1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Đồ án định mức xây dựng ngành kinh tế xây dựng

40 2,2K 18

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 1,1 MB

Nội dung

Đồ án định mức xây dựng ngành kinh tế xây dựngThiết kế định mức thời gian sử dụng máy và tính đơn giá ca máy khi khai thác đất bằng máy xúc E2503 . Kết hợp với ô tô tự đổ KPAZ – 256 qua nghiên cứu thu thập số liệu ở hiện trường bàng phương pháp bấm giờ chọn lọc các phần tử

Trang 1

TRƯỜNG ĐẠI HỌC PHƯƠNG ĐÔNG

ĐỒ ÁN ĐỊNH MỨC XÂY DỰNG

NGÀNH: KINH TẾ XÂY DỰNG

Trang 2

Mở Đầu

I Giới thiệu về định mức và vai trò của định mức trong thực tiễn

Định mức trong xây dựng là một môn học thuộc lĩnh vực khoa học thực nghiệm

về lượng Nó xác định lượng hao phí các yếu tố sản xuất ( vật liệu, nhân công, thời gian

sử dụng máy xây dựng…) để làm ra một đơn vị sản phẩm Việc hình thành các chỉ tiêuđịnh lượng trong sản xuất và quản lý xây dựng là một quá trình phát triển và lựa chọn

Bởi thế Định mức kinh tế, kỹ thuật nói chung và Định mức trong xây dựng nói

riêng có tầm quan trọng hết sức lớn lao Trước hết nó là công cụ để Nhà nước tiến hànhquản lý kinh tế và tổ chức sản xuất ở tầm vĩ mô, là cơ sở pháp lý đầu tiên về mặt kỹthuật và về mặt kinh tế của Nhà nước

Thứ hai, các Định mức này là những công cụ quan trọng để tính toán các tiêu

chuẩn về kỹ thuật, về giá trị sử dụng của sản phẩm, về chi phí cũng như về các hiệu quảkinh tế – xã hội v.v…

Thứ ba, các Định mức này là các cơ sở để kiểm tra chất lượng chất lượng sản

phẩm về mặt kỹ thuật, kiểm tra các chi phí và hiệu quả về mặt kinh tế – xã hội của cácquá trình sản xuất

Thứ tư, các Định mức này còn để đảm bảo sự thống nhất đến mức cần thiết về

mặt quốc gia cũng như về mặt quốc tế đối với các sản phẩm làm ra để tạo điều kiệnthuận lợi cho quá trình sản xuất và tiêu thụ các sản phẩm trên thị trường

Thứ năm, các Định mức này còn được dùng để làm phương án đối sánh cơ sở khi phân tích, lựa chọn các phương án sản xuất tối ưu, các Định mức về chi phí còn để biểu

diễn hao phí lao động xã hội trung bình khi tính toán và lựa chọn các phương án

II Nhiệm vụ của đồ án định mức

Thiết kế định mức thời gian sử dụng máy và tính đơn giá ca máy khi khai thác đất bằngmáy xúc E-2503 Kết hợp với ô tô tự đổ KPAZ – 256 qua nghiên cứu thu thập số liệu ởhiện trường bàng phương pháp bấm giờ chọn lọc các phần tử

 Tài liệu tính toán gồm có 5 phiếu bấm giờ chọn lọc và các loại hao phí thời giancòn lại trong một ca máy

 Ngoài ra còn kể đến: Hệ số đầy gầu của máy xúc: Kđ = 0.92

 Các loại hao phí thời gian tính theo tỷ lệ % ca làm việc lấy theo kết quảCANLV , cần phải kiểm tra chất lượng của số liệu trước khi tính toán

- Thời gian ca làm việc (Tca) là 8 giờ

Trang 3

- Thời gian máy chạy không tải cho phép : 4% ca làm việc ( bao gồm khởi độngmáy, chạy từ chỗ nằm ra chỗ làm việc, di chuyển chỗ làm việc trong ca).

- Thời gian máy ngừng để bảo dưỡng trong ca (Tbd) là 40 phút/ca tức là 8,3% calàm việc

- Thời gian máy ngừng để thợ lái, nghỉ giải lao : 7.1 % ca làm việc

- Thời gian máy ngừng vì công nghệ : 10%, 12%, 14%, 12.5 %, (13%)

 Các chi phí để đánh giá một ca máy

- Giá máy để tính khấu hao : 2200 triệu đồng (VNĐ)

- Thời hạn khấu hao là 7 năm

- Số ca máy định mức trong năm là 280 ca/năm

+ Cứ 7100 giờ làm việc thì tiến hành sửa chữa lớn (SCL) , mỗi lần sửachưa lớn hết 7 triệu đồng

+ Cứ 3100 giờ làm việc thì tiến hành sửa chữa vừa (SCV), mỗi lầnchữa hết 3 triệu đồng

+ Cứ 1000 giờ làm việc thì phải bảo dưỡng kỹ thuật (BDKT), mỗi lầnBDKT hết 1 triệu đồng.

- Chi phí nhiên liệu, năng lượng: 120000 đ/ca

- Tiền công thợ điều khiển máy: 160000 đ/ca

- Chi phí quản lý máy: 5% các chi phí trực tiếp của ca máy

Nội Dung Đồ Án

Việc chỉnh lý sơ bộ được chỉnh lý ngay trên các tờ phiếu quan sát thu thập số liệu

ở hiện trường (trong đề bài)

Đối với các tờ phiếu thu thập từ quá trình quan sát hiện trường bằng phương phápbấm giờ ta cần tiến hành kiểm tra lại các dãy số xem có số nào quá khác biệt do khôngthực hiện đúng điều kiện tiêu chuẩn không Nếu có những số quá khác thực so với thực

Trang 4

tế thì có thể bỏ đi Tuy nhiên, có những số khác biệt so với các số khác trong dãy nhưng

do chính đặc điểm của quá trình sản xuất gây ra thì ta vẫn giữ lại trong dãy số

Tiến hành tính Pi( số chu kì đã thực hiện) và Ti (tổng hao phí thời gian sử dụngmáy)

Tất cả các số liệu được chỉnh lý sơ bộ & ghi ngay trên các phiếu quan sát

II. Chỉnh lý cho từng lần quan sát:

Trong đồ án đang xét là quá trình chỉnh lý các dãy số của các phần tử chu kỳ.Trình tự chỉnh lý một dãy số như sau:

+ Sắp xếp các số trong dãy theo thứ tự từ bé đến lớn

+ Xác định độ tản mạn của dãy số xung quanh kỳ vọng toán của nó hay xác định

độ ổn định của dãy số:

Kôđ a

a min

max

+ Xảy ra 3 trường hợp:1) Kôđ 1,3 : độ tản mạn của dãy số là cho phép, mọi con

số trong dãy đều dùng được

2) 1,3 < Kôđ  2 : dãy số được chỉnh lý theo phương

pháp số giới hạn

3) Kôđ > 2 :dãy số chỉnh lý theo phương pháp độ lệch

quân phương tương đối thực nghiệm.

tự

xuất

hiện 13 13 14 12 15 15 16 18 17 16 16 14 20 18 16 18 20 17 20 29 12 Sắp

Trang 5

   2 , 417

12

29 a

a min

max

ôđ K

) 349 ( 6083 21 349

100 1

) (

2 2

1

 -

-

 -

n a e

n

i

n

i i i

n

i i tn

Đây là dãy số bấm giờ của một phần tử trong một QTSX bao gồm 4 phần tử chu kỳ ( <

- Hao phí thời gian tương ứng: T 11 = 349 giây.

- S p x p các s trong d y theo th t t bé ắp xếp các số trong dẫy theo thứ tự từ bé đến lớn: ếp các số trong dẫy theo thứ tự từ bé đến lớn: ố trong dẫy theo thứ tự từ bé đến lớn: ẫy theo thứ tự từ bé đến lớn: ứ tự từ bé đến lớn: ự từ bé đến lớn: ừ bé đến lớn: đếp các số trong dẫy theo thứ tự từ bé đến lớn: ớn: n l n:

a min

max

ôđ K

Trang 6

176 1554 21 176

100 1

) (

2 2

1

 -

-

 -

n a e

n i

n i i i

n i i tn

Đây là dãy số bấm giờ của một phần tử trong một QTSX bao gồm 4 phần tử chu kỳ ( <

a min

max

ôđ K

- Trường hợp Kôđ = 2

Trang 7

Kiểm tra giới hạn trên: Giả sử bỏ đi giá trị lớn nhất amax = 6 của dãy số (Có 1 số trên

202

1

1 a +a + +a  +  +  

a TB

Tính giới hạn trên: Amax a TB1+K.(amax - amin)

Sau khi dự định loại bỏ 1 số nhận giá trị amax = 6, số con số còn lại của dãy là: 21 – 1 =

20 Suy ra hệ số K = 0,8

Như vậy: Amax = 4,45 + 0,8(5 – 3) = 6,05

So sánh thấy Amax = 6,05 > amax = 6, nên giá trị amax = 6 giữ lại trong dãy

Kiểm tra giới hạn dưới: Amin a TB2- K.(amax- amin )

Sau khi dự định loại bỏ 1 số nhận giá trị amin = 3, số con số còn lại của dãy là: 21- 1 =

20 Suy ra hệ số K = 0,8

20

6 10 5 9 4 20

213

2

2 a +a + +a   +  + 

a TB

Như vậy: Amin = 4,6 - 0,8(6 – 4) = 3

So sánh thấy Amin = 3 = amin nên vẫn giữ giá trị amin = 3 ở trong dãy

Kết luận:

- Số con số dùng được: P 31 = 21 số

- Hao phí thời gian: T 31 = 95 giây.

d) Phần tử 4 : Nâng quay gầu không tải

- Sắp xếp các số trong dãy theo th t t bé ứ tự từ bé đến lớn: ự từ bé đến lớn: ừ bé đến lớn: đếp các số trong dẫy theo thứ tự từ bé đến lớn: ớn: n l n:

Chu

kỳ

quan

sát 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Trình

tự

xuất

hiện 5,5 6 7 8 8 7 9 8 8 9 5 8 7 10 8 10 7 10 9 10 5,5 Sắp

a min

max

ôđ K

- Trường hợp: 1,3 < Kôđ  2

Chỉnh lý dãy số theo phương pháp: “số giới hạn”

Trang 8

Kiểm tra giới hạn trên: Giả sử bỏ đi giá trị lớn nhất amax = 10 của dãy số.(Có 4 số trêntổng số 21 số nhận giá trị amax = 10)

Tính trung bình số học:

17

3 9 6 8 4 7 6 2 5 , 5 5 4

21

172

1

-+ + +

a TB

Tính giới hạn trên: Amax a TB1+K.(amax - amin)

Sau khi dự định loại bỏ 4 số nhận giá trị amax = 10, số con số còn lại của dãy là: 21 – 4 =

17 Suy ra hệ số K = 0,8

Như vậy: Amax = 7.35 + 0,8(9 – 5) = 10,55

So sánh thấy Amax = 10,55 >amax = 10, nên giá trị amax = 10 giữ lại trong dãy

Kiểm tra giới hạn dưới: Amin a TB2- K.(amax - amin )

Sau khi dự định loại bỏ 1 số nhận giá trị amin = 5, số con số còn lại của dãy là: 21- 1 =

20 Suy ra hệ số K = 0,8

20

4 10 3 9 6 8 4 7 6 2 5 , 5 1

21

214

2

-+ + +

a TB

Như vậy: Amin = 8 - 0,8(10 – 5,5) = 4.4

So sánh thấy Amin =4.4< amin =5,5 nên vẫn giữ giá trị amin = 5 ở trong dãy

Trang 9

a min

max

ôđ K

- Ta thấy rằng: 1,3 < Kôđ < 2

Do vậy ta phải chỉnh lý dãy số theo phương pháp: “Số giới hạn”.

Kiểm tra giới hạn trên: Giả sử bỏ đi giá trị lớn nhất amax = 15 của dãy số (Có 1 số trêntổng số 21 số nhận giá trị amax = 15)

- Tính trung bình số học:

20

2 13 2 12 7 11 2 5 , 10 3 10 5 , 9 3 9 1

21

202

1

-+ + +

a TB

- Tính giới hạn trên: Amax a TB1+K.(amax - amin)

Sau khi dự định loại bỏ 1 số nhận giá trị amax = 15, số con số còn lại của dẫy là: 21 – 1 = 20 Suy ra hệ số K = 0,8

Như vậy: Amax = 10,72 + 0,8(13 – 9) = 13,92

So sánh thấy Amax = 13,92< amax = 15 nên loại amax = 15 ra khỏi dãy

Tiếp tục kiểm tra với a max =13:

Giả sử bỏ đi giá trị lớn nhất amax = 13 của dãy số (Có 2 số trên tổng số 20 số nhận giá trị

amax = 13)

- Tính trung bình số học:

47 , 10 18

2 12 7 11 2 5 , 10 3 10 5 , 9 3 9 2

20

182

1

-+ + +

a TB

- Tính giới hạn trên: Amax a TB1+K.(amax - amin)

Sau khi dự định loại bỏ 2 số nhận giá trị amax = 13, số con số còn lại của dẫy là: 19 – 2 = 19 Suy ra hệ số K = 0,8

Như vậy: Amax = 10,47 + 0,8(12 – 9) = 12,87

So sánh thấy Amax = 12,87 < amax = 13 nên loại amax = 13 ra khỏi dãy số

Tiếp tục kiểm tra với a max =12:

Giả sử bỏ đi giá trị lớn nhất amax = 12 của dãy số (Có 2 con số trên tổng số 18 số)

- Tính trung bình số học:

16

7 11 2 5 , 10 3 10 5 , 9 3 9 2

18

162

1

-+ + +

a TB

- Tính giới hạn trên: Amax a TB1+K.(amax - amin)

Trang 10

Sau khi dự định loại bỏ 2 số nhận giá trị amax = 12, số con số còn lại của dãy là: 18 – 2 = 16 Suy ra hệ số K = 0,8.

Như vậy: Amax = 10,28 + 0,8(11 – 9) = 11,88

So sánh thấy Amax = 11,88 < amax = 12 nên loại amax = 12 ở trong dãy số

Tiếp tục kiểm tra với a max =11:

Giả sử bỏ đi giá trị lớn nhất amax = 11 của dãy số (Có 7 con số trên tổng số 16 số)

- Tính trung bình số học:

9

2 5 , 10 3 10 5 , 9 3 9 7

16

92

1

-+ + +

a TB

- Tính giới hạn trên: Amax a TB1+K.(amax - amin)

Sau khi dự định loại bỏ 7 số nhận giá trị amax = 11, số con số còn lại của dãy là: 16 – 7= 9 Suy ra hệ số K = 1

Như vậy: Amax = 9,72 + 1(10,5 – 9) = 11,22

So sánh thấy Amax = 11,22 > amax = 11 nên giữ amax = 11 ở trong dãy số

Kiểm tra giới hạn dưới: Amin a TB2- K.(amax - amin )

Sau khi dự định loại bỏ 3 số nhận giá trị amin = 9, số con số còn lại của dãy là: 16-3 = 13.Suy ra hệ số K = 0,9

13

7 11 2 5 , 10 3 10 5 , 9 3

16

214

2

-+ + +

a TB

Như vậy: Amin = 10,57 - 0,9(11 – 9,5) = 9,22

So sánh thấy Amin = 9,22 > amin = 9 nên loại giá trị amin = 9 ở trong dãy

Vì số các con số bị loại là 8 con mà vẫn chưa thõa mãn, đã vượt quá 30% số các con sốtrong dãy, nên ta dừng kiểm tra ở đây, đi quan sát tiếp rồi bổ sung vào phiếu quan sát

Trang 11

   2 , 14

47

15 a

a min

max

ôđ K

22

5 , 236 75 , 2600 22

5 , 236

100 1

) (

2 2

1

 -

-

 -

n a e

n

i

n

i i i

n

i

i tn

Đây là dãy số bấm giờ của một phần tử trong một QTSX bao gồm 4 phần tử chu kỳ ( <

Trang 12

a min

max

ôđ K

- Ta thấy rằng: Kôđ = 2

Chỉnh lý dãy số theo phương pháp: “ Số giới hạn”.

Kiểm tra giới hạn trên: Giả sử bỏ đi giá trị lớn nhất amax = 12 của dãy số (Có 1 số trêntổng số 21 số nhận giá trị amax = 12)

- Tính trung bình số học:

7 , 8 20

3 11 5 , 10 2 10 4 9 5 , 8 4 8 2 5 , 7 7 2 6 1

21

202

1

-+ + +

a TB

- Tính giới hạn trên: Amax a TB1+K.(amax - amin)

Sau khi dự định loại bỏ 1 số nhận giá trị amax = 12, số con số còn lại của dãy là: 21 – 1 = 20 Suy ra hệ số K = 0,8

Như vậy: Amax = 8,7 + 0,8(11 – 6) = 12,7

So sánh thấy Amax = 12,7 > amax = 12 nên vẫn giữ amax = 12 ở trong dãy

Kiểm tra giới hạn dưới: Giả sử bỏ đi giá trị nhỏ nhất của dãy số amin = 6 (Có 2 số trên

21

214

3

-+ + +

a TB

- Tính giới hạn dưới: Amin a TB2 - K.(amax - amin )

Sau khi dự định loại bỏ 2 số nhận giá trị amin = 6, số con số còn lại của dẫy là:

21 – 2 = 19 Suy ra hệ số K = 0,8

Như vậy: Amin = 9,158 - 0,8(12 – 7) = 5,158

So sánh thấy Amin = 5,158 < amin = 6, nên vẫn giữ giá trị amin = 6 trong dãy

Kết luận: - Mọi con số trong dãy đều dùng được

Trang 13

Chu kỳ

quan sát

1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 20 21 Trình tự

xuất hiện

3 4 5 4 4 4,5 5 5 4 5 4,5 4 6 4 6 5 4 5,5 6 4,5 6 Sắp xếp từ

a min

max

ôđ K

- Ta thấy rằng: Kôđ = 2

Chỉnh lý dãy số theo phương pháp: “Số giới hạn”.

Kiểm tra giới hạn trên: Giả sử bỏ đi giá trị lớn nhất amax = 6 của dãy số (Có 4 số trêntổng số 21 số nhận giá trị amax = 6)

- Tính trung bình số học:

17

5 , 5 5 5 3 5 , 4 7 4 3 4

21

172

1

-+ + +

a TB

- Tính giới hạn trên: Amax a TB1 +K.(amax - amin)

Sau khi dự định loại bỏ 4 số nhận giá trị amax = 6, số con số còn lại của dãy là: 21 –

4 = 17 Suy ra hệ số K = 0,8

Như vậy: Amax = 4,412 + 0,8(5,5 – 3) = 6,412

So sánh thấy Amax = 6,412 > amax = 6 nên vẫn giữ amax = 6 ở trong dãy

Kiểm tra giới hạn dưới: Giả sử bỏ đi giá trị nhỏ nhất của dãy số amin = 3 (Có 1 số trên

tổng số 21 số nhận giá trị amin = 3)

- Tính trung bình số học:

8 , 4 20

4 6 5 , 5 5 5 3 5 , 4 7 4 1

21

213

2

-+ + +

a TB

- Tính giới hạn dưới: Amin a TB2- K.(amax - amin )

Sau khi dự định loại bỏ 1 số nhận giá trị amin = 3, số con số còn lại của dãy là:

21 – 1 = 20 Suy ra hệ số K = 0,8

Như vậy: Amin = 4,8 - 0,8(6 – 4) = 3,2

So sánh thấy Amin = 3,2 > amin = 3, nên loại giá trị amin = 3 ra khỏi dãy

Tiếp tục kiểm tra với a min = 4

Kiểm tra giới hạn dưới: Giả sử bỏ đi giá trị nhỏ nhất amin = 4 của dãy số (Có 7 số trêntổng số 20 số nhận giá trị amin = 4)

- Tính trung bình số học:

Trang 14

5 , 231

13

4 6 5 , 5 5 5 3 5 , 4 7

20

2110

9

-+ + +

a TB

- Tính giới hạn dưới: Amin a TB2- K.(amax - amin )

Sau khi dự định loại bỏ 7 số nhận giá trị amin = 4 số con số còn lại của dẫy là: 20 –

7 = 13 Suy ra hệ số K = 0,9

Như vậy: Amin = 5,231 - 0,9(6 – 4,5) = 3,881

So sánh thấy Amin = 3,881 < amin = 4 nên giữ lại amin = 4 ở trong dãy số

a min

max

ôđ K

195 5 , 1861 21 195

100 1

) (

2 2

1

 -

-

 -

n a e

n i

n

i i i

n i i tn

Đây là dãy số bấm giờ của một phần tử trong một QTSX bao gồm 4 phần tử chu kỳ ( <

5 ) nên ta có: [e]   7%

Trang 15

([e]: Độ lệch quân phương tương đối cho phép)

tự

xuất

hiện 8 10 12 9 15 10 14 16 15 12 14 16 16 14 12 19 14 15 16 14 24 Sắp

a min

max

ôđ K

295 4393 21 295

100 1

) (

2 2

1

 -

-

 -

n a e

n i

n i i i

n i i tn

Đây là dãy số bấm giờ của một phần tử trong một QTSX bao gồm 4 phần tử chu kỳ ( <

5 ) nên ta có: [e]   7%

([e]: Độ lệch quân phương tương đối cho phép)

So sánh ta thấy etn < [e]

Kết luận:

Trang 16

- Dãy số trên là hợp quy cách, mọi con số trong dãy đều dùng được

xuất hiện 5 6 9 7 6 7 9 6 5 7 6 10 6 7 11 10 11 9 12 9 13 Sắp xếp

a min

max

ôđ K

171 1505 21 171

100 1

) (

2 2

1

 -

-

 -

n a e

n

i

n

i i i

n

i i tn

Đây là dãy số bấm giờ của một phần tử trong một QTSX bao gồm 4 phần tử chu kỳ ( <

Trang 17

kỳ

quan

sát 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Trình

tự

xuất

hiện 4,5 6 6 5 4,5 7 6 5 4,5 7 6 5 7 6 5 6 7 6 7 6 6 Sắp

a min

max

ôđ K

Ta thấy rằng: 1,3 < Kôđ  2

Chỉnh lý dãy số theo phương pháp: “ Số giới hạn”.

Kiểm tra giới hạn trên: Giả sử bỏ đi giá trị lớn nhất amax = 7 của dãy số (Có 5 trên tổng

số 21 số nhận giá trị amax = 7)

16

9 6 4 5 3 5 , 4 5

21

162

1

-+ + +

a TB

- Tính giới hạn trên: Amax a TB1 +K.(amax  - amin )

Sau khi dự định loại bỏ 5 giá trị amax = 7, số con số còn lại của dãy là: 21 – 5= 16 Suy ra hệ số K = 0,8

Như vậy: Amax = 5,469+ 0,8(6 – 4,5)=6,669

So sánh thấy Amax = 6,669 < amax = 7 nên loại bỏ giá trị amax = 7 ra khỏi dãy số

Tiếp tục kiểm tra với a max =6:

Kiểm tra giới hạn trên: Giả sử bỏ đi giá trị lớn nhất amax = 6 của dãy số (Có 9 con sốtrên tổng số 16 số)

- Tính trung bình số học:

7

4 5 3 5 , 4 9

16

72

1

-+ + +

a TB

- Tính giới hạn trên: Amax a TB1 +K.(amax - amin)

Sau khi dự định loại bỏ 9 số nhận giá trị amax = 6, số con số còn lại của dẫy là: 16 –

9 = 7 Suy ra hệ số K = 1,1

Như vậy: Amax = 4,786 + 1,1(5 – 4,5) = 5,336

So sánh thấy Amax = 5,336< amax = 6 nên loại amax = 6 ra khỏi dãy số

Vì số các con số bị loại là 14 con mà vẫn chưa thõa mãn, đã vượt quá 30% số các con

số trong dãy, nên ta dừng kiểm tra ở đây, đi quan sát tiếp rồi bổ sung vào phiếu quan sát

Trang 18

xuất

hiện

4,5 6 6 5 4,5 7 6 5 4,5 7 6 5 7 6 5 6 7 6 7 6 6 4 8 Sắp

a min

max

ôđ K

Ta thấy rằng: Kôđ = 2

Chỉnh lý dãy số theo phương pháp: “Số giới hạn”.

Kiểm tra giới hạn trên: Giả sử bỏ đi giá trị lớn nhất amax = 8 của dãy số (Có 1 trên tổng

23

222

1

-+ + +

a TB

- Tính giới hạn trên: Amax a TB1 +K.(amax - amin)

Sau khi dự định loại bỏ 1 giá trị amax = 8, số con số còn lại của dãy là: 23 – 1= 22 Suy ra hệ số K = 0,8

Như vậy: Amax = 5,75+ 0,8(7 – 4)=8,15

So sánh thấy Amax = 8,15 > amax = 8 nên giữ lại giá trị amax = 8 ở trong dãy số

Kiểm tra giới hạn dưới: Giả sử bỏ đi giá trị nhỏ nhất của dãy số amin = 4 (Có 1 số trên

23

233

2

-+ + +

a TB

- Tính giới hạn dưới: Amin a TB2- K.(amax - amin )

Sau khi dự định loại bỏ 1 số nhận giá trị amin = 4 số con số còn lại của dẫy là: 23– 1= 22 Suy ra hệ số K = 0,8

Như vậy: Amin = 5,932 - 0,8(8-4,5)=3,132

Trang 19

tự

xuất

hiện 5,5 7 6 9 7 6 9 6 8 7 9 5 8 5,5 5 9 8 9 8 9 9 Sắp

a min

max

ôđ K

- Trường hợp: Kôđ = 1,8

Chỉnh lý dãy số theo phương pháp: “Số giới hạn”.

Kiểm tra giới hạn trên: Giả sử bỏ đi giá trị lớn nhất amax = 9 của dãy số (Có 7 số trên

tổng số 21 số nhận giá trị amax = 9)

14

4 8 3 7 3 6 2 5 , 5 2 5 7

21

142

1

-+ + +

a TB

Tính giới hạn trên: Amax a TB1 +K.(amax - amin)

Sau khi dự định loại bỏ 7 số nhận giá trị amax = 9, số con số còn lại của dãy là: 21– 7= 14 Suy ra hệ số K = 0,9

Như vậy: Amax = 6,57+ 0,9 (8 – 5) = 9,27

- So sánh thấy Amax = 9,27 >amax = 9, nên vẫn giữ giá trị amax = 9 trong dãy

Kiểm tra giới hạn dưới:

Giả sử bỏ đi giá trị nhỏ nhất amin = 5 của dãy số (Có 2 số trên tổng số 21 số nhận giá trị

amin = 5)-Tính trung bình số học:

19

7 9 4 8 3 7 3 6 2 5 , 5 2

21

213

2

-+ + +

a TB

-Tính giới hạn dưới: Amin a TB2- K.(amax- amin )

Trang 20

Sau khi dự định loại bỏ 2 số nhận giá trị amin = 5, số con số còn lại của dẫy là:

21 – 2 = 19 Suy ra hệ số K = 0,8

Như vậy: Amin = 7,63 - 0,8 (9 – 5,5)= 4,83

So sánh thấy Amin = 4,83 < amin = 5, nên giá trị amin = 5 vẫn được giữ lại

a min

max

ôđ K

- Trường hợp: 1,3 < Kôđ  2

Chỉnh lý dãy số theo phương pháp: “Số giới hạn”.

Kiểm tra giới hạn trên: Giả sử bỏ đi giá trị lớn nhất amax = 17 của dãy số(Có 1 số trên

tổng số 21 số nhận giá trị amax = 17)

- Tính trung bình số học:

8 , 13 20

16 7 15 6 14 2 13 12 3 11 1

21

202

1

-+ + +

a TB

- Tính giới hạn trên: Amax a TB1 +K.(amax - amin)

Sau khi dự định loại bỏ 1 số nhận giá trị amax = 17, số con số còn lại của dãy là:21- 1 = 20 Suy ra hệ số K = 0,8

Như vậy: Amax = 13,8 + 0,8(16 - 11) = 17,8

- So sánh thấy Amax = 17,8 > amax = 17 nên vẫn giữ giá trị amax = 17 trong dãy

Kiểm tra giới hạn dưới: Giả sử bỏ đi giá trị nhỏ nhất amin = 11 của dãy số(Có 3 số trên

tổng số 21 số nhận giá trị amin = 11)

Ngày đăng: 08/06/2016, 11:22

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w