1. Trang chủ
  2. » Giáo án - Bài giảng

BẤT ĐẲNG THỨC TRONG các kỳ THI đại học (mới)

11 287 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 758,6 KB

Nội dung

Vậy bất đẳng thức được chứng minh Bài 10: Cho a, b, c dướng tìm GTNN của biểu thức Giải: Từ bất đẳng thức quen biết sau: Xét hàm số:... Vậy bất đẳng thức được chứng minh... Vẻ đẹp của b

Trang 1

Vẻ đẹp của bất đẳng thức

1

VỂ ĐẸP CỦA BẤT ĐẲNG THỨC

Bài 1: (Đề thi tuyển sinh đại học khối A năm 2004)

Cho a, b, c dương thỏa mãn Chứng minh rằng

Giải:

Tương tự (1) ta có:

Mặt khác theo Cô – si ta có:

Mặt khác ta có:

Từ (1), (2), (3) và (4) ta có:

Dấu đẳng thức đạt khi:

Trang 2

Vẻ đẹp của bất đẳng thức

2

Bài 2: (Đề thi tuyển sinh đại học khối A năm 2005)

Giải:

Áp dụng bất đẳng thức Cô – si ta có:

Tương tự ta có:

Cộng các vế của (1), (2) và (3) lại ta được:

Bài 3: (Đề thi tuyển sinh đại học khối A năm 2009)

Cho các số thực không âm x, y và z thỏa mãn:

Chứng minh rằng:

Giải:

Theo đề bài ta có:

Theo Cô – si ta có:

Mặt khác:

Trang 3

Vẻ đẹp của bất đẳng thức

3

Tương tự ta có: (4) Cộng các vế các bất đẳng thức (2), (3) và (4) lại ta được:

Kết hợp (1) ta được:

Dấu đẳng thức đạt tại x = y = z

Bài 4: (Đề thi tuyển sinh đại học khối A năm 2012)

Cho x, y, z thỏa mãn x + y + z = 0 Tìm giá trị nhỏ nhất của biểu thức

Giải:

Nhận thấy x, y, z có vai trò bình đẳng nên P đạt GTNN khi x = y = z = 0

Khi đó x – y = 0, y – z = 0 và z – x = 0 do đó ta đánh giá theo điều kiện xảy ra dấu đẳng thức như sau:

Mặt khác ta có:

Ta có:

Từ (2) và cộng (3), (4) và (5) lại ta được

Từ (6) và (7) ta có:

Từ (1) và (8) ta có:

Trang 4

Vẻ đẹp của bất đẳng thức

4

Dấu bằng đạt được khi: x = y = z = 0

Bài 5: Chứng minh rằng với mọi số dương ta có:

Giải:

Đặt:

Bất đẳng thức trở thành:

Áp dụng Cô-si ta có:

Cộng các vế các bất đẳng thức lại ta được:

Bài 6: Chứng minh rằng với mọi số dương ta có:

Giải:

Trang 5

Vẻ đẹp của bất đẳng thức

5

Cộng các vế của các bất đẳng thức (1), (2) và (3) lại ta được:

Áp dụng Cô – si ta có:

Bài 7: Chứng minh rằng với mọi số dương ta có:

Giải:

Áp dụng Cô – si ta có:

Tương tự ta có:

Cộng các vế của các bất đẳng thức (1), (2) và (3) lại ta được:

Mặt khác ta có:

Trang 6

Vẻ đẹp của bất đẳng thức

6

Từ (4) và (5) ta có:

Bài 8: Chứng minh rằng với mọi số dương ta có:

Giải:

Áp dụng Cô-Si ta có:

Tương tự ta có:

Cộng các vế của các bất đẳng thức (1), (2) và (3) ta được:

Cuối cùng ta đi chứng minh:

Thật vậy ta có:

Áp dụng Cô – si ta có:

Tương tự ta có:

Cộng các vế của (6), (7)và (8) lại ta được:

Trang 7

Vẻ đẹp của bất đẳng thức

7

Dấu “=” đạt tại: a = b = c > 0

Chú ý: Với mọi số dương a, b, c ta có (Bạn đọc tự chứng minh)

Bài 9: Cho a, b, c dương thỏa mãn abc = 1 Chứng minh rằng

Giải:

Ta có:

Cộng các bất đăng thức (1), (2) và (3) lại ta có:

Áp dụng Cô – si ta có:

Từ (4) và (5) ta được:

Dấu bằng đạt khi a = b = c = 1 Vậy bất đẳng thức được chứng minh

Bài 10: Cho a, b, c dướng tìm GTNN của biểu thức

Giải:

Từ bất đẳng thức quen biết sau:

Xét hàm số:

Trang 8

Vẻ đẹp của bất đẳng thức

8

Bài 11: Cho a, b, c dương chứng minh rằng

Giải:

Mặt khác áp dụng Cô – si ta có:

Theo Cô – si ta có:

Vậy ta có:

Dấu bằng đạt khi a = b = c Vậy bất đẳng thức được chứng minh

Trang 9

Vẻ đẹp của bất đẳng thức

9

Chú ý: Với mọi a, b, c dương ta có: (Bạn đọc tự chứng minh)

Bài 12: Cho a, b là các số dương, tìm GTNN của biểu thức:

Giải:

Ta có:

Áp dụng Cô – si ta có:

Dấu đẳng thức xảy ra khi:

Bài 13: Cho a, b, c dương chứng minh rằng:

Giải:

Ta có:

Tương tự ta có:

Cộng các bất đẳng thức (1), (2) và (3) lại ta được:

Mặt khác ta lại có:

Trang 10

Vẻ đẹp của bất đẳng thức

10

Từ (4) và (5) ta có:

Dấu đẳng thức xảy ra khi:

Bài 14: Cho a, b, c dương chứng minh rằng:

Giải:

Áp dụng Cô – si ta có:

Tương tự (1), (2) và (3) ta có:

Cộng các vế của các bất đẳng thức (1), (2) và (3) lại ta được:

Dấu đẳng thức đạt được tại a = b = c = 1

Bài 15*: Cho các số thưc không âm đôi một khác không

Tìm GTNN của biểu thức

Giải:

Ta có:

Trang 11

Vẻ đẹp của bất đẳng thức

11

Theo Cô – si ta có:

Theo Cô – si ta lại có:

Vậy

Dấu đẳng thức đạt khi

Thân tặng các bạn học sinh khá giỏi Chúc các bạn học tập đạt kết quả cao

Ks Nguyễn Duy Hồng duyhong_xd@yahoo.com nguyenduyhong.ksxd@gmail.com

Ngày đăng: 26/05/2016, 18:14

TỪ KHÓA LIÊN QUAN

w