (varicella) Varicella embryopathy, 479 Varicella pneumonia, 478, 479 Varicella zoster virus (VZV), 475–484, Fig.39.3 antibodies to, 477, 480 characteristics, 475 clinical attack rate, 476 entry and spread within body, 475–476 host response to, 477–478 infections clinical features, 478–479 diagnosis, 480 immune response, 477–478 immunocompromised patients, 478 incidence, 477 management, 480–481 prevention, 481 see also Chickenpox (varicella); Shingles (zoster) latency, 476, Fig.39.3 incidence, 477 nucleocapsid and lipid envelope, 475, Fig.39.2 person to person spread, 476–477 reactivation, 476, 477, 478 factors predisposing to, 476, Tab.39.1 in HIV infection, 478 replication, 475 shedding, 476, 477 thymidine kinase, 480 vaccine (OKA strain), 481 vaccine-associated chickenpox, 481 viremia, 475, Fig.39.3 Vascular permeability increase Neisseria meningitidis infection, 320 Rickettsia infection, 375 Vasculitis Coxiella burnetii infection (Q fever), 80 Leptospira infection, 263–264 Listeria monocytogenes infection, 272 Neisseria meningitidis infection vs, 322 Rickettsia infection, 375 VCAM-1, up-regulation, Rickettsia infection, 375 Vegetations, cardiac, 421 Coxiella burnetii infection, 81, 85 Streptococcus mitis infection, 421 Vesicles chickenpox, 475, 478, Fig.39.1, Fig.39.4 HSV-2 infection, 187 impetigo (streptococcal), 444 influenza virus infection, 236 Listeria monocytogenes in, 271 Salmonella infection, 385 see also Bullae Vesico-ureteric reflux, 131, 135 Vi-rEPA vaccine, 389 Viridans streptococci see Streptococci, viridans; Streptococcus mitis Vitronectin, 305 Vivotif-Ty21a vaccine, 389 Vomiting herpes simplex encephalitis, 177, 181 norovirus gastroenteritis, 329, 334 pathogenesis, 333–334 see also Gastroenteritis Voriconazole, invasive aspergillosis, 13 VZV see Varicella zoster virus (VZV) Water-borne infections (water contamination) coxsackie B virus, 100 Giardia lamblia, 140 prevention, 145 Helicobacter pylori, 151–152 Leptospira, 261 norovirus gastroenteritis, 331 Salmonella Typhi, 385 Toxoplasma gondii transmission, 454–455 Water supply, safe, schistosomiasis prevention, 398 Weakness, Campylobacter jejuni infection, 33 Weight loss, tuberculosis, 291, 296 Weil-Felix test, 378 Weil’s disease, 264 Western blotting Coxiella burnetii, 87 HIV infection, 226 Lyme disease, 19, 26–27 Wheezing, RSV bronchiolitis, 361, 365 White blood cell count (WBC), infectious mononucleosis, 122 Whitlow, herpetic, 188 Widal test, 389 ‘Winter vomiting disease,’ 334 Wolbachia, 490 World Health Organization (WHO) HBV vaccine recommendation/policies, 171 HIV infection stages, 224, Tab.17.2 influenza surveillance, 244 malaria management, 354 ocular Chlamydia trachomatis infection grading, 51 poliomyelitis eradication, 104 schistosomiasis mass chemotherapy, 399 Wright-Giemsa staining, 206 Wuchereria bancrofti, 485–491 antibodies to, 487, 488, 489 antigen tests, 489 bacterial endosymbionts (Wolbachia), 490 characteristics, 485, Fig.40.2 detection, 489 endemic areas, 485, 486–487, 489 entry and spread within body, 485–486 L1 larvae, Fig.40.3 L3 larvae, 486, 487, Fig.40.3 life cycle, 485–486, Fig.40.3 mass chemotherapy against, 490, 491 microfilariae, 485, 486, 487, 488, 489 morphology, 485, Fig.40.2 persistent infections, 487 person to person spread, 486 prevention of infections, 490–491 X-linked lymphoproliferative disease (XLPD), 121 Yeast, HBV subunit vaccine preparation, 170 Zanamavir, influenza, 243–244 Zidovudine (AZT), HIV infection, 227–228 Ziehl-Neelsen method Fite modification, 278, 284 Mycobacterium leprae, 277, 278, 284, Fig.22.2 Mycobacterium tuberculosis, 291, 297, Fig.23.2 Zipper-like process Rickettsia infection of endothelial cells, 372 Streptococcus pyogenes adhesion, 442 Zollinger Ellison syndrome, 156 Zoonosis Campylobacter jejuni, 34 Chlamydiaceae species, 42 Giardia lamblia, 140 leishmaniasis, 250 Leptospira infection (leptospirosis), 261 Q fever, 74 trypanosomiasis, 464 Zoster see Shingles (zoster) [...]... England and Wales in recent years The incidence of Lyme disease in Europe is shown in Table 1 Table 1 Reported cases or estimated cases and incidence by European country Year 2001 2002 2003 2004 2005 Incidence [cases] Incidence [cases] Incidence [cases] Incidence [cases] Incidence [cases] Country Slovenia 163 [3232] 169 [3359] 177 [3524] 193 [3849] 206 [4123] – [–] – [–] – [–] – [–] 135 [–] 74 [12000] –... Lyme disease is mediated by inflammation induced by B burgdorferi The manner in which the bacterium induces inflammation in the host is not fully understood Spirochetemia results in the invasion of tissues such as the heart and joints and the host reponds with a vigorous inflammatory response The role of B burgdorferi PAMPs–TLR interactions in the induction of pro-inflammatory cytokines has been questioned... 31.6 cases per 100 000 persons Although Lyme disease is common in the United States and Scandinavia and has been reported in other countries in Western and Eastern Europe, Japan, China, and Australia, it is not a common disease in the UK, with less than 200 cases per year being reported in England and Wales in recent years The incidence of Lyme disease in Europe is shown in Table 1 Table 1 Reported cases... proinflammatory signals recruit neutrophils into sites of infection TNF-a enhances the capacity of neutrophils to damage hyphae; G-CSF, GM-CSF, and especially IFN-g enhance monocyte and neutrophil activity against hyphae; while IL-15 enhances hyphal damage and IL-8 release by neutrophils IL-8 recruits more neutrophils to sites of inflammation and mediates release of antimicrobial peptides 5 6 CASE 1... Methods used to acquire data vary in different European countries Incidence is the number of new cases per 100 000 population per year *estimated number of erythema migrans case- patients **voluntary reporting ***estimate based on physician survey Taken from http://www.eurosurveillance.org/ew/2006/060622.asp 24 CASE 2 • BORRELIA BURGDORFERI AND RELATED SPECIES 2 What is the host response to the infection... all reported cases are confined to New England (Connecticut, Maine, Massachusetts, New Hampshire), the Mid-Atlantic CASE 2 • BORRELIA BURGDORFERI AND RELATED SPECIES 23 region (Delaware, Maryland, New Jersey, Pennsylvania), the East-North Central region (Wisconsin), and the West North-Central region (Minnesota) In 2005 the overall incidence of Lyme disease in the United States was 7.9 cases per 100000... instillation of ketoconazole via fiberoptic bronchoscopy However, topical therapy is labor-intensive and nonapplicable for the cases with multiple aspergilloma SUMMARY hyphae, which invade the host tissue Together the hyphae can form a dense mycelium in lungs However, in the case of healthy immunocompetent individuals the spores are prevented from reaching this stage due to the optimal immune responses,... increase in antibody CASE 1 • ASPERGILLUS FUMIGATUS production, seems to facilitate fungal invasion rather than protection ● ● ABPA pathogenesis is associated with elevated levels of antigen-specific circulating IgG and IgE B cells secrete IgE spontaneously as a result of IL4 production, while IL-5 recruits eosinophils Development of type I and type II hypersensitivity leads to inflammation and tissue... against major human fungal pathogens Curr Opin Microbiol, 2002, 5: 386–391 Denning DW, Stevens DA Antifungal and surgical treatment of invasive aspergillosis: review of 2,121 published cases Rev Infect Dis, 1990, 12: 1147–1201 CASE 1 • ASPERGILLUS FUMIGATUS 17 REFERENCES Fujimura M, Ishiura Y, Kasahara K, et al Necrotizing bronchial aspergillosis as a cause of hemoptysis in sarcoidosis Am J Med Sci, 1998,... B Aspergilloma pathogenesis is based on acute immune inflammation C Aspergilloma mostly develops in pre-existing lung cavities A A fumigatus can only grow at low temperatures D There could be multiple aspergillomas B Its natural habitat is soil E It requires intensive antifungal therapy C A fumigatus produces large spores D Aspergillus is a filamentous fungus with branching hyphae E Wounds are the

Ngày đăng: 13/06/2016, 22:31

Xem thêm: Case lam sang benh truyen nhiem

TỪ KHÓA LIÊN QUAN

Mục lục

    Pathogens by type and body systems affected

    Case 2: Borrelia burgdorferi and related species

    Case 7: Coxsackie B virus

    Case 13: Hepatitis B virus

    Case 14: Herpes simplex virus 1 (HSV-1)

    Case 15: Herpes simplex virus 2 (HSV-2)

    Case 17: Human immunodeficiency virus (HIV)

    Case 29: Respiratory syncytial virus (RSV)

    Answers to Multiple Choice Questions

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w