Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 107 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
107
Dung lượng
1,78 MB
Nội dung
GIẢI TÍCH HÀM NHIỀU BIẾN • • • • • CHƯƠNG I: ĐẠO HÀM VÀ VI PHÂN CHƯƠNG II : TÍCH PHÂN BỘI CHƯƠNG III: TÍCH PHÂN ĐƯỜNG CHƯƠNG IV: TÍCH PHÂN MẶT CHƯƠNG V: CHUỖI SỐ - CHUỖI LŨY THỪA CHƯƠNG I: ĐẠO HÀM VÀ VI PHÂN • • • • • • • §1: Các khái niệm – Giới hạn liên tục §2: Đạo hàm riêng §3: Khả vi Vi phân §4: Đạo hàm riêng vi phân hàm hợp §5: Đạo hàm riêng vi phân hàm ẩn §6: Cơng thức Taylor – Maclaurint §7: Cực trị hàm nhiều biến : Cực trị tự do, cực trị có điều kiện, GTLN-GTNN miền đóng §1 : Các khái niệm – Giới hạn liên tục Định nghĩa hàm biến : Cho D tập R2 Hàm biến f(x,y) ánh xạ f : D → R ( x, y ) f ( x, y ) z Miền xác định hàm tất giá trị (x,y) làm biểu thức hàm có nghĩa Miền giá trị hàm tập giá trị mà hàm nhận §1 : Các khái niệm – Giới hạn liên tục Ví dụ : Tìm MXĐ, MGT hàm f ( x, y ) x2 ( x, y ) R : x y2 MXĐ hình trịn D MGT đoạn [0,3] MXĐ y2 f(x,y) 3 (x,y) MGT §1 : Các khái niệm – Giới hạn liên tục Ví dụ: Cho hàm f ( x, y ) x Tính f(2,1) tìm MXĐ f Giải : a f(2,1) = b MXĐ : Ta lấy nửa mặt phẳng phía đường thẳng x+y+1 = bỏ toàn đường x = y x §1 : Các khái niệm – Giới hạn liên tục Cho f(x, y) hàm biến với MXĐ D Đồ thị f tập tất điểm M(x, y, z)R3, với (x, y)D, z = f(x, y) Đồ thị hàm z = f(x, y) phần mặt S, khác với đồ thị hàm biến y = f(x) phần đường cong §1 : Các khái niệm – Giới hạn liên tục Hình trịn mở tâm M0(x0,y0), bán kính r – kí hiệu B(M0,r) tập B(M0 , r ) ( x, y ) M 2 R : d (M , M ) R : (x x0 ) (y r y0 ) r Hình trịn mở cịn gọi r - lân cận điểm M §1 : Các khái niệm – Giới hạn liên tục Cho tập D điểm M thuộc R2 Ta định nghĩa loại điểm sau : Điểm : M gọi điểm D tồn r>0 cho r- lân cận M B(M,r) nằm hoàn toàn D Điểm biên : M gọi điểm biên D với r>0, hình cầu mở B(M,r) chứa điểm thuộc D điểm không thuộc D Điểm tụ : Điểm M gọi điểm tụ D với r>0, hình cầu mở B(M,r) chứa điểm N thuộc D, khác M §1 : Các khái niệm – Giới hạn liên tục Định lý : Điểm M điểm tụ tập D tồn dãy điểm Mn (Mn≠M) tiến M, tức n→∞ thìd(Mn,M) →0 • Chú ý : Như điểm D chắn thuộc A, điểm biên D khơng thuộc D Điểm biên chắn điểm tụ, điểm tụ khơng điểm biên §1 : Các khái niệm – Giới hạn liên tục Tập D gọi tập đóng D chứa điểm biên Tập điểm biên D gọi biên D Tập D gọi tập mở R2\D tập đóng, đó, điểm thuộc D điểm trong, D không chứa điểm biên Tập D gọi tập bị chặn chứa hình cầu đó, tức r : D B(O, r ) Như vậy, có tập chứa phần biên mà khơng chứa tồn biên nên tập khơng mở, khơng đóng §6 : Cực trị hàm nhiều biến – Cực trị có điều kiện Xét điểm dừng d2f(M1) = -3(dx2+dy2+dz2) – xác định dương nên fct = f(M1) = f(1/3,-2/3,2/3) = d2f(M2) = 3(dx2+dy2+dz2) – xác định âm nên fcđ = f(M2) = f(-1/3,2/3,-2/3) = -3 §6 : Cực trị hàm nhiều biến – Cực trị có điều kiện Ví dụ: Tìm cực trị hàm f(x,y) = x2+2y2+12xy với điều kiện 4x2+y2 = 25 Giải: L(x,y) = x2+2y2+12xy+λ(4x2+y2 - 25) Tìm điểm dừng : Lx x 12y x Ly 4x 4y 12 x (1) y (2) Từ (1) (2) ta tính λ theo x y, cho để tìm mối liên hệ x y y 25 (3) x 6y x 2y 24 x 4x y xy 6y (4) Pt (4) pt đẳng cấp x, y; ta giải cách đặt y = tx để phương trình §6 : Cực trị hàm nhiều biến – Cực trị có điều kiện t 2 24x +7x.tx-6(tx) = -6t +7t+24 = y Suy y x Ta thay vào pt (3), x tính λ tương ứng để điểm dừng t M1(2,-3) M2(-2,3) với λ = 2, M3(3/2,4) M4(-3/2,-4) với λ = -17/4 Tính d2L = L”xxdx2+L”yydy2 +2L”xydxdy d2L = (2+8λ)dx2+(4+2λ)dy2+24dxdy Ta xét điểm dừng lần chung λ §6 : Cực trị hàm nhiều biến – Cực trị có điều kiện Tại M1 M2 : d2L=18dx2+24dxdy+8dy2 = 2(3dx+2dy)2 Đến đây, ta chưa thể kết luận dấu d2f nên ta sử dụng điều kiện φ(x,y) = cách lấy vi phân vế: φ’xdx+φ’ydy=0 thay giá trị x, y điểm dừng xét để tìm thêm mối liên hệ dx dy Từ : 4x2+y2 = 25 8xdx+2ydy = Thay x=2 y=-3 (điểm M1) x=-2 y=3 (điểm M2) vào ta : 8dx = 3dy Suy ra: d2L(M1) = d2L(M2) = 225/4dx2 - xác định dương Tương tự xét dấu d2L M3 M4 Vậy : fcd = f(2,-3) = f(-2,3) = -26, fct = f(3/2,4) = f(-3/2,4) = -151/4 §6 : Cực trị hàm nhiều biến – Cực trị có điều kiện Ví dụ : Dùng cực trị để tìm khoảng cách từ gốc tọa độ đến đường thẳng giao tuyến mặt phẳng : x+y = 6, y+z = 12 Giải Khoảng cách từ gốc tọa độ O đến điểm M(x,y,z) d (O, M ) x y z2 Tức ta có tốn: Tìm cực trị hàm f(x,y,z)=x2+y2+z2 với điều kiện x+y = y+z = 12 Ta có làm cách : Cách 1: Thay x = 6-y, z = 12-y vào hàm f để hàm biến y tìm cực trị §6 : Cực trị hàm nhiều biến – Cực trị có điều kiện Cách 2: Dùng hàm Lagrange với điều kiện L(x,y,z) = f(x,y,z) + λφ(x,y,z) + μψ(x,y,z) L(x,y,z) = x2+y2+z2+λ(x+y-6)+μ(y+z-12) Tìm điểm dừng cách giải hpt Lx Lx x Ta điểm Ly Ly 2y dừng Lz Lz 2z M(0,6,6) ( x, y , z ) x y với λ = 0, μ = -12 ( x, y , z ) y z 12 Tính d2L=2(dx2+dy2+dz2) xác định dương điểm nên ta fct = f(0,6,6) = 72 Vậy khoảng cách nhỏ cần tìm 6√2 §6 : Cực trị hàm nhiều biến – GTLN GTNN Định nghĩa: Cho hàm f(x,y) xác định miền D đóng bị chặn Hàm f gọi đạt giá trị lớn (GTLN) điểm M0 ( x0 , y ) D f ( x, y ) f ( x0, y ), ( x, y ) D fmax = f(x0,y0) Thay dấu ≤ dấu ≥ định nghĩa ta có khái niệm giá trị nhỏ (GTNN) hàm miền đóng D Định lý Weierstrass : Nếu hàm f(x,y) liên tục tập đóng bị chặn D f đạt GTLN, GTNN D Nhắc lại rằng: Tập D đóng tức D chứa biên nó, D bị chặn tức tồn hình cầu mở B(M0,r) cho D B(M0 , r ) §6 : Cực trị hàm nhiều biến – GTLN GTNN Như vậy, để tìm GTLN, GTNN hàm f(x,y) miền đóng D ta làm sau : Tìm điểm điểm dừng M1, M2, … điểm D Tính giá trị hàm điểm dừng Tìm điểm dừng biên D tức điểm dừng hàm f thỏa điều kiện phương trình biên D Tính giá trị hàm f điểm dừng So sánh giá trị hàm f điểm dừng biên D để tìm GTLN, GTNN hàm f miền D §6 : Cực trị hàm nhiều biến – GTLN GTNN Vídụ : Tìm giá trị lớn nhất, giá trị nhỏ f(x,y) = (x-6)2+(y+8)2 thỏa điều kiện x2+y2 ≤ 25 Giải: Miền D hình trịn, bao gồm đường trịn tâm O(0,0) bán kính r = Tìm điểm dừng hình trịn tức giải hpt fx 2( x 6) fy 2( y 8) 2 x y 25 pt cho ta nghiệm x = 3, y = -4, không thỏa bất đẳng thức tức D khơng có điểm dừng §6 : Cực trị hàm nhiều biến – GTLN GTNN Tìm điểm dừng biên D tức tìm điểm dừng có điều kiện cách lập hàm Lagrange L(x,y) = f(x,y) + λ(x2+y2-25) (-3,4) (3,-4) giải hpt Lx 2( x 6) 2 x Ta điểm dừng Ly 2( y 8) 2 y biên M1(-3,4), M2(3,-4) 2 x y 25 Ta tính giá trị f điểm dừng so sánh ta fmax = f(-3,4) = 225, fmin=f(3,-4) = 25 §6 : Cực trị hàm nhiều biến – GTLN GTNN Ví dụ: Tìm GTLN GTNN hàm f(x,y) = x2+y2-xy miền |x| + |y| ≤ Giải: B(0,1) Trước hết, ta xác định miền D hình vng ABCD hình vẽ A(1,0) Tìm điểm dừng hình C(-1,0) vng cách giải hpt fx x y D(0-1) fy 2y x Ta điểm dừng M1(0,0) Tìm điểm dừng biên tức cạnh AB, BC, CD, DA hình vng §6 : Cực trị hàm nhiều biến – GTLN GTNN Trên cạnh AB với phương trình x+y = ↔ y = 1-x Thay vào hàm f ta f = x2+(1-x)2-x(1-x) = x2-x+1 f’=2x-1=0↔x=1/2 ta điểm dừng M2(1/2,1/2) B(0,1) M2 ( / , / ) A(1,0) C(-1,0) D(0-1) Tương tự cạnh lại ta điểm dừng M3(-1/2,1/2), M4(-1/2,-1/2), M5(1/2,-1/2) Cuối cùng, ta tính giá trị hàm điểm dừng vừa tìm: f(M1)=0, f(M2) = f(M4) = 1/4, f(M3) = f(M5) = 3/4 Và điểm đặc biệt: f(A) = f(B) = f(C) = f(D) = Vậy: fmax = f(A) = f(B) = f(C) = f(D) = 1, fmin = f(M1) = §6 : Cực trị hàm nhiều biến – GTLN GTNN Ví dụ : Tìm GTLN, GTNN hàm f(x,y) = x2+y2 miền ( x 1)2 ( y 2)2 D: 2 x y Giải: Trước tiên, ta xác định miền D phần hình trịn nằm đường thẳng Tìm điểm dừng miền D : f x x x y 0 fx 2y B(0,4) I(1,2) A(2,0) Ta không nhận điểm nằm ngồi miền D §6 : Cực trị hàm nhiều biến – GTLN GTNN Tìm điểm dừng biên D gồm đường : đoạn thẳng AB nửa đường tròn ACB Trên đoạn thẳng, ta có điều kiện: 2x+y = ↔ y = -2x+4 B(0,4) , 0≤x≤2 thay vào hàm f ta f = x2+(2x-4)2 = 5x2-16x+16 I(1,2) Cho ta điểm dừng M1 M1(8/5,4/5) A(2,0) Trên nửa đường tròn, ta lập hàm Lagrange L(x,y) = x2+y2+λ((x-1)2+(y-2)2-5) §6 : Cực trị hàm nhiều biến – GTLN GTNN Tìm điểm dừng: L 2x 2 ( x 1) x x y 0, Lx 2y 2 ( y 2) x 2, y 4, 2 2 ( x 1) ( y 2) Cuối cùng, ta tính giá trị f điểm đặc biệt điểm dừng f(M1) = 80/25, f(M2) = 20, f(A) = 4, f(B) = 16 so sánh để Ta loại điểm (0,0) nằm đường thẳng nhận điểm M2(2,4) M2 B(0,4) fmax=f(2,4)=20, fmin = f(8/5,4/5) = 80/25 I(1,2) M1 A(2,0)