1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu tổng hợp và đặc trưng vật liệu mới, cấu trúc nano ứng dụng trong quang hóa xúc tác phân hủy thuốc nhuộm

155 619 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 155
Dung lượng 5,49 MB

Nội dung

VIN HN LM KHOA HC V CễNG NGH VIT NAM HC VIN KHOA HC V CễNG NGH Lấ TH MAI HOA NGHIấN CU TNG HP V C TRNG VT LIU MI, CU TRC NANO NG DNG TRONG QUANG HểA XC TC PHN HY THUC NHUM LUN N TIN S HểA HC Chuyờn ngnh: Húa lý thuyt v Húa lý Mó s: 62.44.01.19 Ngi hng dn khoa hc: PGS.TS V Anh Tun H ni, nm 2016 LI CM N Trc ht, em xin trõn trng cm n n PGS.TS V Anh Tun v cỏc thy, cụ giỏo ó tn tỡnh hng dn v truyn t kin thc, kinh nghim, h tr v giỳp em sut quỏ trỡnh em thc hin lun ỏn Tụi xin chõn thnh cm n th cỏn b phũng Húa lý B mtVin Húa hc- Vin Hn lõm Khoa hc v Cụng ngh Vit Nam ó nhit tỡnh giỳp tụi thi gian thc hin cỏc ni dung ca lun ỏn Tụi xin chõn thnh cm n sõu sc ti gia ỡnh, bn bố, ng nghip ti V Giỏo dc v o to, Dy ngh, Ban Tuyờn giỏo Trung ng ó quan tõm, ng viờn v to iu kin thun li giỳp tụi sut thi hc v nghiờn cu Tỏc gi lun ỏn Lờ Th Mai Hoa i LI CAM OAN Tụi xin cam oan, õy l cụng trỡnh nghiờn cu tụi thc hin di s hng dn ca ngi hng dn khoa hc Mt s nhim v nghiờn cu l thnh qu th ó c cỏc ng s cho phộp s dng Cỏc s liu v kt qu trỡnh by lun ỏn l trung thc v cha tng cụng b bt k cụng trỡnh lun ỏn no khỏc Tỏc gi lun ỏn Lờ Th Mai Hoa ii DANH MC CC T VIT TT GO Graphen oxit GOVS Graphen oxit búc lp bng vi súng GOSA Graphen oxit búc lp bng siờu õm rGO Graphen oxit kh v graphen AOPs H2O2 Phng phỏp oxy húa nõng cao (Advanced Oxidation Processes) Hydrogen peroxide *OH Hydroxyl TS Tng lng cht rn (Total Solids) SS Cht rn huyn phự (Suspended Solid) DO Hm lng oxy hũa tan (Disolved oxigen) BOD Nhu cu oxi húa sinh hc (Biochemical oxigen Demand) COD Nhu cu oxi húa hc (Chemical oxigen Demand) TOC Tng cacbon hu c (Total Organic Carbon) TOD Nhu cu oxy tng cng (Total Oxygen Demand) Fe3O4-GO Fe3O4 bc Graphen oxit (GO) CoFe2O4-GO Coban (Co), Fe2O4 bc Graphen oxit (GO) ZnFe2O4-GO Km (Zn), Fe2O4 bc Graphen oxit (GO) Fe0-Fe3O4-GO Fe, Fe3O4 bc Graphen oxit (GO) Fe(III)-GO Fe(III) oxo cluster Graphen oxit (GO) CVD Phng phỏp lng ng pha hi húa hc CNTs ng nano cacbon XRD Ph nhiu x Rnghen (X-ray Diffraction) FTIR BT Quang ph hng ngoi (Fourier Transform Infrared Spectroscopy) Ph in t quang tia X (X-ray Photoelectron Spectroscopy) Kớnh hin vi in t truyn qua (Transmission electron microscopy) Kớnh hin vi in t truyn qua phõn gii cao (High resolution Transmission electron microscopy) ng nhit hp ph kh nitrogen (Braunauer Emmett Teller) UV-Vis Ph hp th t ngoi kh kin VMS Phng phỏp xỏc nh t tớnh ca vt liu bng t k mu rung (Vibrating Sample Magnetometer) XPS TEM HR-TEM iii DANH MC CC HèNH V Hỡnh 1.1 Hỡnh 1.2 Hỡnh 1.3 Hỡnh 1.4 Hỡnh 1.5 Hỡnh 1.6 Hỡnh 1.7 Hỡnh 1.8 Hỡnh 1.9 Hỡnh 1.10 Hỡnh 1.11 Hỡnh 1.12 Hỡnh 1.13 Hỡnh 2.1 Hỡnh 2.2 Hỡnh 2.3 Hỡnh 2.4 Hỡnh 2.5 Hỡnh 2.6 Hỡnh 2.7 Hỡnh 2.8 Hỡnh 2.9 Hỡnh 2.10 Hỡnh 2.11 Hỡnh 2.12 Hỡnh 2.13 Hỡnh 2.14 Graphen - vt liu cú cu trỳc c bn (2D) cho cỏc vt liu cacbon khỏc (0D, 1D, v 3D) Cỏc liờn kt ca mi nguyờn t cacbon mng graphen Phng phỏp tỏch lp graphit bng bng dớnh C ch to mng graphen bng phng phỏp nung nhit SiC Quỏ trỡnh oxi húa t graphit thnh GO (a) v quỏ trỡnh kh GO bng hydrazine (b) c xut C ch ngh ca quỏ trỡnh tng hp GO v graphen Nc thi dt nhum Cụng thc cu to ca RR195 Cỏc phng phỏp loi b mu thuc nhum Phn ng Fenton ng th v Fenton d th C ch phn ng ca TiO2/graphen vi Methylene blue C ch phn ng ca ZnO vi cỏc cht hu c C ch phn ng ca Fe3O4/graphen vi cỏc cht hu c S tng hp graphen oxit vi súng (GOVS) v graphen oxit siờu õm (GOSA) t graphen oxit S tng hp Fe3O4-GO S tng hp CoFe2O4-GO S tng hp ZnFe2O4-GO S tng hp Fe0-Fe3O4-GO ng chun v ph UV-Vis ca thuc nhum RR195 th lgC theo t i vi phn ng bc S chựm tia ti v chựm tia nhiu x trờn tinh th tự ca pic phn x gõy kớch thc ht Quỏ trỡnh phỏt quang in t Nguyờn tc phỏt x tia X dựng ph S nguyờn lý s to nh phõn gii cao HRTEM Cỏc dng ng ng nhit hp ph-kh hp ph theo phõn loi IUPAC Bc chuyn ca cỏc electron phõn t iv 10 12 13 14 15 19 31 41 42 44 46 47 48 50 51 52 55 57 57 59 61 63 64 65 Hỡnh 3.1 Hỡnh 3.2 Hỡnh 3.3 Hỡnh 3.4a Hỡnh 3.4b Hỡnh 3.5 Hỡnh 3.6 Hỡnh 3.7 Hỡnh 3.8 Hỡnh 3.9 Hỡnh 3.10 Hỡnh 3.11 Hỡnh 3.12 Hỡnh 3.13 Hỡnh 3.14 Hỡnh 3.15 Hỡnh 3.16 Hỡnh 3.17 Hỡnh 3.18 Hỡnh 3.19 Hỡnh 3.20 Hỡnh 3.21 Hỡnh 3.22 Hỡnh 3.23 Hỡnh 3.24 Hỡnh 3.25 Gin XRD ca graphen oxit v graphen nh HR-TEM ca GOSA (graphen siờu õm) (a), GOVS (graphen vi súng) (b) v rGO (c) Ph FT-IR ca GOSA, GOVS v rGO sau tng hp Ph XPS ca GOSA (a,b), GOVS (c,d) v rGO (e,f) Ph XPS ca rGOSA kh nhit t GOSA Gin XRD ca graphen oxit (GO) Gin XRD ca Fe3O4-GO Gin XRD ca CoFe2O4-GO Gin XRD ca ZnFe2O4 GO Gin XRD ca Fe0-Fe3O4-GO Gin XRD ca GO v Fe(III)-GO nh HR- TEM ca Fe3O4-GO vi phúng i khỏc nh HR- TEM ca CoFe2O4-GO nh HR- TEM ca ZnFe2O4 -GO nh HR- TEM ca Fe0-Fe3O4-GO nh HR- TEM ca Fe(III)-GO vi cỏc phúng i khỏc Ph FTIR ca Fe3O4-GO Ph FTIR ca CoFe2O4-GO Ph FTIR ca ZnFe2O4-GO Ph FTIR ca Fe0-Fe3O4-GO Ph FTIR ca Fe(III)-GO v GO Ph XPS ca Fe3O4-GO: (a)- Ph XPS tng ca Fe3O4-GO; (b)- Ph XPS Fe2p tỏch ca Fe3O4-GO; (c)- Ph XPS O1s tỏch ca Fe3O4-GO; (d) Ph XPS C1s tỏch ca Fe3O4-GO Ph XPS ca Fe0-Fe3O4-GO: (a)- Ph XPS tng ca Fe0Fe3O4-GO; (b)- Ph XPS Fe2p tỏch ca Fe0- Fe3O4-GO; (c)Ph XPS O1s tỏch ca Fe0-Fe3O4-GO; (d) Ph XPS C1s tỏch ca Fe0-Fe3O4-GO Ph XPS ca vt liu Fe(III)- GO: (a)- Ph XPS tng ca Fe(III)-GO; (b)- Ph XPS O1s tỏch ca Fe(III)-GO; (c)- Ph XPS Fe2p tỏch ca Fe(III)-GO; (d) Ph XPS C1s tỏch ca Fe(III)-GO Phõn b mao qun ca Fe0-Fe3O4-GO v Fe3O4-GO ng ng nhit hp ph - kh hp ph N2 ca Fe0-Fe3O4- v 67 68 69 71 72 73 74 75 76 76 77 78 78 79 79 80 81 81 82 83 83 84 85 87 88 88 Hỡnh 3.26 Hỡnh 3.27 Hỡnh 3.28 Hỡnh 3.29 Hỡnh 3.30 Hỡnh 3.31 Hỡnh 3.32 Hỡnh 3.33 Hỡnh 3.34 Hỡnh 3.35 Hỡnh 3.36 Hỡnh 3.37 Hỡnh 3.38 Hỡnh 3.39 Hỡnh 3.40 Hỡnh 3.41 Hỡnh 3.42 Hỡnh 3.43 Hỡnh 3.44 Hỡnh 3.45 GO v Fe3O4-GO ng ng nhit hp ph - kh hp ph N2 ca ZnFe2O4-GO Phõn b mao qun ca ZnFe2O4-GO ng cong t tr ca Fe0-Fe3O4-GO v Fe3O4-GO ng cong t tr ca ZnFe3O4-GO Hot tớnh quang xỳc tỏc Fe3O4-GO S ph thuc chuyn húa theo thi gian phn ng cỏc iu kin khỏc ca CoFe2O4 GO bn xỳc tỏc qua cỏc ln chy phn ng quỏ trỡnh phõn hy RR195 trờn CoFe2O4-GO Ph UV_Vis quỏ trỡnh phõn hy RR195 di iu kin chiu x (A) v khụng chiu x (B) trờn CoFe2O4-GO S ph thuc chuyn húa theo thi gian phn ng cỏc iu kin khỏc ca ZnFe2O4-GO bn xỳc tỏc qua cỏc ln chy phn ng khỏc quỏ trỡnh phõn hy RR195 trờn ZnFe2O4-GO Ph UV_Vis quỏ trỡnh phõn hy RR195 di iu kin chiu x trờn ZnFe2O4-GO Ph UV_Vis quỏ trỡnh phõn hy RR195 di iu kin khụng chiu x trờn ZnFe2O4-GO S ph thuc chuyn húa theo thi gian phn ng cỏc iu kin khỏc trờn Fe0 -Fe3O4-GO Hot tớnh xỳc tỏc ca Fe0-Fe3O4-GO v Fe304-GO Ph UV_Vis quỏ trỡnh phõn hy RR195 di iu kin chiu x trờn Fe0-Fe3O4-GO Ph UV_Vis quỏ trỡnh phõn hy RR195 di iu kin khụng chiu x trờn Fe0-Fe3O4-GO bn xỳc tỏc qua cỏc ln chy phn ng quỏ trỡnh phõn hy RR195 trờn Fe0-Fe3O4-GO S ph thuc chuyn húa theo thi gian phn ng cỏc iu kin khỏc trờn Fe(III)-GO S ph thuc t l nng C/C0 ca thuc nhum hot tớnh RR195 theo thi gian phn ng cỏc iu kin khỏc trờn CoFe2O4-GO S ph thuc t l nng C/C0 ca thuc nhum hot tớnh vi 89 90 91 92 94 95 97 97 98 99 100 100 101 103 103 104 104 106 108 109 RR195 theo thi gian tip xỳc trờn CoFe2O4-GO ln v ln Hỡnh 3.46 Hỡnh 3.47 Hỡnh 3.48 Hỡnh 3.49 Hỡnh 3.50 Hỡnh 3.51 Hỡnh 3.52 Hỡnh 3.53 Hỡnh 3.54 Hỡnh 3.55 Hỡnh 3.56 Quỏ trỡnh phõn hy RR195 trờn cỏc loi xỳc tỏc khỏc Fe(III)-GO; Fe0-Fe3O4-GO; CoFe3O4-GO; ZnFe2O4-GO; Fe3O4-GO Kh nng t phõn hy ca RR195 mụi trng pH khỏc vi s cú mt H2O2 nh hng pH n kh nng phõn hy RR195 trờn Fe0-Fe3O4GO nh hng ca nng H2O2 n quỏ trỡnh phõn hy RR195 trờn Fe0-Fe3O4-GO nh hng ca nng RR195 ban u n quỏ trỡnh phõn hy RR195 trờn Fe0-Fe3O4-GO ng hc quỏ trỡnh xỳc tỏc quang húa phn ng phõn hy RR195 trờn Fe(III)-GO bc ng hc quỏ trỡnh xỳc tỏc quang húa phn ng phõn hy RR195 trờn Fe(III)-GO bc ng hc quỏ trỡnh xỳc tỏc quang húa phn ng phõn hy RR195 trờn Fe(III)-GO bc ng hc quỏ trỡnh xỳc tỏc quang húa phn ng phõn hy RR195 trờn Fe0-Fe3O4-GO bc ng hc quỏ trỡnh xỳc tỏc quang húa phn ng phõn hy RR195 trờn Fe0-Fe3O4-GO bc ng hc quỏ trỡnh xỳc tỏc quang húa phn ng phõn hy RR195 trờn Fe0-Fe3O4-GO bc vii 111 112 113 114 115 117 118 118 120 120 121 DANH MC CC BNG Bng 1.1 Bng 1.2 Bng 1.3 Bng 1.4 Bng 1.5 Bng 1.6 Bng 1.7 Bng Bng 3.1 Bng 3.2 Bng 3.3 Bng 3.4 Bng 3.5 Bng 3.6 Tớnh cht ca Graphen n lp u v nhc im ca mt s phng phỏp x lý cỏc hp cht hu c cú mu Th oxi hoỏ ca mt s tỏc nhõn oxi hoỏ thng gp Mt s phng phỏp AOPs ph bin hin ang s dng x lý nc thi Bng thng kờ mt vi nghiờn cu v TiO2/graphen Bng thng kờ mt vi nghiờn cu v oxit kim loi/graphen Bng thng kờ mt vi nghiờn cu v hn hp oxit/graphen Túm tt phn ng bc 0, 1, v n Thnh phn % cỏc nguyờn t ph XPS ca GO v rGO Cỏc thụng s c trng ca Fe3O4-GO Cỏc thụng s c trng ca Fe0-Fe3O4-GO Cỏc thụng s c trng ca ZnFe2O4-GO Nng RR195 trc v sau quỏ trỡnh quang phõn s dng xỳc tỏc Fe(III)-GO ti cỏc nng khỏc Nng RR195 trc v sau quỏ trỡnh quang phõn s dng xỳc tỏc Fe0-Fe3O4-GO ti cỏc nng khỏc viii 19 27 29 39 42 45 54 73 89 89 90 116-117 119 MC LC LI CM N i LI CAM OAN ii DANH MC CC T VIT TT iii DANH MC CC HèNH V iv DANH MC CC BNG viii T VN CHNG TNG QUAN TI LIU 1.1 Vt liu graphen v ng dng x lý cht mu 1.1.1 Vt liu trờn c s graphen 1.1.2 Tõm hot ng ca graphen v graphen oxit 1.1.3 Cỏc phng phỏp tng hp graphen 1.1.3.1 Phng phỏp tỏch c hc 1.1.3.2 Phng phỏp epitaxy C ch phõn hy nhit C ch to mng graphen 1.1.3.3 Phng phỏp húa hc 11 1.2 Cht mu hu c v phng phỏp x lý 13 1.2.1 Gii thiu v ụ nhim cht mu hu c 13 1.2.1.1 Thuc nhum 14 1.2.1.2 Cỏc thụng s ỏnh giỏ nc thi dt nhum 15 1.2.2 Cỏc phng phỏp x lý thuc nhum hot tớnh nc thi dt nhum 1.2.2.1 Cỏc phng phỏp húa lý 17 21 Phng phỏp keo t Phng phỏp hp ph 1.2.2.3 Phng phỏp in húa 24 1.2.2.4 Phng phỏp húa hc 25 1.3 Phng phỏp oxi húa nõng cao (AOPs) 26 1.3.1 Gii thiu cỏc quỏ trỡnh oxi húa nõng cao 26 1.3.2 C s lý thuyt ca quỏ trỡnh Fenton 30 1.3.2.1 Quỏ trỡnh Fenton ng th 30 1.3.2.2 Quỏ trỡnh Fenton d th 32 1.3.2.3 Quỏ trỡnh Photo Fenton 33 TI LIấU THAM KHO Geim AK, Novoselov KS, The rise of graphene, Nat Mater, 2007,6, 183-191 Sumit Goenka, Vinayak Sant, Shilpa Sant,Graphene-based nanomaterials for drug delivery and tissue engineering Journal of Controlled Release, 2014,173, 7588 Al-Degs Y S, Khraisheh M A M, Allen S J and Ahmad M N, Effect of Cacbon Surface Chemistry on the Removal of Reactive Dyes from Textile Effluent , Water Research, 2000, 34(3), 927-935 Peiying Zhu, Ming Shen, Shuhua Xiao, Dong Zhang ,Experimental study on the reducibility of graphene oxide by hydrazine hydrate, Physica B: Condensed Matter, 2011, 406, 3, 498-502 Gao.Y, Li Y, Zhang L, Huang H, Hu J, Shah S.M, Su X, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J Colloid Interf Sci 2012, 368, 540546 Yang S.T, S Chen, Y Chang, A Cao, Y Liu, H Wang, Removal of methylene blue from aqueous solution by graphene oxide, J Colloid Interf Sci 2011,359, 2429 Yang X, Li J, Wen T, Ren X, Huang Y, Wang X, Adsorption of naphthalene and its derivatives on magnetic graphene composites and the mechanism investigation, Colloid Surface A, 2013, 422, 118125 Zhao G, Li J, Ren X, Chen C, Wang X, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management, Environ Sci Technol, 2011,45, 1045410462 Zhao G , Ren X, Gao X, Tan X, Li J, Chen, Huang Y, Wang X, Removal of Pb(ii) ions from aqueous solutions on few-layered graphene oxide nanosheets, Dalton Trans, 2011, 40, 1094510952 10 Sitko R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Gagor A, Feist B, Wrzalik R, Adsorption of divalent metal ions from aqueous solutions using graphene oxide, Dalton Trans 2013, 42, 56825689 11 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al, Electric field effect in atomically thin carbon films Science, 2004, 306, 666669 127 12 Somani PR, Somani SP, Umeno M, Planer nano-graphenes from camphor by CVD Chem Phys Lett, 2006 430, 56-59 13 Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holoway BC Freestanding subnanometer graphite sheets Appl Phys Lett, 2004, 85, 12651267 14 Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holoway BC, Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition Carbon, 2004, 42, 2867-2872 15 Hummers, W S.; Offeman, R E Preparation of Graphitic Oxide Journal of the American Chemical Society, 1958, 80 (6), 1339 16 Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD, Graphene oxide dispersions in organic solvents Langmuir, 2008, 24, 10560- 10564 17 Li D, Muller MB, Gilje S, Kaner RB, Wallace GG, Processable aqueous dispersions of graphene nanosheets Nat Nanotechnol, 2011, 3, 101-105 18 Liu X, Pan L, Lv T, Sun CQ, Visible light photocatalytic degradation of dyes by bismuth oxide-reduced graphene oxide composites prepared via microwave-assisted method, J colloid Interface Sci, 2013,408, 145-150 19 Gomez-Navarro C, Weitz RT, Bittner A.M, Scolari, M, Mews A, Burghard, M, Kern,K, Electronic transport properties of individual chemically reduced graphene oxide sheets Nano Lett, 2007, 7, 3499-3503 20 Shin H J, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, et al Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Adv Funct Mater, 2007, 19, 1987-1992 21 Stankovich, S.; Dikin, D A.; Piner, R D.; Kohlhaas, K A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S B T.; Ruoff, R S, Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide Carbon , 200,45, 1558-1565 22 AKsay A, Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al, Functionalized single graphene sheets derived from splitting graphite oxide, J Phys Chem B, 2006,110, 8535-8539 23 Trn Vn Nhõn, H Th Nga (2005), Giỏo trỡnh cụng ngh x lớ nc thi, Nh xut bn Khoa hc v k thut, H Ni 128 24 ng Xuõn Vit (2007), Nghiờn cu phng phỏp thớch hp kh mu thuc nhum hot tớnh nc thi dt nhum, lun ỏn tin s k thut, H ni 25 ng Trn Phũng, Trn Hiu Nhu (2005), X lớ nc cp v nc thi dt nhum, NXB Khoa hc k thut, H Ni 26 ỡnh Róng, ng ỡnh Bch, Lờ Th Anh o, Nguyn Mnh H, Nguyn Th Thanh Phong (2006), Hoỏ hc hu c 3, NXB Giỏo duc, H Ni 27 Fernỏndez C, Soledad Larrechi M, Pilar Callao M, An analytical overview of processes for removing organic dyes from wastewater effluents Trend Anal Chem, 2010 , 29, 12021211 28 Nguyn Hu Phỳ (2003), Hoỏ lý v hoỏ keo, Nh xut bn khoa hc v k thut, H Ni 29 Nguyn Hu Phỳ (1998), Giỏo trỡnh hp ph v xỳc tỏc trờn b mt vt liu v vụ c mao qun, Nh xut bn khoa hc v k thut, H Ni 30 Neyens E, Baeyens J, A review of classic Fentons peroxidation as an advanced oxidation technique, Juarnaol of Hazardous Materials, 2003, 98 33-50 31 Lin SS, Gurol MD , Heterogeneous, catalytic oxidation of organic compounds by hydrogen peroxide, Wat Sci Tech 1996, 34, 57-64 32 Lu M, Oxidation of Chlorophenols with hydrogen peroxide in the presence of goethite Chemosphere, 2000, 40, 125-130 33 S.H Lin, C.C Lo, Fenton process for treatment of desizing wastewater, Water Res ,1997, 31, 20502056 34 E Chamarro, A Marco, S Esplugas, Use of Fenton reagent to improve organic chemical biodegradability, Water Res 2001, 35, 10471051 35 F.J Rivas, F.J Beltran, J Frades, P Buxeda, Oxidation of p-hydroxybenzoic acid by Fentons reagent, Water Res 2001, 35, 387396 36 E.M Siedlecka, P Stepnowski, Phenols degradation by Fenton reaction in the presence of chlorides and sulfates, Pol J Environ Stud 2005 ,14 ,823 828 129 37 A.A Burbano, D.D Dionysiou, M.T Suidan, T.L Richardson, Oxidation kineticsand effect of pH on the degradation of MTBE with Fenton reagent, Water Res 2005, 39, 107118 38 P.J.D Ranjit, K Palanivelu, C.S Lee, Degradation of 2,4-dichlorophenol in aqueous solution by sono-Fenton method, Korean J Chem Eng 2008 , 25,112117 39 M.S Yalfani, S Contreras, F Medina, J Sueiras, Phenol degradation by Fentons process using catalytic in situ generated hydrogen peroxide, Appl Catal B:Environ 2009, 89 , 519526 40 G Lofrano, L Rizzo, M Grassi, V Belgiorno, Advanced oxidation of catechol: a comparison among photocatalysis, Fenton and photo-Fenton processes, Desalination , 2009 ,249, 878883 41 C Jiang, S Pang, F Ouyang, J Ma, J Jiang, A new insight into Fenton and Fentonlike processes for water treatement, J Hazard Mater 2010, 174, 813817 42 S Liu, H Sun, S Liu and S Wang Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts, Chem Eng J ,2013, 214, 298303 43 Z.-D Meng, L Zhu, T Ghosh, C.-Y Park, K Ullah, V Nikam and W.-C Oh, Ag2Se-graphene/TiO2 nano composites, sonochemical synthesis and enhanced photocatalytic properties under visible light, Bull Korean Chem Soc., 2012, 33, 37613766 44 Y Tang, S Luo, Y Teng, C Liu, X Xu, X Zhang and L Chen, Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays J Hazard.Mater , 2012, 241242, 323330 45 B Neppolian, A Bruno, C L Bianchi and M Ashokkumar, Graphene oxide based Pt-TiO2 photocatalyst: ultrasound assisted synthesis, characterization and catalytic efficiency Ultrason Sonochem , 2012, 19, 915 46 J Guo, S Zhu, Z Chen, Y Li, Z Yu, Q Liu, J Li, C Feng and D Zhang, Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst Ultrason Sonochem., 2011, 18, 10821090 130 47 M S A Sher Shah, A R Park, K Zhang, J H Park and P J Yoo, Green synthesis of biphasic TiO-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity.ACS Appl Mater Interfaces, 2012, 4, 38933901 48 D Wang, X Li, J Chen and X Tao, hanced photoelectrocatalytic activity of reduced grapheme oxide/TiO2 composite films for dye degradation, Chem Eng J., 2012, 198199, 547554 49 S Ghasemi, S R Setayesh, A Habibi-Yangjeh, M HormoziNezhad and M Gholami, Assembly of CeO2TiO2 nanoparticles prepared in room temperature ionic liquid on graphene nanosheets for photocatalytic degradation of pollutantsJ Hazard Mater., 2012, 199, 170 178 50 Y.-p Zhang, J.-j Xu, Z.-h Sun, C.-z Li and C.-x Preparation of graphene and TiO2 layer by layer composite with highly photocatalytic efficiency Pan, Progress in Natural Science: Materials International, 2011, 21, 467471 51 G Jiang, Z Lin, C Chen, L Zhu, Q Chang, N Wang, W Wei and H Tang, TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants Carbon, 2011, 49, 2693 2701 52 N Khalid, Z Hong, E Ahmed, Y Zhang, H Chan and M Ahmad, Synergistic effects of Fe and graphene on photocatalytic activity enhancement of TiO2 under visible light Appl Surf Sci , 2012, 258, 5827 5834 53 D Fu, G Han, Y Chang and J Dong, The synthesis and properties of ZnO graphene nano hybrid for photodegradation of organic pollutant in water Mater Chem Phys 2012, 132, 673681 54 S Chandra, P Das, S Bag, R Bhar and P Pramanik, Mn2O3 decorated graphene nanosheet: An advanced material for the photocatalytic degradation of organic dyes, Mater Sci Eng., B, 2012, 177, 855861 55 H Seema, K C Kemp, V Chandra and K S Kim, Graphene-SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight , Nanotechnology, 2012, 23, 355705 131 56 X Yang, H Cui, Y Li, J Qin, R Zhang and H Tang, Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance ACS Catal, 2013, 3, 363369 57 J Zhang, Z Xiong and X Zhao, Graphenemetaloxide composites for the degradation of dyes under visible light irradiationJ Mater Chem., 2011, 21, 36343640 58 H Fan, X Zhao, J Yang, X Shan, L Yang, Y Zhang, X Li and M Gao, ZnOgraphene composite for photocatalytic degradation of methylene blue dye Catal Commun , 2012, 29, 2934 59 B Li and H Cao, ZnO@graphene composite with enhanced performance for the removal of dye from water , J Mater Chem, 2011, 21, 33463349 60 H Seema, K C Kemp, V Chandra and K S Kim, GrapheneSnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight, Nanotechnology, 2012, 23, 355705 61 B Li, T Liu, L Hu and Y Wang, A facile one-pot synthesis of Cu2O/RGO nanocomposite for removal of organic pollutant J Phys Chem Solids, 2013, 74, 635640 62 N P Herring, S H Almahoudi, C R Olson and M S ElShall, Enhanced photocatalytic activity of ZnOgraphene nanocomposites prepared by microwave synthesis J Nanopart Res, 2012, 14, 113 63 X Chang, L Dong, Y Yin and S Sun, A novel composite photocatalyst based on in situ growth of ultrathin tungsten oxide nanowires on graphene oxide sheets, RSC Adv , 2013, 3, 1500515013 64 X An, C Y Jimmy, Y Wang, Y Hu, X Yu and G Zhang, WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing J Mater Chem, 2012, 22, 85258531 65 Y Fu, H Chen, X Sun and X Wang, Combination of cobalt ferrite and graphene: High-performance and recyclable visible-light photocatalysis Appl Catal., B, 2012,111, 280287 66 Y Fu and X Wang, Magnetically Separable ZnFe2O4Graphene Catalyst and its High Photocatalytic Performance under Visible Light Irradiation Ind Eng Chem Res , 2011, 50, 72107218 132 67 Y Fu, Q Chen, M He, Y Wan, X Sun, H Xia and X Wang, Copper Ferrite-Graphene Hybrid: A Multifunctional Heteroarchitecture for Photocatalysis and Energy Storage Ind Eng Chem Res , 2012, 51, 11700 11709 68 Y Fang, R Wang, G Jiang, H Jin, Y Wang, X Sun, S Wang and T Wang, CuO/TiO2 nanocrystals grown on graphene as visible-light responsive photocatalytic hybrid materials Bull Mater Sci , 2012, 35, 495499 69 Y Hou, X Li, Q Zhao and G Chen, ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: Facile synthesis, improved activity and photocatalytic mechanism Appl Catal, B, 2013, 142143, 80 88 70 L Sun, R Shao, L Tang and Z Chen, Synthesis of ZnFe2O4/ZnO nanocomposites immobilized on graphene with enhanced photocatalytic activity under solar light irradiation J Alloys Compd, 2013, 564, 5562 71 S Vijay Kumar, N Huang, N Yusoff and H Lim, High performance magnetically separable graphene/zinc oxide nanocomposite Mater Lett, 2013, 93, 411414 72 Won-Chun Oh, The Effect of Thermal and Ultrasonic Treatment on the Formation of Graphene-oxide Nanosheets, Journal of the Korean Physical Society, 2010, 56(4), 1097-1102 73 Hae-MiJu, Sung-Ho Choi, Seung Hun Huh, X-ray Diffraction Patterns of Thermally-reduced Graphenes, journal of the Korean Physical Society, 2010, 57(6), 1649-1652 74 Yanwu Zhu, Shanthi Murali, Meryl D Stoller, Aruna Velamakanni, Richard D Piner, Rodney S Ruoff, Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors, Carbon, 2010, 48(7), 2118-2122 75 McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, et al, Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem Mater, 2007, 19, 4396-4404 76 Franỗois Perreault,Andreia Fonseca de Faria and Menachem Elimelech, Environmental applications of graphene-based nanomaterials, Chem Soc Rev, 2015, 44, 5861-5896 133 77 Abhijit Ganguly, Surbhi Sharma, Pagona Papakonstantinou, Jeremy Hamilton, Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies , J Phys Chem C, 2011, 115 (34), 1700917019 78 Karthikeyan Krishnamoorthy, Murugan Veerapandian, Kyusik Yun, S.-J Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation, Carbon, 2013, 53, 3849 79 MU Shi-Jia, SU Yu-Chang, XIAO Li-Hua, LIU Si-Dong, HU Te, TANG Hong-Bo, X-Ray Diffraction Pattern of Graphite Oxide, CHIN PHYS LETT, 2013, 30(9), 096101 80 Pham VH, Cuong TV, Hur SH, Oh E, Kim EJ, Shin EW, Chung JS, Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone J Mater Chem., 2011, 21, 33713377 81 Siegfried Eigler, Christoph Dotzer, Andreas Hirsch, Michael Enzelberger, Paul Mỹller, Formation and Decomposition of CO2 Intercalated Graphene Oxide, Chem Mater, 2012, 24 (7), 12761282 82 Daniel R Dreyer,a Sungjin Park, Christopher W Bielawski and Rodney S Ruoff, The chemistry of graphene oxide, Chem Soc Rev., 2010, 39, 228 240 83 Hontoria-Lucas C, Lopez-Peinado, A J, Lúpez-Gonzỏlez J D, RojasCervantes, M L, Martin-Aranda, R M, Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization, Carbon, 1995, 33, 1585 84 Acik, M., Lee, G., Mattevi, C., Pirkle, A., Wallace, R M., Chhowalla, M., Chabal, Y J The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy, J Phys Chem C., 2011, 115, 19761-19781 85 Xiangke Wang, Efficient removal of arsenate by versatile magnetic graphene oxide composites, RSC Advances, 2012, 2, 1240012407 86 Bo Yang, Zhang Tian, Li Zhang, Yaopeng Guo, Shiqiang Yan Enhanced heterogeneous Fenton degradation of Methylene Blue by nanoscale zero 134 valent iron (nZVI) assembled on magnetic Fe3O4/reduced graphene oxide, Journal of Water Process Engineering, 2015, 5, 101111 87 Nlebedim, I C.; Ranvah, N.; Williams, P I.; Melikhov, Y.; Snyder, J E.; Moses, A J.; Jiles, D C Effect of Heat Treatment on the Magnetic and Magnetoelastic Properties of Cobalt Ferrite.J Magn Mater, 2010, 322, 1929-1933 88 Fu, X Wang, Magnetically Separable ZnFe2O4Graphene Catalyst and its High Photocatalytic Performance under Visible Light Irradiation, Ind Eng Chem Res, 2011, 50,7210 -7218 89 Li D, Muller MB, Gilje S, Kaner RB, Wallace GG Processable aqueous dispersions of graphene nanosheets Nat Nanotechnol 2008 , ,1015 90.Y.P Sun, et al Characterization of zero-valent iron nanoparticles, Advances in Colloid and Interface Science, 2006,120 (1-3),4756 91 M Rivero-Huguet, W.D Marshall Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent iron Chemosphere, 2009, 76, 12401248 92 Karthikeyan Krishnamoorthy, Murugan Veerapandian, Kyusik Yun, S.-J Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation, CARBON, 2013, 53, 3849 93 Graphen oxide (GO)-Fe3+ hybrid nanosheets with effactive sonocatalytic degradation of reactive Red 120 and study of their ninetic mechamism Ultrason sonochemistry, 2015,24,123-131 94 H.J Zhu, Y.F Jia, X Wu, H Wang Removal of arsenic from water by supported nano zero-valent iron on activated carbon J Hazard Mater 2009, 172, 15911596 95 Juan Guoa, Ruiyu Wang, Weng Weei Tjiu, Jisheng Pan, Tianxi Liu,Synthesis of Fe nanoparticles@graphene composites for environmental applications ,Journal of Hazardous Materials, 2012, 225 226, 63 73 96 Liu F, Yang J, Zuo J, Ma D, Gan L, Xie B, Wang P, Yang B, Graphenesupported nanoscale zero-valent iron: removal of phosphorus from aqueous solution and mechanistic study Journal of Environmental Sciences ,2014, 26(8):1751-1762 135 97 Maarten B J Roeffaers, Iron(III)-Based MetalOrganic Frameworks As Visible Light Photocatalysts, J Am Chem Soc, 2013, 135, 1448814491 98 Mohsen Sheydaei, et al., Preparation of a novel -FeOOH-GAC nano composite for decolorization of textile wastewater by Photo Fenton-like process in a continuous reactor, Journal of Molecular Catalysis A: Chemical, 2014,392, 229 -234 99 P Ramesh Kumar, Enhanced properties of porous CoFe2O4reduced graphene oxide composites with alginate binders for Li-ion battery applications, New J Chem, 2014, 38, 3654-3361 100 Xiaojun Guo, Fast degradation of Acid Orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4catalyst, Journal of the Taiwan Institute of Chemical Engineers, 2015,000, 111 101 Tuan A Vu, Isomorphous substitution of Cr by Fe in MIL-101 framework and its application as a novel heterogeneous Photo-Fenton catalyst for reactive dye degradation RSC Adv, 2014, 4, 41185-41194 102 Dafeng Zhang, One-step combustion synthesis of CoFe2O4graphene hybrid materials for photodegradation of methylene blue, Materials Letters, 2013,113, 179181 103 Yanwu Zhu, Shanthi Murali, Meryl D Stoller, Aruna Velamakanni, Richard D Piner, Rodney S Ruoff, Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors, Carbon , 2010,48(7) ,2118 2122 104 Li D, Muller MB, Gilje S, Kaner RB, Wallace GG Processable aqueous dispersions of graphene nanosheets Nat Nanotechnol 2008 , ,1015 105 30 Liu F, Yang J, Zuo J, Ma D, Gan L, Xie B, Wang P, Yang B, Graphene-supported nanoscale zero-valent iron: removal of phosphorus from aqueous solution and mechanistic study Journal of Environmental Sciences 2014, 26(8),1751-1762 106 Karthikeyan Krishnamoorthy, et al., Murugan Veerapandian, Kyusik Yun, S.-J Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation, CARBON, 2013, 53, 3849 136 107 Ying Dong, et al., Graphene oxideiron complex: synthesis, characterization and visible-light-driven photocatalysis,J Mater Chem A, 2013, 1, 644650 108 Li Z, Liu Z, Sun H, Gao C, Superstructured Assembly of Nanocarbons: Fullerenes, Nanotubes,and Graphene, Chem Rev., 2015, 115, 704671172 109 Phaedon Avouris and Christos Dimitrakopoulos, Graphene: synthesis and applications, Material today, 2012, 15(3), 86-97 110 Jeongho Park,Tyson Back, William C Mitchel, Steve S Kim, Said Elhamri, John Boeckl, Steven B Fairchild,Rajesh Naik, and Andrey A Voevodin,Approach to multifunctional device platform with epitaxial graphene on transition metal oxide, Sci Rep., 2015, 5, 14374 111 Kwang S Kim Water-dispersible magnetitereduced graphene oxide composites for arsenic removal, ACS Nano, 2010, 4, 39793986 112 Jieping Sun, Qionglin Liang, Qiang Han, Xiaoqiong Zhang, Mingyu Ding, One-step synthesis of magnetic graphene oxide nanocomposite and its application in magnetic solid phase extraction of heavy metal ions from biological samples, Talanta, 2015, 132, 557563 113 Lu, J., Jiao, X., Chen, D., Li, W., Solvothermal Synthesis and Characterization of Fe3O4 and Fe2O3 Nanoplates, J Phys Chem C, 2009, 113, 40124017 114 A P Grosvenor, B A Kobe, M C Biesinger, N S McIntyre, Investigation of multiplet splitting of Fe2p XPS spectra and bonding in iron compounds, Surf Interface Anal., 2004, 36, 15641574 115 Sheng Guo, Graphene oxideFe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants, Carbon, 2013, 60, 437-444 116 Juan Guoa, Ruiyu Wang, Weng Weei Tjiu, Jisheng Pan, Tianxi Liu, Synthesis of Fe nanoparticles@graphene composites for environmental applications, Journal of Hazardous Materials, 2012, 225 226, 6373 117 Fenglin Liu, JingHe Yang, Jiane Zuo,Ding Ma, Lili Gan, Bangmi Xie, Pei Wang, Bo Yang, Graphene-supported nanoscale zero-valent iron: removal of phosphorus from aqueous solution and mechanistic study, Journal of Environmental Sciences, 2014, 26(8), 1751-1762 137 118 Sheng Guo, Graphene oxideFe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants, CARBON, 2013,60, 437 -444 119 Jian-Hua Wang, et al, In situgrowth of -FeOOH nanorods on graphene oxide with ultra-high relaxivity forin vivomagnetic resonance imaging and cancer therapy, J Mater Chem B, 2013,1, 2582 120 Yalin Qin, Mingce Long, Beihui Tan, Baoxue Zhou, RhB Adsorption Performance of Magnetic Adsorbent Fe3O4/rGO Composite and Its Regeneration through A Fenton-like Reaction, Nano-Micro Letters, 2014, 6(2), 125-135 121 Nor Aida Zubir, Christelle Yacou, Julius Motuzas, Xiwang Zhang& Joóo C Diniz da Costa, Structural and functional investigation of graphene oxideFe3O4 nanocomposites for the heterogeneous Fenton-like reaction, Scientific Reports , 2014, 4, 4594 122 Xinhua Xu et al., Nanoscale Zero-Valent Iron (nZVI) assembled on magnetic Fe3O4/graphene for Chromium (VI) removal from aqueous solution, Journal of Colloid and Interface Science, 2014, 417, 5159 123 S.T Xing, Z.C Zhou, Z.C Ma, Y.S Wu Characterization and reactivity of Fe3O4/FeMnOx core/shell nanoparticles for methylene blue discoloration with H2O2, Appl Catal B: Environ., 2011, 107, 386392 124 Feng, J., J Mao, XiaogangWen, M Tu, "Ultrasonic assisted in situ synthesis and characterization of superparamagnetic Fe3O4 nanoparticles", Journal of Alloys and Compounds, 2011, 509, 90939097 125 M Ismail, Synthesis and Some Physical Properties of Magnetite (Fe3O4) Nanoparticles, Int J Electrochem Sci., 2012, 7, 5734 5745 126 Kodama R H and A E Berkowitz, Atomic-scale magnetic modeling of oxide nanoparticles, Physical Review B, 1999, 59, 6321-6356 127 Millan A, A.Urtizberea, F.Palacio, N.J O.Silva, V.S.Amaral, E.Snoeck, and V.Serin, Surface effects in maghemite nanoparticles, Journal of Magnetism and Magnetic Materials, 2007, 312, L5-L933 128 Abhijit Ganguly, Surbhi Sharma, Pagona Papakonstantinou, Jeremy Hamilton Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies, J Phys Chem C, 2011,115 (34), 1700917019 138 129 Ramesha G.K, Vijaya Kumara A, Muralidhara H.B, Sampath S Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes,Journal of Colloid and Interface Science, 2011, 361 (1), 270277() 130 Yongsheng Fu, Combination of cobalt ferrite and graphene: Highperformance and recyclable visible-light photocatalysis, Applied Catalysis B: Environmental , 2012,111 112, 280 287 132 Dafeng Zhang, One-step combustion synthesis of CoFe2O4graphene hybrid materials for photodegradation of methylene blue, Materials Letters, 2013,113, 179181 133 Krzysztof barbusiski, Fenton reaction - controversy concerning the chemistry, Ecological chemistry and engineering,2009 , 16(3).347-358 134 J.H Ramirez, C.A Costa, L.M Madeira, G Mata, M.A Vicente, M.L Rojas-Cervantes, A.J Lúpez-Peinado, R.M Martớn-Aranda, Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay, Appl Catal B: Environ 2007, 71, 4456 135 Choi K, Lee W Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu (II) J Hazard Mater 2012;211 212:146153 136 M Vinothkannan, C Karthikeyan, G Gnana kumar, Ae Rhan Kim, Dong Jin Yoo, One-pot green synthesis of reduced graphene oxide (rGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 136 , 256264 137 H.J Zhu, Y.F Jia, X Wu, H Wang Removal of arsenic from water by supported nano zero-valent iron on activated carbon J Hazard Mater 2009, 172, 15911596 138 Lavanyah Narayanasamy, Thanapalan Murugesan, Degradation of Alizarin Yellow R using UV/H2O2 Advanced Oxidation Process, Environmental Progress & Sustainable, 2014, 33(2), 482-489 139 Sakthivel Thangavel, Nivea Raghavan, Govindan Kadarkarai, Sang-Jae Kim, Gunasekaran Venugopal, Graphene-oxide (GO) Fe3+ hybrid nanosheets with effective sonocatalytic degradation of Reactive Red 120 and study of their kinetics mechanism, Ultrasonics Sonochemistry, 2015, 24, 123131 139 140 Yongkoo Seol, Iraj Javandel, Citric acid-modified Fentons reaction for the oxidation of chlorinated ethylenes in soil solution systems, Chemosphere 72,(4), 2008, 537542 141 Qiuqiang Chen, Iron pillared vermiculite as a heterogeneous Photo-Fenton catalyst for photocatalytic degradation of azo dye reactive brilliant, Separation and Purification Technology, 2010,71(3),315-323 142 Lavanyah Narayanasamy, Thanapalan Murugesan, Degradation of Alizarin Yellow R using UV/H2O2 Advanced Oxidation Process, Environmental Progress & Sustainable, 2014; 33(2), 482-489 143 N.H Ince, Critical effect of hydrogen peroxide in photochemical dye degradation, Water Res 1999, 33, 080084 144 A Aleboyeh, H Aleboyeh, Y Moussa, Critical effect of hydrogen peroxide in photochemical oxidative decolorization of dyes: acid orange 8, acid blue 74 and methyl orange, Dyes Pigm 2003, 57 ,6775 145 Sumaeth Chavadej, Pattamawadee Phuaphromyod, Erdogan Gulari, Pramoch Rangsunvigit, Thammanoon Sreethawong, Photocatalytic degradation of 2-propanol by using Pt/TiO2 prepared by microemulsion technique, Chemical Engineering Journal, 2008 , 137 ,489495 146 Vittorio Loddo, Giuseppe Marcừ , Cristina Martừ n, Leonardo Palmisano,Vicente Rives, Antonino Sclafani, Preparation and characterisation of TiO2 (anatase) supportedon TiO2 (rutile) catalysts employed for 4-nitrophenol photodegradation in aqueous medium and comparison with TiO2 (anatase) supported on Al2O3, Applied Catalysis B: Environmental, 1999,20, 29-45 147 Sang Bum Kim , Sung Chang Hong, Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst, Applied Catalysis B: Environmental, 2002, 35,305315 148 N Guettaù, H Ait Amar, Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension Part II: kinetics study, Desalination,185, 2005, 1-3, 439448 149 Nor Aida Zubir, Optimisation of graphene oxideiron oxide nanocomposite in heterogeneous Fenton-like oxidation of Acid Orange 7, Journal of Environmental Chemical Engineering, 2014, 2-3, 18811888 140 141 [...]... điều này làm tăng hiệu suất quang hóa Do vậy, một số nhà nghiên cứu đã gắn kết các kim loại lên bề mặt của graphen, graphen oxit làm tăng hoạt tính quang hóa của chúng Xuất phát từ những lý do trên chúng tôi lựa chọn đề tài luận án Nghiên cứu tổng hợp và đặc trưng vật liệu mới, cấu trúc nano ứng dụng trong quang hóa xúc tác phân hủy thuốc nhuộm” đã được thực hiện Mục tiêu nghiên cứu của luận án 2 Tổng... Tình hình nghiên cứu và áp dụng các quá trình oxi hóa nâng cao hiện nay ……………………………………………………………… 1.3.5 Các hệ xúc tác trong xử lý chất màu hữu cơ ………………… 36 36 38 1.3.5.1 Xúc tác quang hóa TiO2/ graphen …………………………… 38 1.3.5.2 Xúc tác quang hóa composite oxit kim loại/graphen ……… 40 1.3.5.3 Xúc tác quang hóa composit ion kim loại/graphen có từ tính 43 CHƯƠNG 2 THỰC NGHIỆM VÀ PHƯƠNG PHÁP NGHIÊN CỨU 45... nano composit trên cơ sở oxit kim loại có từ tính/graphen oxit; nghiên cứu đánh giá hoạt tính xúc tác của các hệ vật liệu tổng hợp được trên thuốc nhuộm hoạt tính và ứng dụng làm xúc tác quang hóa mới, hiệu quả cao, có khả năng thu hồi và tái sử dụng trong phản ứng phân hủy chất màu, thuốc nhuộm hoạt tính để xử lý nước thải dệt nhuộm Nội dung nghiên cứu của luận án - Tổng hợp được một số vật liệu nano. .. hưởng pH đến khả năng phân hủy thuốc nhuộm hoạt tính RR195 trên Fe0-Fe3O4-GO ………………………………………… 3.4.2 Ảnh hưởng của nồng độ H2O2 đến quá trình phân hủy thuốc nhuộm hoạt tính RR195 trên Fe0-Fe3O4-GO ……………………… 3.4.3 Ảnh hưởng của nồng độ thuốc nhuộm hoạt tính RR195 ban đầu đến quá trình phân hủy trên Fe0-Fe3O4-GO ………………………… 3.5 Động học của quá trình xúc tác quang hóa trong phản ứng phân hủy thuốc nhuộm... đổi ion - Đặc trưng các vật liệu tổng hợp được bằng các phương pháp hóa lý hiện đại như XRD, FTIR, TEM, XPS, BET, UV-Vis - Đánh giá hoạt tính đối với các hệ xúc tác tổng hợp được - Nghiên cứu các điều kiện ảnh hưởng như pH, nồng độ H2O2, nồng độ thuốc nhuộm hoạt tính RR195 ban đầu đến hoạt tính xúc tác của vật liệu tổng hợp - Nghiên cứu động học quá trình xúc tác quang hóa trong phản ứng phân hủy thuốc... GO là có độ âm điện lớn khi phân tán trong nước từ kết quả đo thế zeta Đó là do sự ion hóa của nhóm axit cacboxylic và phenolic hydroxyl Sự phân tán ổn định của GO trong nước không chỉ do tính ưa nước mà còn do lực đẩy tĩnh điện của nó Ngoài ra còn có thể tách lớp graphit oxit để tạo thành GO bằng phương pháp vi sóng, hỗn hợp được đặt trong lò vi sóng với công suất 700W trong 1 phút, nhiệt độ tăng... sinh học, mà chỉ xác định lượng oxy cần thiết trong 5 ngày đầu (BOD5) ở nhiệt độ 20oC trong bóng tối (để tránh hiện tượng quang hợp ở trong nước) 16 Nhu cầu oxy hóa học (COD- chemical oxigen Demand) COD được định nghĩa là lượng oxy cần thiết cho quá trình oxi hóa toàn bộ các chất hữu cơ có trong mẫu thành CO2 và H2O Chỉ số COD được dùng rộng rãi để đặc trưng cho hàm lượng chất hữu cơ của nước thải... nhuộm màu có cấu trúc polymer cao phân tử bền vững Hơn nữa, thành phần các chất màu trong nước thải thường gây độc cho quần xã hoặc quần thể vi sinh vật sử dụng trong bùn Các phương pháp loại bỏ màu thuốc nhuộm có thể được chia thành hai nhóm phân huỷ và không phân huỷ (Hình 1.9) Bảng 1.2 đã tổng kết các ưu điểm và nhược điểm của một số phương pháp hiện nay đang sử dụng trong công nghệ loại bỏ thuốc nhuộm... hai cơ chế được nghiên cứu: thứ nhất là cơ chế phân hủy nhiệt của một số cacbua kim loại, thứ hai là cơ chế tạo màng đơn tinh thể của graphen trên đế kim loại hoặc đế cacbua kim loại bởi sự lắng đọng hơi hóa học (Chemical Vapor Deposition) của các hydrocarbon Cơ chế phân hủy nhiệt: Thường được tiến hành với đế silic cacbua (SiC) ở 1300oC trong môi trường chân không cao hoặc ở 1650oC trong môi trường... nước và dễ dàng phân tán trong nước Graphit oxit được phân tán trong nước theo tỉ lệ 1mg/ml và sử dụng phương pháp siêu âm để tách lớp thành graphen oxit Các tấm graphit ban đầu có độ dày 0,34 nm, tấm GO được cho là dày hơn do sự dịch chuyển của nguyên tử cacbon sp3 lên trên hoặc dưới so với mặt phẳng graphen gốc và sự có mặt của các nguyên tử oxy liên kết hóa trị Kết quả tương tự khi pha phân tán là các

Ngày đăng: 10/06/2016, 09:12

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
2. Sumit Goenka, Vinayak Sant, Shilpa Sant,Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release, 2014,173, 75–88 Sách, tạp chí
Tiêu đề: Journal of Controlled Release," 2014,"173
3. Al-Degs. Y. S, Khraisheh .M. A. M, Allen. S. J. and Ahmad. M. N, Effect of Cacbon Surface Chemistry on the Removal of Reactive Dyes from Textile Effluent , Water Research, 2000, 34(3), 927-935 Sách, tạp chí
Tiêu đề: Water Research", 2000, "34
4. Peiying Zhu, Ming Shen, Shuhua Xiao, Dong Zhang ,Experimental study on the reducibility of graphene oxide by hydrazine hydrate, Physica B:Condensed Matter, 2011, 406, 3, 498-502 Sách, tạp chí
Tiêu đề: Physica B: "Condensed Matter," 2011, "406
5. Gao.Y, Li. Y, Zhang. L, Huang. H, Hu. J, Shah. S.M, Su. X, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interf. Sci. 2012, 368, 540–546 Sách, tạp chí
Tiêu đề: J. Colloid Interf. Sci
6. Yang. S.T, S. Chen, Y. Chang, A. Cao, Y. Liu, H. Wang, Removal of methylene blue from aqueous solution by graphene oxide, J. Colloid Interf.Sci. 2011,359, 24–29 Sách, tạp chí
Tiêu đề: J. Colloid Interf. "Sci
7. Yang. X, Li J, Wen T, Ren X, Huang Y, Wang X, Adsorption of naphthalene and its derivatives on magnetic graphene composites and the mechanism investigation, Colloid. Surface. A, 2013, 422, 118–125 Sách, tạp chí
Tiêu đề: Colloid. Surface. A
8. Zhao. G, Li J, Ren X, Chen C, Wang X, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management, Environ. Sci. Technol, 2011,45, 10454–10462 Sách, tạp chí
Tiêu đề: Environ. Sci. Technol
9. Zhao. G , Ren X, Gao X, Tan X, Li J, Chen, Huang Y, Wang X, Removal of Pb(ii) ions from aqueous solutions on few-layered graphene oxide nanosheets, Dalton Trans, 2011, 40, 10945–10952 Sách, tạp chí
Tiêu đề: Dalton Trans", 2011, "40
10. Sitko . R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Gagor A, Feist B, Wrzalik R, Adsorption of divalent metal ions from aqueous solutions using graphene oxide, Dalton Trans. 2013, 42, 5682–5689 Sách, tạp chí
Tiêu đề: Dalton Trans
11. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al, Electric field effect in atomically thin carbon films. Science, 2004, 306, 666–669 Sách, tạp chí
Tiêu đề: Science
12. Somani PR, Somani SP, Umeno M, Planer nano-graphenes from camphor by CVD. Chem Phys Lett, 2006 430, 56-59 Sách, tạp chí
Tiêu đề: Chem Phys Lett", 2006 "430
13. Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holoway BC. Free- standing subnanometer graphite sheets. Appl Phys Lett, 2004, 85, 1265- 1267 Sách, tạp chí
Tiêu đề: Appl Phys Lett
14. Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holoway BC, Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon, 2004, 42, 2867-2872 Sách, tạp chí
Tiêu đề: Carbon
15. Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958, 80 (6), 1339 Sách, tạp chí
Tiêu đề: Journal of the American Chemical Society", 1958, "80
16. Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD, Graphene oxide dispersions in organic solvents. Langmuir, 2008, 24, 10560- 10564 Sách, tạp chí
Tiêu đề: Langmuir", 2008, "24
17. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG, Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol, 2011, 3, 101-105 Sách, tạp chí
Tiêu đề: Nat Nanotechnol", 2011, "3
18. Liu X, Pan L, Lv T, Sun CQ, Visible light photocatalytic degradation of dyes by bismuth oxide-reduced graphene oxide composites prepared via microwave-assisted method, J colloid Interface Sci, 2013,408, 145-150 Sách, tạp chí
Tiêu đề: J colloid Interface Sci", 2013,"408
19. Gomez-Navarro C, Weitz RT, Bittner A.M, Scolari, M, Mews A, Burghard, M, Kern,K, Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett, 2007, 7, 3499-3503 Sách, tạp chí
Tiêu đề: Nano Lett", 2007, "7
20. Shin H J, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Adv Funct Mater, 2007, 19, 1987-1992 Sách, tạp chí
Tiêu đề: Adv Funct Mater", 2007, "19
21. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. B. T.; Ruoff, R. S, Synthesis of graphene- based nanosheets via chemical reduction of exfoliated graphite oxide.Carbon , 200,45, 1558-1565 Sách, tạp chí
Tiêu đề: S"tankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. B. T.; Ruoff, R. S, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. "Carbon ," 200

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w