1. Trang chủ
  2. » Đề thi

Đề thi đại học môn toán từ 2010 2015

24 234 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 3,35 MB

Nội dung

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010 Mơn: TỐN; Khối: A Thời gian làm bài: 180 phút, khơng kể thời gian phát đề BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số y = x3 − 2x2 + (1 − m)x + m (1), m tham số thực Khảo sát biến thiên vẽ đồ thị hàm số m = Tìm m để đồ thị hàm số (1) cắt trục hồnh điểm phân biệt có hồnh độ x1, x2, x3 thoả mãn điều kiện x12 + x22 + x32 < Câu II (2,0 điểm) π⎞ ⎛ (1 + sin x + cos x) sin ⎜ x + ⎟ 4⎠ ⎝ = Giải phương trình cos x + tan x 2 Giải bất phương trình x− 1− x 2( x − x + 1) ≥ 1 x2 + e x + x2e x ∫0 + 2e x dx Câu IV (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a Gọi M N trung điểm cạnh AB AD; H giao điểm CN với DM Biết SH vng góc với mặt phẳng (ABCD) SH = a Tính thể tích khối chóp S.CDNM tính khoảng cách hai đường thẳng DM SC theo a ⎧⎪(4 x + 1) x + ( y − 3) − y = (x, y ∈ R) Câu V (1,0 điểm) Giải hệ phương trình ⎨ 2 + + − = x y x ⎪⎩ II PHẦN RIÊNG (3,0 điểm) Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1: x + y = d2: x − y = Gọi (T) đường tròn tiếp xúc với d1 A, cắt d2 hai điểm B C cho tam giác ABC vng B Viết điểm A có hồnh độ dương phương trình (T), biết tam giác ABC có diện tích x −1 y z + = = mặt phẳng (P): x − 2y + z = Trong khơng gian toạ độ Oxyz, cho đường thẳng ∆: −1 Gọi C giao điểm ∆ với (P), M điểm thuộc ∆ Tính khoảng cách từ M đến (P), biết MC = Câu III (1,0 điểm) Tính tích phân I = Câu VII.a (1,0 điểm) Tìm phần ảo số phức z, biết z = ( + i ) (1 − i ) B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) Trong mặt phẳng toạ độ Oxy, cho tam giác ABC cân A có đỉnh A(6; 6); đường thẳng qua trung điểm cạnh AB AC có phương trình x + y − = Tìm toạ độ đỉnh B C, biết điểm E(1; −3) nằm đường cao qua đỉnh C tam giác cho x+2 y−2 z +3 = = Trong khơng gian toạ độ Oxyz, cho điểm A(0; 0; −2) đường thẳng ∆: Tính khoảng cách từ A đến ∆ Viết phương trình mặt cầu tâm A, cắt ∆ hai điểm B C cho BC = (1 − 3i )3 Câu VII.b (1,0 điểm) Cho số phức z thỏa mãn z = Tìm mơđun số phức z + i z 1− i - Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: ; Số báo danh BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2010 Mơn: TỐN; Khối: A Thời gian làm bài: 180 phút, khơng kể thời gian phát đề I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Khảo sát biến thiên vẽ đồ thị (C) hàm số y = x3 + 3x − Viết phương trình tiếp tuyến đồ thị (C) điểm có hồnh độ −1 Câu II (2,0 điểm) 5x 3x Giải phương trình cos cos + 2(8sin x − 1) cos x = 2 ⎧⎪2 x + y = − x − y Giải hệ phương trình ⎨ ( x, y ∈ \) 2 ⎪⎩ x − xy − y = Câu III (1,0 điểm) 2x −1 dx Tính tích phân I = ∫ x +1 Câu IV (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a, mặt phẳng (SAB) vng góc với mặt phẳng đáy, SA = SB, góc đường thẳng SC mặt phẳng đáy 45o Tính theo a thể tích khối chóp S.ABCD Câu V (1,0 điểm) Cho hai số thực dương thay đổi x, y thỏa mãn điều kiện 3x + y ≤ Tìm giá trị nhỏ 1 biểu thức A = + ⋅ x xy II PHẦN RIÊNG (3,0 điểm) Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong khơng gian với hệ tọa độ Oxyz, cho hai điểm A(1; − 2; 3), B(−1; 0; 1) mặt phẳng ( P): x + y + z + = Tìm tọa độ hình chiếu vng góc A (P) Viết phương trình mặt cầu (S) có bán kính AB , có tâm thuộc đường thẳng AB (S) tiếp xúc với (P) Câu VII.a (1,0 điểm) Cho số phức z thỏa mãn điều kiện (2 − 3i ) z + (4 + i ) z = − (1 + 3i) Tìm phần thực phần ảo z B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) x y −1 z Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d : mặt phẳng = = −2 1 ( P): x − y + z − = Viết phương trình mặt phẳng chứa d vng góc với (P) Tìm tọa độ điểm M thuộc d cho M cách gốc tọa độ O mặt phẳng (P) Câu VII.b (1,0 điểm) Giải phương trình z − (1 + i ) z + + 3i = tập hợp số phức Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: .; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010 Mơn: TỐN; Khối: B Thời gian làm bài: 180 phút, khơng kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x +1 Câu I (2,0 điểm) Cho hàm số y = x +1 Khảo sát biến thiên vẽ đồ thị (C) hàm số cho Tìm m để đường thẳng y = −2x + m cắt đồ thị (C) hai điểm phân biệt A, B cho tam giác OAB có diện tích (O gốc tọa độ) Câu II (2,0 điểm) Giải phương trình (sin x + cos x) cos x + cos x − sin x = Giải phương trình 3x + − − x + 3x − 14 x − = (x ∈ R) e Câu III (1,0 điểm) Tính tích phân I = ln x ∫ x ( + ln x )2 dx Câu IV (1,0 điểm) Cho hình lăng trụ tam giác ABC A ' B ' C ' có AB = a, góc hai mặt phẳng ( A ' BC ) ( ABC ) 60o Gọi G trọng tâm tam giác A ' BC Tính thể tích khối lăng trụ cho tính bán kính mặt cầu ngoại tiếp tứ diện GABC theo a Câu V (1,0 điểm) Cho số thực khơng âm a, b, c thỏa mãn: a + b + c = Tìm giá trị nhỏ biểu thức M = 3( a 2b + b c + c a ) + 3(ab + bc + ca ) + a + b + c PHẦN RIÊNG (3,0 điểm) Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng toạ độ Oxy, cho tam giác ABC vng A, có đỉnh C(− 4; 1), phân giác góc A có phương trình x + y − = Viết phương trình đường thẳng BC, biết diện tích tam giác ABC 24 đỉnh A có hồnh độ dương Trong khơng gian toạ độ Oxyz, cho điểm A(1; 0; 0), B(0; b; 0), C(0; 0; c), b, c dương mặt phẳng (P): y − z + = Xác định b c, biết mặt phẳng (ABC) vng góc với mặt phẳng (P) khoảng cách từ điểm O đến mặt phẳng (ABC) Câu VII.a (1,0 điểm) Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm biểu diễn số phức z thỏa mãn: z − i = (1 + i ) z B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) x2 y2 + = Gọi F1 F2 Trong mặt phẳng toạ độ Oxy, cho điểm A(2; ) elip (E): tiêu điểm (E) (F1 có hồnh độ âm); M giao điểm có tung độ dương đường thẳng AF1 với (E); N điểm đối xứng F2 qua M Viết phương trình đường tròn ngoại tiếp tam giác ANF2 x y −1 z Trong khơng gian toạ độ Oxyz, cho đường thẳng Δ: = = Xác định tọa độ điểm M 2 trục hồnh cho khoảng cách từ M đến Δ OM ⎧⎪log (3 y − 1) = x Câu VII.b (1,0 điểm) Giải hệ phương trình ⎨ x (x, y ∈ R) x ⎪⎩4 + = y Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: .; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2010 Mơn: TỐN; Khối: B Thời gian làm bài: 180 phút, khơng kể thời gian phát đề I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Khảo sát biến thiên vẽ đồ thị (C) hàm số y = x3 + 3x − Viết phương trình tiếp tuyến đồ thị (C) điểm có hồnh độ −1 Câu II (2,0 điểm) 5x 3x Giải phương trình cos cos + 2(8sin x − 1) cos x = 2 ⎧⎪2 x + y = − x − y Giải hệ phương trình ⎨ ( x, y ∈ \) 2 ⎪⎩ x − xy − y = Câu III (1,0 điểm) 2x −1 dx Tính tích phân I = ∫ x +1 Câu IV (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a, mặt phẳng (SAB) vng góc với mặt phẳng đáy, SA = SB, góc đường thẳng SC mặt phẳng đáy 45o Tính theo a thể tích khối chóp S.ABCD Câu V (1,0 điểm) Cho hai số thực dương thay đổi x, y thỏa mãn điều kiện 3x + y ≤ Tìm giá trị nhỏ 1 biểu thức A = + ⋅ x xy II PHẦN RIÊNG (3,0 điểm) Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong khơng gian với hệ tọa độ Oxyz, cho hai điểm A(1; − 2; 3), B(−1; 0; 1) mặt phẳng ( P): x + y + z + = Tìm tọa độ hình chiếu vng góc A (P) Viết phương trình mặt cầu (S) có bán kính AB , có tâm thuộc đường thẳng AB (S) tiếp xúc với (P) Câu VII.a (1,0 điểm) Cho số phức z thỏa mãn điều kiện (2 − 3i ) z + (4 + i ) z = − (1 + 3i) Tìm phần thực phần ảo z B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) x y −1 z Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d : mặt phẳng = = −2 1 ( P): x − y + z − = Viết phương trình mặt phẳng chứa d vng góc với (P) Tìm tọa độ điểm M thuộc d cho M cách gốc tọa độ O mặt phẳng (P) Câu VII.b (1,0 điểm) Giải phương trình z − (1 + i ) z + + 3i = tập hợp số phức Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: .; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010 Mơn: TỐN; Khối: D Thời gian làm bài: 180 phút, khơng kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số y = − x − x + Khảo sát biến thiên vẽ đồ thị (C) hàm số cho Viết phương trình tiếp tuyến đồ thị (C), biết tiếp tuyến vng góc với đường thẳng y = x − Câu II (2,0 điểm) Giải phương trình sin x − cos x + 3sin x − cos x − = Giải phương trình x + x+2 + x = 42 + e Câu III (1,0 điểm) Tính tích phân I = ⎛ x+2 + 2x + 4x − (x ∈ R) 3⎞ ∫ ⎜⎝ x − x ⎟⎠ ln x dx Câu IV (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a, cạnh bên SA = a ; hình AC chiếu vng góc đỉnh S mặt phẳng (ABCD) điểm H thuộc đoạn AC, AH = Gọi CM đường cao tam giác SAC Chứng minh M trung điểm SA tính thể tích khối tứ diện SMBC theo a Câu V (1,0 điểm) Tìm giá trị nhỏ hàm số y = − x + x + 21 − − x + 3x + 10 PHẦN RIÊNG (3,0 điểm) Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có đỉnh A(3; −7), trực tâm H(3; −1), tâm đường tròn ngoại tiếp I(−2; 0) Xác định tọa độ đỉnh C, biết C có hồnh độ dương Trong khơng gian toạ độ Oxyz, cho hai mặt phẳng (P): x + y + z − = (Q): x − y + z − = Viết phương trình mặt phẳng (R) vng góc với (P) (Q) cho khoảng cách từ O đến (R) Câu VII.a (1,0 điểm) Tìm số phức z thỏa mãn: | z | = z2 số ảo B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) Trong mặt phẳng tọa độ Oxy, cho điểm A(0; 2) Δ đường thẳng qua O Gọi H hình chiếu vng góc A Δ Viết phương trình đường thẳng Δ, biết khoảng cách từ H đến trục hồnh AH ⎧x = + t x − y −1 z ⎪ = = Xác Δ2: Trong khơng gian toạ độ Oxyz, cho hai đường thẳng Δ1: ⎨ y = t 2 ⎪z = t ⎩ định tọa độ điểm M thuộc Δ1 cho khoảng cách từ M đến Δ2 ⎧⎪ x − x + y + = Câu VII.b (1,0 điểm) Giải hệ phương trình ⎨ (x, y ∈ R) ⎪⎩2 log ( x − 2) − log y = Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: .; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2010 Mơn: TỐN; Khối: D Thời gian làm bài: 180 phút, khơng kể thời gian phát đề I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Khảo sát biến thiên vẽ đồ thị (C) hàm số y = x3 + 3x − Viết phương trình tiếp tuyến đồ thị (C) điểm có hồnh độ −1 Câu II (2,0 điểm) 5x 3x Giải phương trình cos cos + 2(8sin x − 1) cos x = 2 ⎧⎪2 x + y = − x − y Giải hệ phương trình ⎨ ( x, y ∈ \) 2 ⎪⎩ x − xy − y = Câu III (1,0 điểm) 2x −1 dx Tính tích phân I = ∫ x +1 Câu IV (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a, mặt phẳng (SAB) vng góc với mặt phẳng đáy, SA = SB, góc đường thẳng SC mặt phẳng đáy 45o Tính theo a thể tích khối chóp S.ABCD Câu V (1,0 điểm) Cho hai số thực dương thay đổi x, y thỏa mãn điều kiện 3x + y ≤ Tìm giá trị nhỏ 1 biểu thức A = + ⋅ x xy II PHẦN RIÊNG (3,0 điểm) Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong khơng gian với hệ tọa độ Oxyz, cho hai điểm A(1; − 2; 3), B(−1; 0; 1) mặt phẳng ( P): x + y + z + = Tìm tọa độ hình chiếu vng góc A (P) Viết phương trình mặt cầu (S) có bán kính AB , có tâm thuộc đường thẳng AB (S) tiếp xúc với (P) Câu VII.a (1,0 điểm) Cho số phức z thỏa mãn điều kiện (2 − 3i ) z + (4 + i ) z = − (1 + 3i) Tìm phần thực phần ảo z B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) x y −1 z Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d : mặt phẳng = = −2 1 ( P): x − y + z − = Viết phương trình mặt phẳng chứa d vng góc với (P) Tìm tọa độ điểm M thuộc d cho M cách gốc tọa độ O mặt phẳng (P) Câu VII.b (1,0 điểm) Giải phương trình z − (1 + i ) z + + 3i = tập hợp số phức Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: .; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Mơn: TỐN; Khối: A Thời gian làm bài: 180 phút, khơng kể thời gian phát đề ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) −x + Câu I (2,0 điểm) Cho hàm số y = 2x − 1 Khảo sát biến thiên vẽ đồ thị (C) hàm số cho Chứng minh với m đường thẳng y = x + m ln cắt đồ thị (C) hai điểm phân biệt A B Gọi k1, k2 hệ số góc tiếp tuyến với (C) A B Tìm m để tổng k1 + k2 đạt giá trị lớn Câu II (2,0 điểm) + sin x + cos x = sin x sin x Giải phương trình + cot x 2 ⎪⎧5 x y − xy + y − 2( x + y ) = ( x, y ∈ \) Giải hệ phương trình ⎨ 2 ⎪⎩ xy ( x + y ) + = ( x + y ) π Câu III (1,0 điểm) Tính tích phân I = ∫ x sin x + ( x + 1) cos x dx x sin x + cos x Câu IV (1,0 điểm) Cho hình chóp S.ABC có đáy ABC tam giác vng cân B, AB = BC = 2a; hai mặt phẳng (SAB) (SAC) vng góc với mặt phẳng (ABC) Gọi M trung điểm AB; mặt phẳng qua SM song song với BC, cắt AC N Biết góc hai mặt phẳng (SBC) (ABC) 60o Tính thể tích khối chóp S.BCNM khoảng cách hai đường thẳng AB SN theo a Câu V (1,0 điểm) Cho x, y, z ba số thực thuộc đoạn [1; 4] x ≥ y, x ≥ z Tìm giá trị nhỏ x y z biểu thức P = + + y+z z+x 2x + y PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng toạ độ Oxy, cho đường thẳng ∆: x + y + = đường tròn (C ) : x + y − x − y = Gọi I tâm (C), M điểm thuộc ∆ Qua M kẻ tiếp tuyến MA MB đến (C) (A B tiếp điểm) Tìm tọa độ điểm M, biết tứ giác MAIB có diện tích 10 Trong khơng gian với hệ tọa độ Oxyz, cho hai điểm A(2; 0; 1), B(0; –2; 3) mặt phẳng ( P) : x − y − z + = Tìm tọa độ điểm M thuộc (P) cho MA = MB = Câu VII.a (1,0 điểm) Tìm tất số phức z, biết: z = z + z B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) x2 y2 + = Tìm tọa độ điểm A B thuộc Trong mặt phẳng tọa độ Oxy, cho elip ( E ): (E), có hồnh độ dương cho tam giác OAB cân O có diện tích lớn Trong khơng gian với hệ tọa độ Oxyz, cho mặt cầu ( S ) : x + y + z − x − y − z = điểm A(4; 4; 0) Viết phương trình mặt phẳng (OAB), biết điểm B thuộc (S) tam giác OAB Câu VII.b (1,0 điểm) Tính mơđun số phức z, biết: (2 z − 1)(1 + i ) + ( z + 1)(1 − i ) = − 2i - Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: ; Số báo danh: ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2011 Mơn: TỐN; Khối: A Thời gian làm bài: 180 phút, khơng kể thời gian phát đề BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) x + x − x +1 Khảo sát biến thiên vẽ đồ thị (C) hàm số cho Viết phương trình tiếp tuyến đồ thị (C) giao điểm (C) với trục tung Câu I (2,0 điểm) Cho hàm số y = − Câu II (2,0 điểm) Giải phương trình cos x + 12sin x − = Giải bất phương trình x − 3.2 x + x2 − x − Câu III (1,0 điểm) Tính tích phân I = ∫ − 41+ x2 − x − > 2x +1 dx x( x + 1) Câu IV (1,0 điểm) Cho hình chóp S.ABC có đáy ABC tam giác vng cân B, AB = a, SA vng góc với mặt phẳng (ABC), góc hai mặt phẳng (SBC) (ABC) 30o Gọi M trung điểm cạnh SC Tính thể tích khối chóp S.ABM theo a Câu V (1,0 điểm) Tìm giá trị tham số thực m để phương trình sau có nghiệm + x + (4 − x)(2 x − 2) = m + 4 − x + x − ( x ∈ \) ( ) PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d : x + y + = Viết phương trình đường thẳng qua điểm A(2; − 4) tạo với đường thẳng d góc 45o Trong khơng gian với hệ tọa độ Oxyz, cho hai điểm A(−1; 2; 3), B(1; 0; −5) mặt phẳng ( P) : x + y − 3z − = Tìm tọa độ điểm M thuộc (P) cho ba điểm A, B, M thẳng hàng Câu VII.a (1,0 điểm) Cho số phức z thỏa mãn (1 + 2i ) z + z = 4i − 20 Tính mơđun z B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB: x + y − = 0, BC: x + y − = 0, CA : 3x + y − = Viết phương trình đường cao kẻ từ đỉnh A tam giác ABC x −1 y +1 z −1 = = Viết phương trình Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d : −3 mặt cầu có tâm I(1; 2; − 3) cắt đường thẳng d hai điểm A, B cho AB = 26 Câu VII.b (1,0 điểm) Cho số phức z thỏa mãn z − 2(1 + i ) z + 2i = Tìm phần thực phần ảo - Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: .; Số báo danh: z BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Mơn: TỐN; Khối: B Thời gian làm bài: 180 phút, khơng kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số y = x − 2(m + 1) x + m (1), m tham số Khảo sát biến thiên vẽ đồ thị hàm số (1) m = Tìm m để đồ thị hàm số (1) có ba điểm cực trị A, B, C cho OA = BC; O gốc tọa độ, A điểm cực trị thuộc trục tung, B C hai điểm cực trị lại Câu II (2,0 điểm) Giải phương trình sin2xcosx + sinxcosx = cos2x + sinx + cosx Giải phương trình + x − − x + 4 − x = 10 − x ( x ∈ \) π Câu III (1,0 điểm) Tính tích phân I = + x sin x dx cos x ∫ Câu IV (1,0 điểm) Cho lăng trụ ABCD.A1B1C1D1 có đáy ABCD hình chữ nhật, AB = a, AD = a Hình chiếu vng góc điểm A1 mặt phẳng (ABCD) trùng với giao điểm AC BD Góc hai mặt phẳng (ADD1A1) (ABCD) 60o Tính thể tích khối lăng trụ cho khoảng cách từ điểm B1 đến mặt phẳng (A1BD) theo a Câu V (1,0 điểm) Cho a b số thực dương thỏa mãn 2(a2 + b2) + ab = (a + b)(ab + 2) ⎛ a b3 ⎞ ⎛ a b2 ⎞ Tìm giá trị nhỏ biểu thức P = ⎜ + ⎟ − ⎜ + ⎟ ⋅ a ⎠ a ⎠ ⎝b ⎝b PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng ∆: x – y – = d: 2x – y – = Tìm tọa độ điểm N thuộc đường thẳng d cho đường thẳng ON cắt đường thẳng ∆ điểm M thỏa mãn OM.ON = x − y +1 z Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng Δ : mặt = = −2 −1 phẳng (P): x + y + z – = Gọi I giao điểm ∆ (P) Tìm tọa độ điểm M thuộc (P) cho MI vng góc với ∆ MI = 14 5+i Câu VII.a (1,0 điểm) Tìm số phức z, biết: z − − = z B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) ⎛1 ⎞ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh B ⎜ ; 1⎟ Đường tròn nội tiếp ⎝2 ⎠ tam giác ABC tiếp xúc với cạnh BC, CA, AB tương ứng điểm D, E, F Cho D (3; 1) đường thẳng EF có phương trình y – = Tìm tọa độ đỉnh A, biết A có tung độ dương x + y −1 z + Trong khơng gian với hệ toạ độ Oxyz, cho đường thẳng ∆: hai = = −2 điểm A(– 2; 1; 1), B(– 3; – 1; 2) Tìm toạ độ điểm M thuộc đường thẳng ∆ cho tam giác MAB có diện tích B B ⎛1+ i ⎞ Câu VII.b (1,0 điểm) Tìm phần thực phần ảo số phức z = ⎜⎜ ⎟⎟ ⎝ 1+ i ⎠ - Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: ; Số báo danh: ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2011 Mơn: TỐN; Khối: B Thời gian làm bài: 180 phút, khơng kể thời gian phát đề BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) x + x − x +1 Khảo sát biến thiên vẽ đồ thị (C) hàm số cho Viết phương trình tiếp tuyến đồ thị (C) giao điểm (C) với trục tung Câu I (2,0 điểm) Cho hàm số y = − Câu II (2,0 điểm) Giải phương trình cos x + 12sin x − = Giải bất phương trình x − 3.2 x + x2 − x − Câu III (1,0 điểm) Tính tích phân I = ∫ − 41+ x2 − x − > 2x +1 dx x( x + 1) Câu IV (1,0 điểm) Cho hình chóp S.ABC có đáy ABC tam giác vng cân B, AB = a, SA vng góc với mặt phẳng (ABC), góc hai mặt phẳng (SBC) (ABC) 30o Gọi M trung điểm cạnh SC Tính thể tích khối chóp S.ABM theo a Câu V (1,0 điểm) Tìm giá trị tham số thực m để phương trình sau có nghiệm + x + (4 − x)(2 x − 2) = m + 4 − x + x − ( x ∈ \) ( ) PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d : x + y + = Viết phương trình đường thẳng qua điểm A(2; − 4) tạo với đường thẳng d góc 45o Trong khơng gian với hệ tọa độ Oxyz, cho hai điểm A(−1; 2; 3), B(1; 0; −5) mặt phẳng ( P) : x + y − 3z − = Tìm tọa độ điểm M thuộc (P) cho ba điểm A, B, M thẳng hàng Câu VII.a (1,0 điểm) Cho số phức z thỏa mãn (1 + 2i ) z + z = 4i − 20 Tính mơđun z B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB: x + y − = 0, BC: x + y − = 0, CA : 3x + y − = Viết phương trình đường cao kẻ từ đỉnh A tam giác ABC x −1 y +1 z −1 = = Viết phương trình Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d : −3 mặt cầu có tâm I(1; 2; − 3) cắt đường thẳng d hai điểm A, B cho AB = 26 Câu VII.b (1,0 điểm) Cho số phức z thỏa mãn z − 2(1 + i ) z + 2i = Tìm phần thực phần ảo - Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: .; Số báo danh: z BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Mơn: TỐN; Khối: D Thời gian làm bài: 180 phút, khơng kể thời gian phát đề ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x +1 ⋅ Câu I (2,0 điểm) Cho hàm số y = x +1 Khảo sát biến thiên vẽ đồ thị (C) hàm số cho Tìm k để đường thẳng y = kx + 2k + cắt đồ thị (C) hai điểm phân biệt A, B cho khoảng cách từ A B đến trục hồnh Câu II (2,0 điểm) sin x + cos x − sin x − = Giải phương trình tan x + Giải phương trình log ( − x ) + log Câu III (1,0 điểm) Tính tích phân I = ∫ ( ) 1+ x + − x − = ( x ∈ \ ) 4x − dx 2x + + Câu IV (1,0 điểm) Cho hình chóp S.ABC có đáy ABC tam giác vng B, BA = 3a, BC = 4a; n = 30D Tính thể tích mặt phẳng (SBC) vng góc với mặt phẳng (ABC) Biết SB = 2a SBC khối chóp S.ABC khoảng cách từ điểm B đến mặt phẳng (SAC) theo a ⎧⎪2 x3 − ( y + 2) x + xy = m ( x, y ∈ \) Câu V (1,0 điểm) Tìm m để hệ phương trình sau có nghiệm: ⎨ ⎪⎩ x + x − y = − 2m PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh B(– 4; 1), trọng tâm G(1; 1) đường thẳng chứa phân giác góc A có phương trình x – y – = Tìm tọa độ đỉnh A C x +1 y z − ⋅ = = Trong khơng gian với hệ toạ độ Oxyz, cho điểm A(1; 2; 3) đường thẳng d: −2 Viết phương trình đường thẳng ∆ qua điểm A, vng góc với đường thẳng d cắt trục Ox Câu VII.a (1,0 điểm) Tìm số phức z, biết: z – (2 + 3i) z = – 9i B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) Trong mặt phẳng toạ độ Oxy, cho điểm A(1; 0) đường tròn (C): x2 + y2 – 2x + 4y – = Viết phương trình đường thẳng ∆ cắt (C) hai điểm M N cho tam giác AMN vng cân A x −1 y − z = = mặt phẳng Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng Δ : ( P) : x − y + z = Viết phương trình mặt cầu có tâm thuộc đường thẳng ∆, bán kính tiếp xúc với mặt phẳng (P) x + 3x + Câu VII.b (1,0 điểm) Tìm giá trị nhỏ giá trị lớn hàm số y = x +1 đoạn [0; 2] - Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: ; Số báo danh: ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2011 Mơn: TỐN; Khối: D Thời gian làm bài: 180 phút, khơng kể thời gian phát đề BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) x + x − x +1 Khảo sát biến thiên vẽ đồ thị (C) hàm số cho Viết phương trình tiếp tuyến đồ thị (C) giao điểm (C) với trục tung Câu I (2,0 điểm) Cho hàm số y = − Câu II (2,0 điểm) Giải phương trình cos x + 12sin x − = Giải bất phương trình x − 3.2 x + x2 − x − Câu III (1,0 điểm) Tính tích phân I = ∫ − 41+ x2 − x − > 2x +1 dx x( x + 1) Câu IV (1,0 điểm) Cho hình chóp S.ABC có đáy ABC tam giác vng cân B, AB = a, SA vng góc với mặt phẳng (ABC), góc hai mặt phẳng (SBC) (ABC) 30o Gọi M trung điểm cạnh SC Tính thể tích khối chóp S.ABM theo a Câu V (1,0 điểm) Tìm giá trị tham số thực m để phương trình sau có nghiệm + x + (4 − x)(2 x − 2) = m + 4 − x + x − ( x ∈ \) ( ) PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d : x + y + = Viết phương trình đường thẳng qua điểm A(2; − 4) tạo với đường thẳng d góc 45o Trong khơng gian với hệ tọa độ Oxyz, cho hai điểm A(−1; 2; 3), B(1; 0; −5) mặt phẳng ( P) : x + y − 3z − = Tìm tọa độ điểm M thuộc (P) cho ba điểm A, B, M thẳng hàng Câu VII.a (1,0 điểm) Cho số phức z thỏa mãn (1 + 2i ) z + z = 4i − 20 Tính mơđun z B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB: x + y − = 0, BC: x + y − = 0, CA : 3x + y − = Viết phương trình đường cao kẻ từ đỉnh A tam giác ABC x −1 y +1 z −1 = = Viết phương trình Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d : −3 mặt cầu có tâm I(1; 2; − 3) cắt đường thẳng d hai điểm A, B cho AB = 26 Câu VII.b (1,0 điểm) Cho số phức z thỏa mãn z − 2(1 + i ) z + 2i = Tìm phần thực phần ảo - Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: .; Số báo danh: z ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Mơn: TỐN; Khối A khối A1 Thời gian làm bài: 180 phút, khơng kể thời gian phát đề BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu (2,0 điểm) Cho hàm số y = x − 2( m + 1) x + m (1), với m tham số thực a) Khảo sát biến thiên vẽ đồ thị hàm số (1) m = b) Tìm m để đồ thị hàm số (1) có ba điểm cực trị tạo thành ba đỉnh tam giác vng Câu (1,0 điểm) Giải phương trình sin x + cos x = cos x − ⎧ x3 − x − x + 22 = y + y − y ⎪ ( x, y ∈ \) Câu (1,0 điểm) Giải hệ phương trình ⎨ 2 x + y − x + y = ⎪ ⎩ + ln( x + 1) dx x Câu (1,0 điểm) Cho hình chóp S ABC có đáy tam giác cạnh a Hình chiếu vng góc S mặt phẳng (ABC) điểm H thuộc cạnh AB cho HA = HB Góc đường thẳng SC mặt phẳng (ABC) 60o Tính thể tích khối chóp S.ABC tính khoảng cách hai đường thẳng SA BC theo a Câu (1,0 điểm) Cho số thực x, y , z thỏa mãn điều kiện x + y + z = Tìm giá trị nhỏ biểu thức Câu (1,0 điểm) Tính tích phân I = ∫ P = | x− y | + | y − z | + | z − x | − x + y + z II PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần riêng (phần A phần B) A Theo chương trình Chuẩn Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình vng ABCD Gọi M trung điểm 11 cạnh BC, N điểm cạnh CD cho CN = ND Giả sử M đường thẳng AN có ; 2 phương trình x − y − = Tìm tọa độ điểm A x +1 y z − Câu 8.a (1,0 điểm) Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d : = = điểm I (0; 0;3) Viết phương trình mặt cầu (S) có tâm I cắt d hai điểm A, B cho tam giác IAB vng I Câu 9.a (1,0 điểm) Cho n số ngun dương thỏa mãn 5Cnn −1 = Cn3 Tìm số hạng chứa x khai ( ( ) ) n nx − , x ≠ triển nhị thức Niu-tơn 14 x B Theo chương trình Nâng cao Câu 7.b (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C ): x + y = Viết phương trình tắc elip (E), biết (E) có độ dài trục lớn (E) cắt (C) bốn điểm tạo thành bốn đỉnh hình vng x +1 y z − Câu 8.b (1,0 điểm) Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d : , mặt = = 1 phẳng ( P ): x + y − z + = điểm A(1; −1; 2) Viết phương trình đường thẳng ∆ cắt d (P) M N cho A trung điểm đoạn thẳng MN 5( z + i ) Câu 9.b (1,0 điểm) Cho số phức z thỏa mãn = − i Tính mơđun số phức w = + z + z z +1 HẾT -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: ; Số báo danh: ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2012 Mơn: TỐN; Khối A, Khối A1, Khối B Khối D Thời gian làm bài: 180 phút, khơng kể thời gian phát đề BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x + Câu (2,0 điểm) Cho hàm số y = (1) x +1 a) Khảo sát biến thiên vẽ đồ thị hàm số (1) b) Viết phương trình tiếp tuyến d đồ thị hàm số (1), biết d vng góc với đường thẳng y = x + Câu (2,0 điểm) a) Giải phương trình 2cos x + sin x = sin 3x b) Giải bất phương trình log (2 x).log (3 x) > Câu (1,0 điểm) Tính tích phân I = ∫ x x +1 dx Câu (1,0 điểm) Cho khối chóp S ABC có đáy ABC tam giác vng cân A, AB = a , SA = SB = SC Góc đường thẳng SA mặt phẳng ( ABC ) 60o Tính thể tích khối chóp S ABC bán kính mặt cầu ngoại tiếp hình chóp S ABC theo a Câu (1,0 điểm) Giải phương trình x3 + x − ( x + 1) x + = ( x ∈ \) II PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần riêng (phần A phần B) A Theo chương trình Chuẩn Câu 6.a (2,0 điểm) a) Trong mặt phẳng với hệ tọa độ Oxy , cho đường tròn (C ) : x + y − x − y + = đường thẳng d : x − y + m = Tìm m để d cắt (C ) hai điểm A, B cho n AIB = 120o , với I tâm (C ) b) Trong khơng gian với hệ tọa độ Oxyz , cho hai đường thẳng: ⎧x = t ⎪ d1 : ⎨ y = 2t (t ∈ \), ⎪z = − t ⎩ ⎧ x = + 2s ⎪ d : ⎨ y = + 2s (s ∈ \) ⎪ z = −s ⎩ Chứng minh d1 d cắt Viết phương trình mặt phẳng chứa hai đường thẳng d1 , d Câu 7.a (1,0 điểm) Cho số phức z thỏa mãn (1 − 2i ) z − 2−i = (3 − i ) z Tìm tọa độ điểm biểu diễn z 1+ i mặt phẳng tọa độ Oxy B Theo chương trình Nâng cao Câu 6.b (2,0 điểm) a) Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC Các đường thẳng BC , BB ', B ' C ' có phương trình y − = 0, x − y + = 0, x − y + = 0; với B ', C ' tương ứng chân đường cao kẻ từ B, C tam giác ABC Viết phương trình đường thẳng AB, AC x − y +1 z +1 b) Trong khơng gian với hệ tọa độ Oxyz , cho đường thẳng d : mặt phẳng = = −1 −1 ( P ) : x + y − z = Đường thẳng Δ nằm ( P ) vng góc với d giao điểm d ( P) Viết phương trình đường thẳng Δ Câu 7.b (1,0 điểm) Gọi z1 , z2 hai nghiệm phức phương trình z − z + + 2i = Tính z1 + z2 - Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: ; Số báo danh ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Mơn: TỐN; Khối B Thời gian làm bài: 180 phút, khơng kể thời gian phát đề BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu (2,0 điểm) Cho hàm số y = x3 − 3mx + 3m3 (1), m tham số thực a) Khảo sát biến thiên vẽ đồ thị hàm số (1) m = b) Tìm m để đồ thị hàm số (1) có hai điểm cực trị A B cho tam giác OAB có diện tích 48 Câu (1,0 điểm) Giải phương trình 2(cos x + sin x) cos x = cos x − sin x + Câu (1,0 điểm) Giải bất phương trình x + + x − x + ≥ x Câu (1,0 điểm) Tính tích phân I = ∫ x3 x + 3x2 + dx Câu (1,0 điểm) Cho hình chóp tam giác S.ABC với SA = 2a, AB = a Gọi H hình chiếu vng góc A cạnh SC Chứng minh SC vng góc với mặt phẳng (ABH) Tính thể tích khối chóp S.ABH theo a Câu (1,0 điểm) Cho số thực x, y, z thỏa mãn điều kiện x + y + z = x + y + z = Tìm giá trị lớn biểu thức P = x5 + y5 + z II PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần riêng (phần A phần B) A Theo chương trình Chuẩn Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C1 ): x + y = 4, (C2 ): x + y − 12 x + 18 = đường thẳng d : x − y − = Viết phương trình đường tròn có tâm thuộc (C2 ), tiếp xúc với d cắt (C1 ) hai điểm phân biệt A B cho AB vng góc với d x −1 y z hai = = −2 điểm A(2;1; 0), B (−2;3; 2) Viết phương trình mặt cầu qua A, B có tâm thuộc đường thẳng d Câu 8.a (1,0 điểm) Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d : Câu 9.a (1,0 điểm) Trong lớp học gồm có 15 học sinh nam 10 học sinh nữ Giáo viên gọi ngẫu nhiên học sinh lên bảng giải tập Tính xác suất để học sinh gọi có nam nữ B Theo chương trình Nâng cao Câu 7.b (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD có AC = BD đường tròn tiếp xúc với cạnh hình thoi có phương trình x + y = Viết phương trình tắc elip (E) qua đỉnh A, B, C, D hình thoi Biết A thuộc Ox Câu 8.b (1,0 điểm) Trong khơng gian với hệ tọa độ Oxyz, cho A(0; 0;3), M (1; 2; 0) Viết phương trình mặt phẳng (P) qua A cắt trục Ox, Oy B, C cho tam giác ABC có trọng tâm thuộc đường thẳng AM Câu 9.b (1,0 điểm) Gọi z1 z2 hai nghiệm phức phương trình z − i z − = Viết dạng lượng giác z1 z2 HẾT -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: ; Số báo danh: ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 BỘ GIÁO DỤC VÀ ĐÀO TẠO Mơn: TỐN; Khối D Thời gian làm bài: 180 phút, khơng kể thời gian phát đề ĐỀ CHÍNH THỨC I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) x − mx − 2(3m − 1) x + (1), m tham số thực 3 a) Khảo sát biến thiên vẽ đồ thị hàm số (1) m = b) Tìm m để hàm số (1) có hai điểm cực trị x1 x2 cho x1 x2 + 2( x1 + x2 ) = Câu (2,0 điểm) Cho hàm số y = Câu (1,0 điểm) Giải phương trình sin x + cos 3x − sin x + cos x = cos x ⎧⎪ xy + x − = Câu (1,0 điểm) Giải hệ phương trình ⎨ ( x, y ∈ \ ) 2 ⎪⎩ x − x y + x + y − xy − y = π Câu (1,0 điểm) Tính tích phân I = ∫ x(1 + sin x)dx Câu (1,0 điểm) Cho hình hộp đứng ABCD A' B 'C ' D ' có đáy hình vng, tam giác A' AC vng cân, AC ' = a Tính thể tích khối tứ diện ABB'C ' khoảng cách từ điểm A đến mặt phẳng ( BCD ') theo a Câu (1,0 điểm) Cho số thực x, y thỏa mãn ( x − 4)2 + ( y − 4)2 + xy ≤ 32 Tìm giá trị nhỏ biểu thức A = x3 + y3 + 3( xy − 1)( x + y − 2) II PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần riêng (phần A phần B) A Theo chương trình Chuẩn Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD Các đường thẳng AC AD có phương trình x + y = x − y + = 0; đường thẳng BD qua điểm M − ;1 Tìm tọa độ đỉnh hình chữ nhật ABCD Câu 8.a (1,0 điểm) Trong khơng gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ): x + y − z + 10 = điểm I (2;1;3) Viết phương trình mặt cầu tâm I cắt (P) theo đường tròn có bán kính ( ) Câu 9.a (1,0 điểm) Cho số phức z thỏa mãn (2 + i ) z + 2(1 + 2i ) = + 8i Tìm mơđun số phức w = z + + i 1+ i B Theo chương trình Nâng cao Câu 7.b (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d : x − y + = Viết phương trình đường tròn có tâm thuộc d, cắt trục Ox A B, cắt trục Oy C D cho AB = CD = x −1 y +1 z = = hai −1 điểm A(1; −1; 2), B (2; −1;0) Xác định tọa độ điểm M thuộc d cho tam giác AMB vng M Câu 8.b (1,0 điểm) Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d : Câu 9.b (1,0 điểm) Giải phương trình z + 3(1 + i) z + 5i = tập hợp số phức HẾT -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−−− ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: TOÁN; Khối A khối A1 Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu (2,0 điểm) Cho hàm số y = −x3 + 3x2 + 3mx − (1), với m tham số thực a) Khảo sát biến thiên vẽ đồ thò hàm số (1) m = b) Tìm m để hàm số (1) nghòch biến khoảng (0; + ∞) √ π Câu (1,0 điểm) Giải phương trình + tan x = 2 sin x + √ √ x + + x − − y4 + = y Câu (1,0 điểm) Giải hệ phương trình x2 + 2x(y − 1) + y − 6y + = (x, y ∈ R) Câu (1,0 điểm) Tính tích phân x2 − ln x dx x2 I= Câu (1,0 điểm) Cho hình chóp S.ABC có đáy tam giác vuông A, ABC = 30◦ , SBC tam giác cạnh a mặt bên SBC vuông góc với đáy Tính theo a thể tích khối chóp S.ABC khoảng cách từ điểm C đến mặt phẳng (SAB) Câu (1,0 điểm) Cho số thực dương a, b, c thỏa mã√ n điều kiện (a + c)(b + c) = 4c2 Tìm giá trò 32a3 32b3 a + b2 nhỏ biểu thức P = + − (b + 3c)3 (a + 3c)3 c II PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A phần B) A Theo chương trình Chuẩn Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm C thuộc đường thẳng d : 2x + y + = A(−4; 8) Gọi M điểm đối xứng B qua C, N hình chiếu vuông góc B đường thẳng MD Tìm tọa độ điểm B C, biết N(5; −4) x−6 y+1 z+2 Câu 8.a (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : = = −3 −2 điểm A(1; 7; 3) Viết phương trình mặ t phẳ n g (P ) qua A vuô n g gó c vớ i ∆ Tìm tọ a độ điể m √ M thuộc ∆ cho AM = 30 Câu 9.a (1,0 điểm) Gọi S tập hợp tất số tự nhiên gồm ba chữ số phân biệt chọn từ chữ số 1; 2; 3; 4; 5; 6; Xác đònh số phần tử S Chọn ngẫu nhiên số từ S, tính xác suất để số chọn số chẵn B Theo chương trình Nâng cao Câu 7.b (1,0 điểm) Trong √ mặt phẳng với hệ tọa độ Oxy, cho đường thẳng√∆ : x − y = Đường tròn (C) có bán kính R = 10 cắt ∆ hai điểm A B cho AB = Tiếp tuyến (C) A B cắt điểm thuộc tia Oy Viết phương trình đường tròn (C) Câu 8.b (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P ) : 2x + 3y + z − 11 = mặt cầu (S) : x2 + y + z − 2x + 4y − 2z − = Chứng minh (P ) tiếp xúc với (S) Tìm tọa độ tiếp điểm (P ) (S) √ Câu 9.b (1,0 điểm) Cho số phức z = + i Viết dạng lượng giác z Tìm phần thực phần ảo số phức w = (1 + i)z5 −−−−−−Hết−−−−−− Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−−− ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2013 Môn: TOÁN; Khối A, Khối A1, Khối B Khối D Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x + Câu (2,0 điểm) Cho hàm số y = x−1 a) Khảo sát biến thiên vẽ đồ thò (C) hàm số cho b) Gọi M điểm thuộc (C) có tung độ Tiếp tuyến (C) M cắt trục tọa độ Ox Oy A B Tính diện tích tam giác OAB π Câu (1,0 điểm) Giải phương trình cos − x + sin 2x = xy − 3y + = Câu (1,0 điểm) Giải hệ phương trình (x, y ∈ R) 4x − 10y + xy = Câu (1,0 điểm) Tính tích phân I= dx √ + 2x − Câu (1,0 điểm) Cho lăng trụ ABC.A B C có AB = a đường thẳng A B tạo với đáy góc 60◦ Gọi M N trung điểm cạnh AC B C Tính theo a thể tích khối lăng trụ ABC.A B C độ dài đoạn thẳng MN √ Câu (1,0 điểm) Tìm m để bất phương trình (x − − m) x − ≤ m − có nghiệm II PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A phần B) A Theo chương trình Chuẩn Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d : x + y − = 0, ∆ : x − y + = điểm M(−1; 3) Viết phương trình đường tròn qua M, có tâm thuộc d, √ cắt ∆ hai điểm A B cho AB = Câu 8.a (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(4; −1; 3) đường thẳng x−1 y+1 z−3 d: = = Tìm tọa độ điểm đối xứng A qua d −1 Câu 9.a (1,0 điểm) Cho số phức z thỏa mãn điều kiện (3 + 2i)z + (2 − i)2 = + i Tìm phần thực phần ảo số phức w = (1 + z) z B Theo chương trình Nâng cao Câu 7.b (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC vuông A(−3; 2) 1 có trọng tâm G ; Đường cao kẻ từ đỉnh A tam giác ABC qua điểm P (−2; 0) 3 Tìm tọa độ điểm B C Câu 8.b (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(−1; 3; 2) mặt phẳng (P ) : 2x − 5y + 4z − 36 = Gọi I hình chiếu vuông góc A mặt phẳng (P ) Viết phương trình mặt cầu tâm I qua điểm A Câu 9.b (1,0 điểm) Giải phương trình z + (2 − 3i)z − − 3i = tập hợp C số phức −−−−−−Hết−−−−−− Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−−− ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: TOÁN; Khối B Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu (2,0 điểm) Cho hàm số y = 2x3 − 3(m + 1)x2 + 6mx (1), với m tham số thực a) Khảo sát biến thiên vẽ đồ thò hàm số (1) m = −1 b) Tìm m để đồ thò hàm số (1) có hai điểm cực trò A B cho đường thẳng AB vuông góc với đường thẳng y = x + Câu (1,0 điểm) Giải phương trình sin 5x + cos2 x = Câu (1,0 điểm) Giải hệ phương trình Câu (1,0 điểm) Tính tích phân 2x2 + y − 3xy + 3x − 2y + = (x, y ∈ R) √ √ 4x2 − y + x + = 2x + y + x + 4y √ x − x2 dx I= Câu (1,0 điểm) Cho hình chóp S.ABCD có đáy hình vuông cạnh a, mặt bên SAB tam giác nằm mặt phẳng vuông góc với mặt phẳng đáy Tính theo a thể tích khối chóp S.ABCD khoảng cách từ điểm A đến mặt phẳng (SCD) Câu (1,0 điểm) Cho a, b, c số thực dương Tìm giá trò lớn biểu thức P =√ − a + b + c2 + (a + b) (a + 2c)(b + 2c) II PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A phần B) A Theo chương trình Chuẩn Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang cân ABCD có hai đường chéo vuông góc với AD = 3BC Đường thẳng BD có phương trình x + 2y − = tam giác ABD có trực tâm H(−3; 2) Tìm tọa độ đỉnh C D Câu 8.a (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(3; 5; 0) mặt phẳng (P ) : 2x + 3y − z − = Viết phương trình đường thẳng qua A vuông góc với (P ) Tìm tọa độ điểm đối xứng A qua (P ) Câu 9.a (1,0 điểm) Có hai hộp chứa bi Hộp thứ chứa viên bi đỏ viên bi trắng, hộp thứ hai chứa viên bi đỏ viên bi trắng Lấy ngẫu nhiên từ hộp viên bi, tính xác suất để viên bi lấy có màu B Theo chương trình Nâng cao Câu 7.b (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có chân đường cao hạ 17 từ đỉnh A H ; − , chân đường phân giác góc A D(5; 3) trung điểm cạnh 5 AB M(0; 1) Tìm tọa độ đỉnh C Câu 8.b (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; −1; 1), B(−1; 2; 3) x+1 y−2 z −3 đường thẳng ∆ : = = Viết phương trình đường thẳng qua A, vuông góc với −2 hai đường thẳng AB ∆ Câu 9.b (1,0 điểm) Giải hệ phương trình x2 + 2y = 4x − log (x − 1) − log√3(y + 1) = −−−−−−Hết−−−−−− Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−−− ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: TOÁN; Khối D Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu (2,0 điểm) Cho hàm số y = 2x3 − 3mx2 + (m − 1)x + (1), với m tham số thực a) Khảo sát biến thiên vẽ đồ thò hàm số (1) m = b) Tìm m để đường thẳng y = −x + cắt đồ thò hàm số (1) ba điểm phân biệt Câu (1,0 điểm) Giải phương trình Câu (1,0 điểm) Giải phương trình sin 3x + cos 2x − sin x = √ √ log2 x + log 1 − x = log√2 x − x + 2 Câu (1,0 điểm) Tính tích phân (x + 1)2 dx x2 + I= Câu (1,0 điểm) Cho hình chóp S.ABCD có đáy hình thoi cạnh a, cạnh bên SA vuông góc với đáy, BAD = 120◦ , M trung điểm cạnh BC SMA = 45◦ Tính theo a thể tích khối chóp S.ABCD khoảng cách từ điểm D đến mặt phẳng (SBC) Câu (1,0 điểm) Cho x, y số thực dương thỏa mãn điều kiện xy ≤ y − Tìm giá trò lớn x − 2y x+y biểu thức P = − x2 − xy + 3y 6(x + y) II PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A phần B) A Theo chương trình Chuẩn Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có điểm M − ; 2 trung điểm cạnh AB, điểm H(−2; 4) điểm I(−1; 1) chân đường cao kẻ từ B tâm đường tròn ngoại tiếp tam giác ABC Tìm tọa độ điểm C Câu 8.a (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(−1; −1; −2), B(0; 1; 1) mặt phẳng (P ) : x+y+z −1 = Tìm tọa độ hình chiếu vuông góc A (P ) Viết phương trình mặt phẳng qua A, B vuông góc với (P ) Câu 9.a (1,0 điểm) Cho số phức z thỏa mãn điều kiện (1 + i)(z − i) + 2z = 2i Tính môđun z − 2z + số phức w = z2 B Theo chương trình Nâng cao Câu 7.b (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) : (x−1)2 +(y −1)2 = đường thẳng ∆ : y − = Tam giác MNP có trực tâm trùng với tâm (C), đỉnh N P thuộc ∆, đỉnh M trung điểm cạnh MN thuộc (C) Tìm tọa độ điểm P Câu 8.b (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(−1; 3; −2) mặt phẳng (P ) : x − 2y − 2z + = Tính khoảng cách từ A đến (P ) Viết phương trình mặt phẳng qua A song song với (P ) 2x2 − 3x + Câu 9.b (1,0 điểm) Tìm giá trò lớn giá trò nhỏ hàm số f(x) = x+1 đoạn [0; 2] −−−−−−Hết−−−−−− Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−−− ĐỀ CHÍNH THỨC Câu (2,0 điểm) Cho hàm số y = ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2014 Môn: TOÁN; Khối A Khối A1 Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− x+2 x−1 (1) a) Khảo sát biến thiên vẽ đồ thò (C) hàm số (1) b) Tìm tọa độ điểm M thuộc (C) cho khoảng cách từ M đến đường thẳng y = −x Câu (1,0 điểm) Giải phương trình √ sin x + cos x = + sin 2x Câu (1,0 điểm) Tính diện tích hình phẳng giới hạn đường cong y = x2 − x + đường thẳng y = 2x + Câu (1,0 điểm) a) Cho số phức z thỏa mãn điều kiện z + (2 + i) z = + 5i Tìm phần thực phần ảo z b) Từ hộp chứa 16 thẻ đánh số từ đến 16, chọn ngẫu nhiên thẻ Tính xác suất để thẻ chọn đánh số chẵn Câu (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P ) : 2x+y −2z −1 = y z+3 x−2 = = Tìm tọa độ giao điểm d (P ) Viết phương đường thẳng d : −2 trình mặt phẳng chứa d vuông góc với (P ) 3a , hình chiếu vuông góc S mặt phẳng (ABCD) trung điểm cạnh AB Tính theo a thể tích khối chóp S.ABCD khoảng cách từ A đến mặt phẳng (SBD) Câu (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD hình vuông cạnh a, SD = Câu (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có điểm M trung điểm đoạn AB N điểm thuộc đoạn AC cho AN = 3NC Viết phương trình đường thẳng CD, biết M(1; 2) N(2; −1) Câu (1,0 điểm) Giải hệ phương trình √ x 12 − y + y(12 − x2 ) = 12 (x, y ∈ R) √ x3 − 8x − = y − Câu (1,0 điểm) Cho x, y, z số thực không âm thỏa mãn điều kiện x2 + y + z = Tìm giá trò lớn biểu thức x2 y+z + yz P = + − x + yz + x + x + y + z + −−−−−−Hết−−−−−− Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−− − ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2014 Môn: TOÁN; Khối B Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− Câu (2,0 điểm) Cho hàm số y = x − 3mx + (1), với m tham số thực a) Khảo sát biến thiên vẽ đồ thò hàm số (1) m = b) Cho điểm A(2; 3) Tìm m để đồ thò hàm số (1) có hai điểm cực trò B C cho tam giác ABC cân A √ Câu (1,0 điểm) Giải phương trình 2(sin x − cos x) = − sin 2x x2 + 3x + dx x2 + x Câu (1,0 điểm) Tính tích phân I = Câu (1,0 điểm) a) Cho số phức z thỏa mãn điều kiện 2z + 3(1 − i) z = − 9i Tính môđun z b) Để kiểm tra chất lượng sản phẩm từ công ty sữa, người ta gửi đến phận kiểm nghiệm hộp sữa cam, hộp sữa dâu hộp sữa nho Bộ phận kiểm nghiệm chọn ngẫu nhiên hộp sữa để phân tích mẫu Tính xác suất để hộp sữa chọn có loại Câu (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 0; −1) đường y+1 z x−1 = = Viết phương trình mặt phẳng qua A vuông góc với d thẳng d : 2 −1 Tìm tọa độ hình chiếu vuông góc A d Câu (1,0 điểm) Cho lăng trụ ABC.A B C có đáy tam giác cạnh a Hình chiếu vuông góc A mặt phẳng (ABC) trung điểm cạnh AB, góc đường thẳng A C mặt đáy 60 ◦ Tính theo a thể tích khối lăng trụ ABC.A B C khoảng cách từ điểm B đến mặt phẳng (ACC A ) Câu (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD Điểm M (−3; 0) trung điểm cạnh AB, điểm H(0; −1) hình chiếu vuông góc B AD điểm G ; trọng tâm tam giác BCD Tìm tọa độ điểm B D Câu (1,0 điểm) Giải hệ phương trình √ √ (1 − y) x − y + x = + (x − y − 1) y (x, y ∈ R) √ √ 2y − 3x + 6y + = x − 2y − 4x − 5y − Câu (1,0 điểm) Cho số thực a, b, c không âm thỏa mãn điều kiện (a + b)c > Tìm giá trò nhỏ biểu thức P = a + b+c b c + a + c 2(a + b) −−−−− −Hết−−−−− − Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−− − ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2014 Môn: TOÁN; Khối D Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− Câu (2,0 điểm) Cho hàm số y = x − 3x − (1) a) Khảo sát biến thiên vẽ đồ thò (C) hàm số (1) b) Tìm tọa độ điểm M thuộc (C) cho tiếp tuyến (C) M có hệ số góc Câu (1,0 điểm) Cho số phức z thỏa mãn điều kiện Tính môđun z (3z − z)(1 + i) − 5z = 8i − π Câu (1,0 điểm) Tính tích phân I = (x + 1) sin 2x dx Câu (1,0 điểm) a) Giải phương trình log (x − 1) − log (3x − 2) + = b) Cho đa giác n đỉnh, n ∈ N n ≥ Tìm n biết đa giác cho có 27 đường chéo Câu (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P ) : 6x + 3y − 2z − = mặt cầu (S) : x + y + z − 6x − 4y − 2z − 11 = Chứng minh mặt phẳng (P ) cắt mặt cầu (S) theo giao tuyến đường tròn (C) Tìm tọa độ tâm (C) Câu (1,0 điểm) Cho hình chóp S.ABC có đáy ABC tam giác vuông cân A, mặt bên SBC tam giác cạnh a mặt phẳng (SBC) vuông góc với mặt đáy Tính theo a thể tích khối chóp S.ABC khoảng cách hai đường thẳng SA, BC Câu (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có chân đường phân giác góc A điểm D(1; −1) Đường thẳng AB có phương trình 3x + 2y − = 0, tiếp tuyến A đường tròn ngoại tiếp tam giác ABC có phương trình x + 2y − = Viết phương trình đường thẳng BC √ √ Câu (1,0 điểm) Giải bất phương trình (x + 1) x + + (x + 6) x + ≥ x2 + 7x + 12 Câu (1,0 điểm) Cho hai số thực x, y thỏa mãn điều kiện ≤ x ≤ 2; ≤ y ≤ Tìm giá trò nhỏ biểu thức P = x + 2y y + 2x + + x2 + 3y + y + 3x + 4(x + y − 1) −−−−− −Hết−−−−− − Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA NĂM 2015 ĐỀ THI CHÍNH THỨC Môn thi: TOÁN (Đề thi gồm 01 trang) Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−− Câu (1,0 điểm) Khảo sát biến thiên vẽ đồ thò hàm số y = x3 − 3x Câu (1,0 điểm) Tìm giá trò lớn giá trò nhỏ hàm số f(x) = x + đoạn [1; 3] x Câu (1,0 điểm) a) Cho số phức z thỏa mãn (1 − i) z − + 5i = Tìm phần thực phần ảo z b) Giải phương trình log2 (x2 + x + 2) = Câu (1,0 điểm) Tính tích phân I = (x − 3)ex dx Câu (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; −2; 1), B(2; 1; 3) mặt phẳng (P ) : x − y + 2z − = Viết phương trình đường thẳng AB tìm tọa độ giao điểm đường thẳng AB với mặt phẳng (P ) Câu (1,0 điểm) a) Tính giá trò biểu thức P = (1 − cos 2α)(2 + cos 2α), biết sin α = b) Trong đợt ứng phó dòch MERS-CoV, Sở Y tế thành phố chọn ngẫu nhiên đội phòng chống dòch động số đội Trung tâm y tế dự phòng thành phố 20 đội Trung tâm y tế sở để kiểm tra công tác chuẩn bò Tính xác suất để có đội Trung tâm y tế sở chọn Câu (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD), góc đường thẳng SC mặt phẳng (ABCD) 45◦ Tính theo a thể tích khối chóp S.ABCD khoảng cách hai đường thẳng SB, AC Câu (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC vuông A Gọi H hình chiếu vuông góc A cạnh BC; D điểm đối xứng B qua H; K hình chiếu vuông góc C đường thẳng AD Giả sử H(−5; −5), K(9; −3) trung điểm cạnh AC thuộc đường thẳng x − y + 10 = Tìm tọa độ điểm A Câu (1,0 điểm) Giải phương trình √ x2 + 2x − = (x + 1) x + − tập số thực x2 − 2x + Câu 10 (1,0 điểm) Cho số thực a, b, c thuộc đoạn [1; 3] thỏa mãn điều kiện a + b + c = Tìm giá trò lớn biểu thức P = a2b2 + b2 c2 + c2a2 + 12abc + 72 − abc ab + bc + ca −−−−−−−−Hết−−−−−−−− Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: [...]... được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA NĂM 2015 ĐỀ THI CHÍNH THỨC Môn thi: TOÁN (Đề thi gồm 01 trang) Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−− Câu 1 (1,0 điểm) Khảo sát sự biến thi n và vẽ đồ thò của hàm số y... coi thi không giải thích gì thêm Họ và tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−− − ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2014 Môn: TOÁN; Khối B Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− Câu 1 (2,0 điểm) Cho hàm số y = x 3 − 3mx + 1 (1), với m là tham số thực a) Khảo sát sự biến thi n... tài liệu Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−− − ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2014 Môn: TOÁN; Khối D Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− Câu 1 (2,0 điểm) Cho hàm số y = x 3 − 3x − 2 (1) a) Khảo sát sự biến thi n và vẽ đồ thò... BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−−− ĐỀ CHÍNH THỨC Câu 1 (2,0 điểm) Cho hàm số y = ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2014 Môn: TOÁN; Khối A và Khối A1 Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− x+2 x−1 (1) a) Khảo sát sự biến thi n và vẽ đồ thò (C) của hàm số (1) b) Tìm tọa độ điểm M thuộc (C) sao cho khoảng cách từ M đến đường thẳng y = −x bằng Câu 2 (1,0 điểm)... −−−−−−Hết−−−−−− Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−−− ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: TOÁN; Khối B Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)... −−−−−−Hết−−−−−− Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−−− ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: TOÁN; Khối D Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0... hợp các số phức HẾT -Thí sinh khơng được sử dụng tài liệu Cán bộ coi thi khơng giải thích gì thêm Họ và tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−−− ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: TOÁN; Khối A và khối A1 Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1 (2,0 điểm)... dụng tài liệu Cán bộ coi thi khơng giải thích gì thêm Họ và tên thí sinh: ; Số báo danh ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Mơn: TỐN; Khối B Thời gian làm bài: 180 phút, khơng kể thời gian phát đề BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1 (2,0 điểm) Cho hàm số y = x3 − 3mx 2 + 3m3 (1), m là tham số thực a) Khảo sát sự biến thi n và vẽ đồ thị của hàm... sử dụng tài liệu Cán bộ coi thi khơng giải thích gì thêm Họ và tên thí sinh: ; Số báo danh: ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 BỘ GIÁO DỤC VÀ ĐÀO TẠO Mơn: TỐN; Khối D Thời gian làm bài: 180 phút, khơng kể thời gian phát đề ĐỀ CHÍNH THỨC I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2 3 2 x − mx 2 − 2(3m 2 − 1) x + (1), m là tham số thực 3 3 a) Khảo sát sự biến thi n và vẽ đồ thị của hàm... DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Mơn: TỐN; Khối: D Thời gian làm bài: 180 phút, khơng kể thời gian phát đề ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x +1 ⋅ Câu I (2,0 điểm) Cho hàm số y = x +1 1 Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số đã cho 2 Tìm k để đường thẳng y = kx + 2k + 1 cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho khoảng cách từ A và B đến trục

Ngày đăng: 06/04/2016, 18:35

TỪ KHÓA LIÊN QUAN

w