1. Trang chủ
  2. » Giáo Dục - Đào Tạo

YẾU TỐ VUÔNG GÓC TRONG MỘT SỐ BÀI TOÁN HÌNH HỌC PHẲNG OXY

14 986 10

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 321,17 KB

Nội dung

A. Đặt vấn đề Hình học phẳng trong mặt phẳng Oxy là một phần kiến thức rất quan trọng trong chương trình toán THPT. Đặc biệt trong các kỳ thi HSG các cấp, kỳ thi THPT Quốc Gia. Giải được một câu của hình học phẳng trong đề thi HSG hoặc kỳ thi THPT QG là một niềm đam mê khó tả đối với mỗi HS, và đối với GV thì cách khám phá, xây dựng đề thi cũng là niềm vui, niềm hạnh phúc của mỗi GV dạy toán. Trong chuyên đề này chúng tôi đưa ra một số kỹ năng giải bài toán hình học phẳng theo cách ra đề hiện nay. Nhằm cung cấp cho HS, GV một số kỹ thuật, tài liệu nhằm xây dựng niềm đam mê học toán qua các bài toán hình học phẳng. B. Giải quyết vấn đề I. Thực trạng vấn đề và các hướng giải quyết 1. Cách ra đề như sau: Cần chứng minh một tính chất đặc biệt của hình học phẳng, sau đó áp dụng tính chất hình học phẳng để giải toán. 2. Theo thống kê từ các kỳ thi ĐH – CĐ trước đây hiện nay là kỳ thi TN THPT QG, thậm chí là các đề HSG các cấp hầu hết ra đề theo kiểu này. Nếu HS chưa chứng minh được tính chất của hình học phẳng có trong bài toán thì bài giải không thể giải được hoặc lời giải sẽ phức tạp, dài dòng nếu chỉ dùng yếu tố giải tích. 3. Phương pháp chung giải bài toán hệ tọa độ trong mặt phẳng có yếu tố hình học + Chuẩn bị các tính chất của hình học phẳng + Vẽ hình chính xác, khi bí chúng ta vẽ nhiều hình (2;3) Lấy trung điểm, phân giác, đường vuông góc Giả thiết cho đường tròn ta vẽ đường tròn trước sau đó vẽ đa giác nội hoặc ngoại tiếp + Phát hiện tính chất vuông góc, bằng nhau… + Trình bày rõ các mục + Nhớ loại nghiệm Chú ý: Cho trung tuyến áp dụng hệ thức về trung tuyến; trung điểm Cho đường cao áp dụng quan hệ vuông góc Cho phân giác lấy điểm đối xứng

www.MATHVN.com – Toán học Việt Nam YẾU TỐ VUÔNG GÓC TRONG MỘT SỐ BÀI TOÁN HÌNH HỌC PHẲNG OXY Hoàng Ngọc Hùng – THPT Kỳ Lâm, Hà Tĩnh A Đặt vấn đề Hình học phẳng mặt phẳng Oxy phần kiến thức quan trọng chương trình toán THPT Đặc biệt kỳ thi HSG cấp, kỳ thi THPT Quốc Gia Giải câu hình học phẳng đề thi HSG kỳ thi THPT QG niềm đam mê khó tả HS, GV cách khám phá, xây dựng đề thi niềm vui, niềm hạnh phúc GV dạy toán Trong chuyên đề đưa số kỹ giải toán hình học phẳng theo cách đề Nhằm cung cấp cho HS, GV số kỹ thuật, tài liệu nhằm xây dựng niềm đam mê học toán qua toán hình học phẳng B Giải vấn đề I Thực trạng vấn đề hướng giải Cách đề sau: Cần chứng minh tính chất đặc biệt hình học phẳng, sau áp dụng tính chất hình học phẳng để giải toán Theo thống kê từ kỳ thi ĐH – CĐ trước kỳ thi TN THPT QG, chí đề HSG cấp hầu hết đề theo kiểu Nếu HS chưa chứng minh tính chất hình học phẳng có toán giải giải lời giải phức tạp, dài dòng dùng yếu tố giải tích Phương pháp chung giải toán hệ tọa độ mặt phẳng có yếu tố hình học + Chuẩn bị tính chất hình học phẳng + Vẽ hình xác, bí vẽ nhiều hình (2;3) - Lấy trung điểm, phân giác, đường vuông góc - Giả thiết cho đường tròn ta vẽ đường tròn trước sau vẽ đa giác nội ngoại tiếp + Phát tính chất vuông góc, nhau… + Trình bày rõ mục + Nhớ loại nghiệm Chú ý: - Cho trung tuyến áp dụng hệ thức trung tuyến; trung điểm - Cho đường cao áp dụng quan hệ vuông góc - Cho phân giác lấy điểm đối xứng FB.com/mathvncom 1 www.MATHVN.com – Toán học Việt Nam II.Nội dung Yếu tố hình học nhiều toán yếu tố vuông góc Ở chuyên đề đưa số toán gốc Từ toán xây dựng phương pháp chứng minh số yếu tố vuông góc dễ dàng, dẫn tới cách giải vấn đề nhanh gọn xác Bài toán gốc 1 Cho hình chữ nhật ABCD, góc BMD = 900 Chứng minh AMC = 900 A D I B C M Giải:  BD   AC  M ∈ I;  suy M ∈  I ;  suy AMC = 90     Phương pháp chứng minh MA ⊥ MB B1:Tạo hình chữ nhật AEBF có đường chéo AB EF Cần chứng minh ME ⊥ MF A F I E B M FB.com/mathvncom 2 www.MATHVN.com – Toán học Việt Nam B2:Khi M thuộc đường tròn đường kính EF Suy đpcm Ví dụ 1: A -2013 Trong mặt phẳng với hệ tọa độ Oxy cho hình chữ nhật ABCD có điểm C thuộc đường thẳng d: 2x + y + =0 A(-4;8) Gọi M điểm đối xứng B qua C, N hình chiếu vuông góc B MD Tìm tọa độ điểm B, C biết N(5;-4) Giải: A(-4;8) B d 2x + y + = K C D N(5;-4) M Phân tích: Dự đoán AN ⊥ CN Giải: Ta có ABCD hình chữ nhật, theo giả thiết NB ⊥ ND suy NA ⊥ NC C thuộc d suy C(c; -2c – 5) Vì NA ⊥ NC nên C(1; -7) Phương trình đường thẳng AC: 3x + y + = Phương trình đường thẳng BN: -x + 3y + 17 = Gọi K giao điểm BN AC suy K  ; −  Do K trung điểm BN suy B(-4; -7) 2  11 Vậy B(-4; -7); C(1; -7) Ví dụ 2: (HSG Thanh Hóa 2015) FB.com/mathvncom 3 www.MATHVN.com – Toán học Việt Nam Cho hình chữ nhật ABCD có H(1;2) hình chiếu vuông góc A lên BD M(5;1) trung điểm BC Đường thẳng chứa trung tuyến kẻ từ A tam giác AHD có phương trình 4x + y – = Viết phương trình đường thẳng BC K A D N 4x + y - = H(1;2) B C M(5;1) Phân tích toán: Từ hình vẽ ta nhận định NA ⊥ NM, tức cần tạo hình chữ nhật có đường chéo AM Theo giả thiết ta có hình chữ nhật ABMK, cần chứng minh NK ⊥ NB với KB đường chéo lại Từ ta chứng minh NA ⊥ NM Giải: Gọi K trung điểm AD, N trung điểm HD, ta có ABMK hình chữ nhật Suy KN //AH ⇒ NK ⊥ NB Theo chứng minh trước ta có NA ⊥ NM Gọi N(n;4 - 4n), MN = (n − 5;3 − 4n) suy MN ud = ⇔ −1(n − 5) + 4(3 − 4n) = ⇔ n = Ta có N(1; 0), N trung điểm HD suy D(1;-2) Phương trình đường thẳng AH qua H vuông góc HN ta có x -2 =  4 x + y − = x = Tọa độ điểm A thỏa mãn:  ⇒ y − =  y = Phương trình BC qua M song song AD có phương trình 8x + y - 41 = FB.com/mathvncom 4 www.MATHVN.com – Toán học Việt Nam Ví dụ 3: Cho tam giác ABC cân A D thuộc cạnh AB cho BD = 2DA H hình chiếu B  −3   Tìm tọa độ điểm 2  lên CD A(-1;3), B thuộc d: x + y + = M trung điểm HC M  ; B, C? Giải: A E D H M B F C Phân tích toán: Dự đoán: MA ⊥ MB Giải: Gọi F trung điểm BC, Từ A kẻ At song song với BC, kéo dài CD cắt At E Do BD =2AD AE //BC nên AEBF hình chữ nhật Ta có MF ⊥ ME nên MA ⊥ MB Điểm B thuộc d suy B(b; -7 - b) Do MA ⊥ MB nên B ( −4; −3) Theo gt ta có BD = BA suy D(-1;-1) Ta có MC = DC suy C  ; −  4 4 5 7 Vậy B ( −4; −3) C  ; −  4 4 FB.com/mathvncom 5 www.MATHVN.com – Toán học Việt Nam Ví dụ (Đề thi thử tỉnh Quảng Ninh) Trong mặt phẳng với hệ tọa độ Oxy , cho hình vuông ABCD có tâm I Trung điểm cạnh AB M (0;3) , trung điểm đoạn CI J (1; 0) Tìm tọa độ đỉnh hình vuông, biết đỉnh D thuộc đường thẳng ∆ : x − y + = M A B I J D N C Gọi N trung điểm CD NJ//DI, Do DI ⊥ AC nên JN// JA Ta có AMND hình chữ nhật suy JM ⊥ JD D thuộc ∆ nên D (t ; t + 1) ⇒ JD (t − 1; t + 1), JM ( −1;3) Theo (1) JD.JM = ⇔ −t + + 3t + = ⇒ t = −2 ⇒ D(−2; −1) a2 Cách Gọi a cạnh hình vuông ABCD Dễ thấy DM = = a + ⇒ a = 4  x = −2; y = 2  AM =  x + ( y − 3) =  Gọi A( x; y ) Vì  ⇒ ⇔ 2 ( x + 2) + ( y + 1) = 16  AD =  x = ; y = - Với A(−2;3) ⇒ B(2;3) ⇒ I (0;1) ⇒ C (2; −1) ⇒ J (1; 0) (thỏa mãn) - Với 6 7  23   −8   −22 11  A ;  ⇒ B  − ;  ⇒ I  ;  ⇒ C  ;  ⇒ J ( −3; ) (loại) 5 5  5   5  5 Vậy tọa độ đỉnh hình vuông A(−2;3), B(2;3), C (2; −1), D (−2; −1) FB.com/mathvncom 6 www.MATHVN.com – Toán học Việt Nam Ví dụ 5: Trong mặt phẳng tọa độ Oxy cho hình thang ABCD vuông A D có CD = 2AB B(2;3) , gọi E trung điểm cạnh CD, H hình chiếu vuông góc E lên AC, biết phương trình đường thẳng DH: x + 2y – = đường thẳng AC qua K(1;3) B(2;3) A K(1;3) H D C E Phân tích: Dự đoán HB ⊥ HD Giải: ABED hình chữ nhật HA ⊥ HE (gt) suy HB ⊥ HD Phương trình đường thẳng BH qua B vuông góc DH: -2x + y + = Suy H giao điểm HD HB có tọa độ H(1;1) Đường thẳng AC qua K H có phương trình x = suy HE qua H vuông góc với AC có phương trình y = 1, E thuộc BE suy E(e;1) 2+e  Gọi M trung điểm AC Ta có M trung điểm BE suy M  ;  Do M thuộc   AC nên e = A thuộc AC suy A(1;a) suy C(1; 4- a) suy D(-1; a- 2) Theo giả thiết AD ⊥ AB nên a = Vậy A(1;4) B(2;3), C(1;0), D(-1; 2) Bài toán gốc 2: Cho tam giác cân ABC, gọi H trung điểm BC E hình chiếu H AC Gọi I trung điểm đoạn thẳng HE Chứng minh AI vuông góc với BE FB.com/mathvncom 7 www.MATHVN.com – Toán học Việt Nam A E K I B C H Gọi K trung điểm EC ta có IK //BC nên KI ⊥ AH (1) Theo gt ta có HI ⊥ AK (2) Từ (1) (2) suy I trực tâm tam giác AHK suy AI ⊥ HK Do HK //BE nên suy AI ⊥ BE( (đpcm) Ví dụ 6: Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC cân A(2;-4) Gọi H trung điểm BC, E hình chiếu H xuống cạnh AC Biết I  ;  trung điểm HE; điểm B thuộc đường thẳng 2 2 ∆ : x − y − = đường thẳng BE qua điểm N(5;1) Tìm tọa độ điểm B, C tam giác ABC 1 A(2;-4) E N(5;1) ∆:x - 2y - = FB.com/mathvncom I(1/2;1/2) B H K C www.MATHVN.com – Toán học Việt Nam Phân tích: Dự đoán AI ⊥ BE Giải: Gọi K trung điểm EC ta có IK //BC nên KI ⊥ AH (1) Theo gt ta có HI ⊥ AK (2) Từ (1) (2) suy I trực tâm tam giác AHK suy AI ⊥ HK Do HK //BE nên suy AI ⊥ BE B thuộc ∆ nên B(2b+4; b), AI ⊥ BE nên B(8; 2) Phương trình đường thẳng BE: x- 3y – = 0, Gọi E thuộc BE có tọa độ E(3e +2; e)  e = −1 Do IE ⊥ AE nên AE.IE = ⇔ 20e + 16e - = ⇔  suy e =   B(−1; −1)   B  13 ;    5  Phương trình đường thẳng AI: 3x + y – = Đặt f(M) = f(x;y) = 3x + y – = với M(x;y) Với e = ta có f(B).f(E) = 24.(-6) < suy B, E nằm khác phía với AI nên E(-1;-1) thỏa mãn Với e = ta có f(B).f(E)=24.6 > suy B, E nằm phía AI nên loại Do I trung điểm HE nên H(2;2) Do H trung điểm BC nên C(-4; 2) Vậy B(8;2) C(-4;2) Bài toán gốc Trong mặt phẳng tọa độ Oxy cho tam giác ABC nội tiếp đường tròn (C) tâm I Gọi E F chân đường cao hạ từ đỉnh B, C Chứng minh EF vuông góc IA A E M F I B FB.com/mathvncom C 9 www.MATHVN.com – Toán học Việt Nam Giải: Gọi Ax tiếp tuyến đường tròn (C) điểm A, M điểm Ax nằm phía với B so với đường thẳng AC Ta có Góc BAM = BCA chắn cung AB Lại có tứ giác EFBC tứ giác nội tiếp nên AFE = BCA (vì bù với BFE ) suy AFE = BAM ⇒ AM// EF MA ⊥ AI suy EF ⊥ AI Ví dụ (Tạp chí THTT) Trong mặt phẳng tọa độ Oxy cho đường tròn (C): x + y = 20 ngoại tiếp tam giác nhọn ABC Chân đường cao hạ từ B C tam giác ABC M(-1;3) N(2;-3) Tìm tọa độ đỉnh tam giác ABC biết A có tung độ âm A O M N C B Giải: + Đường tròn (C) có tâm O bán kính r = x − y = x = y  x = −4   + Theo chứng minh ta có MN ⊥ OA Gọi A(x; y) ta có hệ  x + y = 20 ⇔  y = ⇔   y = −2 y < y <   Suy A(-4;-2) +Phương trình đường thằng AM: -5x + 3y -14 = 0; Phương trình đường thẳng AN:x + 6y + 16 = FB.com/mathvncom 10 10 www.MATHVN.com – Toán học Việt Nam + Phương trình đường thẳng BM qua M vuông góc AC là: 3x + 5y -12 = Phương trình đường thẳng CN qua N vuông góc AB là: -6x + y + 15 = 152 60   59 159  Ta có B = BM ∩ AN suy B  ; −  ; C = CN ∩ AM suy C  ;  13   13  13 13  Ví dụ 8: Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC nội tiếp đường tròn (C) tâm I(1;2) Gọi E F chân đường cao hạ từ đỉnh B C, phương trình đường thẳng EF 3x – y – = 0, biết tiếp tuyến A đường tròn (C) qua M(3;-2) điểm B thuộc tia Oy Tìm tọa độ đỉnh tam giác ABC A M F E I C B Giải: Theo chứng minh ta có MA//EF suy phương trình đường thẳng AM: 3(x – 3) – (y + 2) = ⇔ 3x – y – 11 = Phương trình đường thẳng AI qua I vuông góc với EF có phương trình x - + 3( y – ) = ⇔ x + 3y – = 3 x – y – 11 = x = ⇔ x + 3y – = y = Tọa độ điểm A nghiệm hệ phương trình  B thuộc Oy nên B(0;b) , b> 0Ta có IA = IB nên (4 − 1) + (1 − 2)2 = (0 − 1) + (b − 2)2 b = ⇔ b = −1(l ) FB.com/mathvncom 11 11 www.MATHVN.com – Toán học Việt Nam Với b = suy B(0;5) ta có phương trình đường thẳng AB: x − y −1 = ⇔ x + y −5 = 0 − −1 x = 3 x – y – = ⇔ x + y − = y = Tọa độ E nghiệm hệ  Phương trình đường thẳng CE là: ( x − 3) − ( y − ) = ⇔ -x + y − = Gọi C thuộc CE suy C(c; c + 1) ta có IB = IC ⇔ (c− 1) + (c− 3)2 = 10 ⇔ c = suy C(4;5) C(0;1) ⇔ c = Ví dụ 9: Đề thi HSG Hà Tĩnh Lớp 10 – năm 2015 Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC Gọi H , K chân đường cao hạ từ 1 3 đỉnh B, C tam giác ABC Tìm tọa độ đỉnh tam giác ABC biết H ( 5; −1) , K  ;  , 5 5 phương trình đường thẳng BC x + y + = điểm B có hoành độ âm A H I K B M x + 3y + = FB.com/mathvncom 12 C 12 www.MATHVN.com – Toán học Việt Nam Giải: Theo chứng minh ta có tứ giác BCHK nội tiếp đường tròn đường kính BC Gọi M trung điểm BC ta có MH = MK Phương trình đường trung trực HK x − y − = Tọa độ M nghiệm hệ 3 x − y − = x = Vậy M ( 2; −2 ) ⇔  x + 3y + =  y = −2 Gọi B ( −3b − 4; b ) Ta có: MB = MH ⇔ ( 3b + ) + ( b + ) 2 = 10 b + = b = −1 ⇔ 10 ( b + ) = 10 ⇔  ⇔ b + = −1 b = −3 Suy B ( −1; −1) B ( 5; −3) (loại) ⇒ C ( 5; −3) Phương trình đường thẳng AC x = Phương trình đường thẳng AB x − y + = Suy A ( 5;7 ) Bài tập tự luyện Bài Trong mặt phẳng tọa độ Oxy cho hình thang vuông ABCD A D có CD =2AB, đỉnh B(1;2) Hình chiếu vuông góc D lên AC điểm H(-1;0) Gọi N trung điểm HC Tìm tọa độ đỉnh hình thang biết DN: x – 2y – = Bài Trong mặt phẳng tọa độ Oxy cho tam giác ABC vuông A(-2;0) Gọi E hình chiếu A lên BC F điểm đối xứng E qua A, biết trực tâm tam giác BCF H(-2;3) trung điểm BC thuộc đường thẳng d: 4x – y + = Tìm tọa độ đỉnh B, C tam giác ABC Bài 3: Trong mặt phẳng tọa độ Oxy cho hình chữ nhật, đỉnh B thuộc d1: 2x – y + = 0; đỉnh C thuộc 9 2 d2: x – y – = Gọi H hình chiếu B xuống AC Biết điểm M  ;  K(9;2) 5 5 trung điểm AH CD Tìm tọa độ đỉnh hình chữ nhật Bài 4: Trong mặt phẳng với hệ tọa độ Oxy cho tam giác nhọn ABC nội tiếp đường tròn tâm I(0;3), đỉnh B(0;-2) Gọi E F chân đường cao hạ từ đỉnh B C tam giác ABC Đường thẳng EF: 4x – 3y + = Tìm tọa độ đỉnh A C Bài 5: (Thi thử Nguyễn Đổng Chi- Hà Tĩnh) FB.com/mathvncom 13 13 www.MATHVN.com – Toán học Việt Nam Trong mặt phẳng với hệ tọa độ Oxy cho hình vuông ABCD với M, N trung điểm đoạn AB BC Gọi H chân đường cao kẻ từ B xuống CM Tìm tọa độ đỉnh hình vuông ABCD biết 5  N  −1; −  , H(-1;0) D nằm đường thẳng d: x – y – = 2  Bài 6: Thi thử THPT Can Lộc – Hà Tĩnh Trong mặt phẳng với hệ tọa độ Oxy cho hình vuông ABCD Trên cạnh AB, AD lấy điểm F E cho AE = BF Gọi H hình chiếu vuông góc A lên BE Tìm tọa độ đỉnh C biết C thuộc đường thẳng d: x - 2y + = tọa độ F(2;0), H(1;-1) Bài 7: Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm H (1;2) hình chiếu vuông góc A đoạn BD, M( ;3 ) trung điểm cạnh BC Phương trình đường trung tuyến kẻ từ A tam giác ADH d: x + y − = Viết phương trình cạnh BC Bài 8: Trong mặt phẳng Oxy , cho tam giác ABC có A(1;4), tiếp tuyến A đường tròn ngoại tiếp tam giác ABC cắt BC D, đường phân giác góc ADB có phương trình x- y + = 0, điểm M(-4;1) thuộc cạnh AC Viết phương trình đường thẳng AB C Kết luận kiến nghị đề xuất Yếu tố vuông góc toán hình học tọa độ mặt phẳng Oxy yếu tố quan trọng để giải nhiều toán khó Trên sở toán gốc, xây dựng toán liên quan, từ đưa vào yếu tố tọa độ để vẽ nên toán tọa độ thú vị Chuyên đề có ý nghĩa việc xây dựng cho HS tư hình học, giúp HS giải nhanh gọn toán hình học phẳng dựa vào yếu tố giải tích giải được, giải lời giải dài dòng phức tạp Hi vọng tài liệu quý giúp GV HS trình dạy học Từ hình thành cho HS kỹ giải vấn đề sống sau cách đơn giản, nhanh gọn xác Qua chuyên đề mong đồng chí góp ý, bổ sung thêm số toán khác góc, độ dài, quan hệ song song để chuyên đề hoàn thiện trở thành tư liệu quý cho HS GV trình giảng dạy học tập Kỳ Lâm, tháng năm 2016 Hoàng Ngọc Hùng FB.com/mathvncom 14 14 [...]... phương trình cạnh BC Bài 8: Trong mặt phẳng Oxy , cho tam giác ABC có A(1;4), tiếp tuyến tại A của đường tròn ngoại tiếp tam giác ABC cắt BC tại D, đường phân giác trong của góc ADB có phương trình x- y + 2 = 0, điểm M(-4;1) thuộc cạnh AC Viết phương trình đường thẳng AB C Kết luận và kiến nghị đề xuất Yếu tố vuông góc trong bài toán hình học tọa độ trong mặt phẳng Oxy là một yếu tố cực kỳ quan trọng... cực kỳ quan trọng để giải quyết nhiều bài toán khó Trên cơ sở bài toán gốc, chúng ta có thể xây dựng các bài toán liên quan, từ đó chúng ta đưa vào đó các yếu tố về tọa độ để vẽ nên các bài toán về tọa độ rất thú vị Chuyên đề có ý nghĩa trong việc xây dựng cho HS các tư duy về hình học, giúp HS giải quyết nhanh gọn các bài toán hình học phẳng nếu chỉ dựa vào yếu tố giải tích thì không thể giải quyết... AB là 4 x − 3 y + 1 = 0 Suy ra A ( 5;7 ) Bài tập tự luyện Bài 1 Trong mặt phẳng tọa độ Oxy cho hình thang vuông ABCD tại A và D có CD =2AB, đỉnh B(1;2) Hình chiếu vuông góc của D lên AC là điểm H(-1;0) Gọi N là trung điểm của HC Tìm tọa độ các đỉnh hình thang biết DN: x – 2y – 2 = 0 Bài 2 Trong mặt phẳng tọa độ Oxy cho tam giác ABC vuông tại A(-2;0) Gọi E là hình chiếu của A lên BC và F là điểm đối... THPT Can Lộc – Hà Tĩnh Trong mặt phẳng với hệ tọa độ Oxy cho hình vuông ABCD Trên các cạnh AB, AD lấy lần lượt các điểm F và E sao cho AE = BF Gọi H là hình chiếu vuông góc của A lên BE Tìm tọa độ đỉnh C biết C thuộc đường thẳng d: x - 2y + 1 = 0 và tọa độ F(2;0), H(1;-1) Bài 7: Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm H (1;2) là hình chiếu vuông góc của A trên đoạn BD, M( 9 ;3... là một tài liệu quý giúp GV và HS trong quá trình dạy học Từ đó hình thành cho HS những kỹ năng giải quyết vấn đề trong cuộc sống sau này một cách đơn giản, nhanh gọn và chính xác Qua chuyên đề này tôi mong rằng các đồng chí góp ý, bổ sung thêm một số bài toán khác về góc, độ dài, quan hệ song song để chuyên đề hoàn thiện hơn và trở thành một tư liệu quý cho HS và GV trong quá trình giảng dạy và học. .. C Bài 5: (Thi thử Nguyễn Đổng Chi- Hà Tĩnh) FB.com/mathvncom 13 13 www.MATHVN.com – Toán học Việt Nam Trong mặt phẳng với hệ tọa độ Oxy cho hình vuông ABCD với M, N lần lượt là trung điểm các đoạn AB và BC Gọi H là chân đường cao kẻ từ B xuống CM Tìm tọa độ các đỉnh hình vuông ABCD biết 5  N  −1; −  , H(-1;0) và D nằm trên đường thẳng d: x – y – 4 = 0 2  Bài 6: Thi thử THPT Can Lộc – Hà Tĩnh Trong. .. 4x – y + 4 = 0 Tìm tọa độ đỉnh B, C của tam giác ABC Bài 3: Trong mặt phẳng tọa độ Oxy cho hình chữ nhật, đỉnh B thuộc d1: 2x – y + 2 = 0; đỉnh C thuộc 9 2 d2: x – y – 5 = 0 Gọi H là hình chiếu của B xuống AC Biết điểm M  ;  và K(9;2) lần lượt là 5 5 trung điểm của AH và CD Tìm tọa độ các đỉnh hình chữ nhật Bài 4: Trong mặt phẳng với hệ tọa độ Oxy cho tam giác nhọn ABC nội tiếp đường tròn tâm I(0;3),...www.MATHVN.com – Toán học Việt Nam + Phương trình đường thẳng BM qua M và vuông góc AC là: 3x + 5y -12 = 0 Phương trình đường thẳng CN qua N và vuông góc AB là: -6x + y + 15 = 0 152 60   59 159  Ta có B = BM ∩ AN suy ra B  ; −  ; C = CN ∩ AM suy ra C  ;  13   13  13 13  Ví dụ 8: Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC nội tiếp đường tròn (C) tâm... Hà Tĩnh Lớp 10 – năm 2015 Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC Gọi H , K lần lượt là chân đường cao hạ từ 1 3 các đỉnh B, C của tam giác ABC Tìm tọa độ các đỉnh của tam giác ABC biết H ( 5; −1) , K  ;  , 5 5 phương trình đường thẳng BC là x + 3 y + 4 = 0 và điểm B có hoành độ âm A H I K B M x + 3y + 4 = 0 FB.com/mathvncom 12 C 12 www.MATHVN.com – Toán học Việt Nam Giải: Theo chứng... Phương trình đường thẳng AI qua I và vuông góc với EF có phương trình x - 1 + 3( y – 2 ) = 0 ⇔ x + 3y – 7 = 0 3 x – y – 11 = 0 x = 4 ⇔ x + 3y – 7 = 0 y = 1 Tọa độ điểm A là nghiệm của hệ phương trình  B thuộc Oy nên B(0;b) , b> 0Ta có IA = IB nên (4 − 1) 2 + (1 − 2)2 = (0 − 1) 2 + (b − 2)2 b = 5 ⇔ b = −1(l ) FB.com/mathvncom 11 11 www.MATHVN.com – Toán học Việt Nam Với b = 5 suy ra B(0;5)

Ngày đăng: 28/05/2016, 18:41

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w