1. Trang chủ
  2. » Giáo Dục - Đào Tạo

25 đề THI THỬ THPT QUỐC GIA môn TOÁN 2016 có HƯỚNG dẫn CHI TIẾT

140 325 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 140
Dung lượng 11,37 MB

Nội dung

S GD T NGH AN TRNG THPT BC YấN THNH THI TH THPT QUC GIA NM 2016 Mụn: TON Thi gian lm bi: 180 phỳt, khụng k thi gian giao Cõu (2,0 im) Cho hm s y x x a) Kho sỏt s bin thiờn v v th (C) ca hm s ó cho b) Vit phng trỡnh tip tuyn ca th (C) ti im cc i ca (C) Cõu (1,0 im) cos x 2sin x 2cos x 1 sin x b) Cho s phc z tha món: i i z i 2i z Tớnh mụun ca z a) Gii phng trỡnh Cõu (0,5 im) Gii phng trỡnh: log x log x Cõu (1,0 im) Gii phng trỡnh: x x 171x 40 x x 20 0, x e Cõu (1,0 im) Tớnh tớch phõn: I 1 x3 lnxdx x Cõu (1,0 im) Cho hỡnh chúp S.ABCD cú ỏy ABCD l hỡnh thang, AB BC a, 900 , cnh SA a v SA vuụng gúc vi ỏy, tam giỏc SCD vuụng ti C Gi H l hỡnh BAD chiu ca A lờn SB Tớnh th tớch ca t din SBCD v khong cỏch t im H n mt phng (SCD) Cõu (1,0 im) Trong mt phng vi h ta Oxy, cho tam giỏc ABC vuụng ti A Gi M l im trờn cnh AC cho AB AM ng trũn tõm I 1; ng kớnh CM ct BM ti D Xỏc nh ta cỏc nh ca tam giỏc ABC bit ng thng BC i qua N ;0 , phng trỡnh ng thng CD : x y v im C cú honh ln hn Cõu (1,0 im) Trong khụng gian vi h to Oxyz, cho im M(2; 1; 2) v ng thng d: x y z Vit phng trỡnh mt phng (P) qua M v vuụng gúc vi d Tỡm trờn d hai 1 im A, B cho tam giỏc ABM u Cõu (0,5 im) Lp s t nhiờn cú ch s khỏc t cỏc ch s {0; 1; 2; 3; 4; 5; 6; 7} Tớnh xỏc sut lp c s t nhiờn chia ht cho Cõu 10 (1,0 im) Cho s thc a, b, c khụng õm, chng minh rng: a3 a3 b c b3 b3 c a c3 c3 a b Ht -H v tờn thớ sinh: S bỏo danh: Ghi chỳ: Thớ sinh khụng c s dng ti liu Cỏn b coi thi khụng gii thớch gỡ thờm S GD T NGH AN P N THANG IM Mụn: TON Cõu Cõu (2,0 im) ỏp ỏn a) (1,0 im) Tp xỏc nh: R Gii hn v tim cn: lim y th (C) cú khụng tim cn x im 0,25 CBT: Ta cú y ' x3 x x x ; y' x x Du ca y: y ' x 1;0 1; ; y ' x ; 0;1 hm s B trờn mi khong 1;0 v 1; NB trờn mi khong ; v (0 ; 1) 0,25 Hm s cú hai CT ti x = 1; yCT = y(1) = v cú mt C ti x = ; yC = y(0) = Bng bin thiờn: x y y - - -1 + + 0 - + + + 0,25 th: th ct Oy ti (0;1) im khỏc (2; 9) th nhn trc tung lm trc i xng Cõu (1,0 im) 0,25 b) (1,0 im) im cc i (0; 1), h s gúc ca tip tuyn ti im C ca th ó cho l y(0) = Phng trỡnh tip tuyn ca (C) ti im C l: y = a) (0,5 im) k Khi ú p.trỡnh ó cho tng ng vi 2sin x cos x cos x cos x sin x cos x l cos x cos x cos x iu kin: sin x x Vi cos x 0,5 0,5 x k i chiu iu kin, phng trỡnh ó cho cú nghim l: x 0,25 0,25 k , k b) (0,5 im) i i z i 2i z i i 2i z i 2 0,25 2i i 2i z i i i 2i 3i z 13 2i Vy mụun ca z l 13 z Cõu (0,5 im) Cõu (1,0 im) 0,25 iu kin: x > Khi ú, phng trỡnh tng ng vi log x log x log log x 2 log x x (t/m) Vy phng trỡnh cú nghim l: x = iu kin: x Khi ú phng trỡnh tng ng vi x 0,25 0,25 x 12 x x x x 36 x 54 x 27 x x x 5x 5x 3 Xột hm sụ f t t 3t Phng trỡnh (1) cú dng f x f x 0,25 Ta cú: f ' t 3t 3; f ' t t t - f(t) -1 + - + + 0,25 f(t) Suy ra: Hm s f t t 3t ng bin trờn khong (1; + ) x Vi iu kin x 5 x 0,25 T ú suy x x x x x 5x x 22 x x x x x x 11 116 t / m x 11 116 Vy phng trỡnh ó cho cú nghim l: x 11 116 Cõu (1,0 im) e e e x3 ln x lnxdx dx x lnxdx I1 I Ta cú: I x x 1 e Tớnh I1: I1 0,25 e lnx ln x e dx ln xd lnx x 2 1 du dx u ln x x Tớnh I2: I x lnxdx t x dv x dx v 0,25 0,25 e 0,25 I2 e 1e x3 e3 e 2e3 ln x x dx x3 31 3 9 e Vy I 1 x3 2e3 11 2e3 lnxdx x 9 18 Cõu (1,0 im) 0,25 Chng minh: SCD vuụng ti C ABCD l hỡnh thang ỏy AD, BC. ACD vuụng cõn ti C AC CD a 2; AD 2a SC ; BD a 0,25 a3 a3 a3 VSBCD = VS.ABCD VSABD (vtt) S SCD a 2; d B, SCD (hoc d B, SCD d A, SCD d H , SCD d B, SCD 3VS BCD S SCD 0,25 a3 a a BK a d B, SCD ) CK 2 0,5 SH SA2 2 a d H , SCD d B, SCD SB SB 3 Cỏch khỏc: Chng minh BC (SAB) BC AH AH (SBC) K AK (SC) AK (SCD) (AKH) (SCD) Kộo di AB v CD ct ti E Kộo di AH ct SE ti M Cú (AMK) (SCD) hay (AMK) (SED) AH (SBC) AH HK tam giỏc AHK vuụng ti H K HJ MK cú HJ = d(H, (SCD)) Tớnh AH, AM HM; Tớnh AK HK T ú tớnh c HJ = a/3 Hoc cú th bng phng phỏp ta ABM S Cõu (1,0 im) DCM (g g) AB DC AM DM Xột tam giỏc CMD ta cú: CM DM CD 4CI 10 DM M DM 2d (I,d) nờn CI 10 0,5 11 Gi I y 6; y Ta cú C ; (loi) hoc C(3; -1) (tha món) 5 I l trung im ca CM M 1; phng trỡnh ng trũn tõm I l C : x y 2 11 D l giao im ca CD v (C) D ; Phng trỡnh ng thng BM: 3x y 5 Phng trỡnh ng thng BC: 3x y B l giao im ca BM v BC B 2;2 0,5 Phng trỡnh ng thng AB i qua B v vuụng gúc vi AC AB : x A l giao im ca AB v AC A 2; Cõu (1,0 im) Vy ta cỏc nh tam giỏc ABC l: A 2; , B 2;2 , C 3; Mp(P) qua M(2;1;2) v (d) nhn vtcp ud 1;1;1 lm vtpt 0,5 Suy phng trỡnh mp(P): 1. x 1. y 1. z x y z Gi H l hỡnh chiu ca M trờn d Ta cú: MH d( M , d) 10 , H ; ; 3 3 Tam giỏc ABM u, nhn MH lm ng cao nờn: MA = MB = AB = MH 3 x y z 1 Do ú, to ca A, B l nghim ca h: ( x ) ( y 1)2 ( z 10 )2 3 6 10 6 10 Gii h ny ta tỡm c A, B l: ; ; ; ; , 9 9 Cõu (0,5 im) Gi (khụng gian mu) l s cỏc s t nhiờn gm ch s khỏc nhau: n A85 A74 5880 Gi A l bin c lp c s t nhiờn chia ht cho 5, cú ch s khỏc S cỏc s t nhiờn chia ht cho cú ch s khỏc nhau: n A A74 A63 1560 0,25 0,25 0,25 1560 13 Xỏc sut cn tỡm P(A) = 5880 49 Cõu 10 (1,0 im) 0,25 x2 Xột BT: x , x x x x2 x2 Tht vy, theo BT AM-GM, ta cú: x x x x 2 p dng vo bi toỏn ta cú: a3 1 a2 3 a b2 c2 a3 b c 1bc bc a a Tng t, ta cú: b3 b2 a b2 c2 b3 c a Cụng v vi v (1), (2), v (3) suy pcm ng thc xy v ch a b c 0,25 2; c3 c3 a b c2 a b2 c2 0,25 0,25 0,25 -Ht Ghi chỳ: Nu thớ sinh lm bi khụng theo cỏch nờu ỏp ỏn m ỳng thỡ c im tng phn nh ỏp ỏn quy nh THI TH THPT QUC GIA NM 2016 Mụn: TON S GD&T NGH AN TRNG THPT THANH CHNG III Thi gian lm bi: 180 phỳt ,khụng k thi gian giao Cõu (2,0 im) Cho hm s y x 3mx (1) a) Kho sỏt s bin thiờn v v th ca hm s (1) m = b) Tỡm m th ca hm s (1) cú im cc tr A, B cho tam giỏc OAB vuụng ti O (vi O l gc ta ) Cõu (1,0 im) Gii phng trỡnh sin x 6sin x cos x Cõu (1,0 im) Tớnh tớch phõn I x ln x dx x2 Cõu (1,0 im) a) Gii phng trỡnh 52 x 6.5 x b) Mt t cú hc sinh nam v hc sinh n Giỏo viờn chn ngu nhiờn hc sinh lm trc nht Tớnh xỏc sut hc sinh c chn cú c nam v n Cõu (1,0 im) Trong khụng gian vi h to Oxyz , cho im A 4;1;3 v ng thng x y z Vit phng trỡnh mt phng ( P) i qua A v vuụng gúc vi ng thng d Tỡm ta im B thuc d cho AB 27 d: Cõu (1,0 im) Cho hỡnh chúp S ABC cú tam giỏc ABC vuụng ti A , AB AC a , I l trung im ca SC, hỡnh chiu vuụng gúc ca S lờn mt phng ABC l trung im H ca BC, mt phng (SAB) to vi ỏy gúc bng 60 Tớnh th tớch chúp S ABC v tớnh khong cỏch t im I n mt phng SAB theo a Cõu (1,0 im) Trong mt phng vi h to Oxy cho tam giỏc ABC cú A 1; , tip tuyn ti A ca ng trũn ngoi tip tam giỏc ABC ct BC ti D , ng phõn giỏc ADB cú phng trỡnh x y , im M 4;1 thuc cnh AC Vit phng trỡnh ca ng thng AB Cõu (1,0 im) Gii h phng trỡnh x xy x y y y y x y x Cõu (1,0 im) Cho a, b, c l cỏc s dng v a b c Tỡm giỏ tr ln nht ca biu thc: P bc 3a bc ca 3b ca ab 3c ab .Ht P N Cõu Ni dung im a (1,0 im) Vi m=1 hm s tr thnh: y x3 3x TX: D R y ' x , y ' x 0.25 Hm s nghch bin trờn cỏc khong ; v 1; , ng bin trờn khong 1;1 0.25 Hm s t cc i ti x , yCD , t cc tiu ti x , yCT lim y , lim y x x * Bng bin thiờn x y + y -1 + + + - -1 th: 0.25 2 B (1,0 im) y ' x 3m x m 0.25 y ' x m * th hm s (1) cú im cc tr PT (*) cú nghim phõn bit m ** Khi ú im cc tr A m ;1 2m m , B m ;1 2m m Tam giỏc OAB vuụng ti O OA.OB 4m3 m m Vy m 0.25 ( TM (**) ) 0.25 0.25 0,25 (1,0 im) sin x 6sin x cos x 0.25 (sin x 6sin x) (1 cos x) sin x cos x sin x 0 25 2sin x cos x sin x sin x sin x cos x 3(Vn) x k Vy nghim ca PT l x k , k Z 25 0.25 (1,0 im) 2 2 ln x x2 ln x ln x I xdx dx dx dx x 1 x x 1 0.25 ln x dx x Tớnh J t u ln x, dv 0.25 1 dx Khi ú du dx, v x x x 2 1 Do ú J ln x dx x x 1 1 1 J ln ln x1 2 Vy I 0.25 ln 2 0.25 (1,0 im) a,(0,5im) 0.25 6.5 5.5 6.5 x x Vy nghim ca PT l x v x x b,(0,5im) n C113 165 x x x 2x x S cỏch chn hc sinh cú c nam v n l C52 C61 C51.C62 135 135 Do ú xỏc sut hc sinh c chn cú c nam v n l 165 11 0.25 0.25 0.25 (1,0 im) ng thng d cú VTCP l ud 2;1;3 Vỡ P d nờn P nhn ud 2;1;3 lm VTPT 0.25 Vy PT mt phng P l : x y z x y z 18 0.25 0.25 Vỡ B d nờn B 2t ;1 t ; 3t AB 27 AB 27 2t t 3t 27 7t 24t t 13 10 12 Vy B 7; 4;6 hoc B ; ; t 7 (1,0 im) Gi K l trung im ca AB HK AB (1) Vỡ SH ABC nờn SH AB (2) 0.25 0.25 T (1) v (2) suy AB SK Do ú gúc gia SAB vi ỏy bng gúc 60 gia SK v HK v bng SKH Ta cú SH HK tan SKH 1 a3 Vy VS ABC S ABC SH AB AC.SH 3 12 a 0.25 Vỡ IH / / SB nờn IH / / SAB Do ú d I , SAB d H , SAB T H k HM SK ti M HM SAB d H , SAB HM Ta cú 1 16 a a Vy d I , SAB HM 2 HM HK SH 3a 4 0.25 0,25 (1,0 im) Gi AI l phan giỏc ca BAC Ta cú : AID ABC BAI 0,25 CAD CAI IAD CAI , nờn M BAI ABC CAD AID IAD DAI cõn ti D DE AI PT ng thng AI l : x y 0,25 Go M l im i xng ca M qua AI PT ng thng MM : x y Gi K AI MM ' K(0;5) M(4;9) VTCP ca ng thng AB l AM ' 3;5 VTPT ca ng thng AB l n 5; Vy PT ng thng AB l: x y x y (1,0 im) 0,25 0,25 x xy x y y y 4(1) y x y x 1(2) 0.25 xy x y y k: y x y Ta cú (1) x y x y y 4( y 1) t u x y , v y ( u 0, v ) u v Khi ú (1) tr thnh : u 3uv 4v u 4v(vn) Vi u v ta cú x y , thay vo (2) ta c : y y y y y2 y y y ( vỡ y2 y y y 0.25 y 1 y2 y y y y y 1 y2 y y 0y ) y 1 Vi y thỡ x i chiu k ta c nghim ca h PT l 5; y 0.25 0.25 Do ( x 3)2 ( x )2 Nờn ta t x 2sin 4t ; t2 x 2cos 2(1 t ) , t2 t tan 7t 12t vi , ú (*) m 2 t 16 t t 0;1 Xột hm s f (t ) 0.25 7t 12t , t 0;1 Lp bng bin thiờn ca hm s f (t ) 5t 16t 7 Kt lun: m ; 9 (1.0 im) 0.25 0.25 Cho cỏc s thc c b x y Khụng mt tớnh tng quỏt, gi s c b a t x ; y a a c ax; b ay 0.25 Khi ú (1 y ) y y y (1 y )( y x)(1 x) 2 P xy y y Xột hm s f ( y ) y2 y 2 , y Lp bng bin thiờn (hoc s dng bt y 0.50 0.25 ng thc Cụ si), chng minh c f (t ) Kt lun: MaxP (Tỡm c a, b, c ng thc xy ra) Ht - 0.25 TRNG THPT CHUYấN HNG VNG Nm hc: 2013-2014 THI TH I HC (LN 1) Mụn: TON; Khi A v A1 Thi gian: 180 phỳt (khụng k thi gian phỏt ) I PHN CHUNG CHO TT C TH SINH (7,0 im) 2x Cõu ( 2,0 im) Cho hm s y cú th (C) x2 a) Kho sỏt s bin thiờn v v th ca hm s (C) b) Tỡm trờn (C) nhng im M cho tip tuyn ti M ca (C) ct hai tim cn ca (C) ti A, B cho AB ngn nht Cõu ( 1,0 im) Gii phng trỡnh: sin 2x +sinx+3cosx+2=0 Cõu ( 1,0 im) Gii bt phng trỡnh: x log x x x 3x x x y y 3x Cõu ( 1,0 im) Gii h phng trỡnh: 2 x x y y ã Cõu ( 1,0 im) Cho hỡnh chúp S.ABC , cú ỏy ABC l tam giỏc vuụng ti A, AB a, ACB 300 Gi I l uur uur trung im BC, hỡnh chiu vuụng gúc ca im S lờn mt ỏy (ABC) l im H tha món: IA 2IH Gúc gia SC v mt ỏy (ABC) bng 600 Tớnh th tớch chúp S.ABC v tớnh khong cỏch t trung im K ca SB ti mt phng (SAH) theo a ? Cõu ( 1,0 im) Cho ba s thc a, b, c tha a ; b ; c v 2a 3b 4c Tỡm giỏ tr nh 1 nht ca biu thc A 2a 3b 4c 2a 3b 4c II PHN RIấNG (3,0 im): Thớ sinh ch c lm mt hai phn (phn A hoc phn B) A Theo chng trỡnh chun Cõu 7.a (1,0 im) Trong mt phng vi h ta Oxy cho tam giỏc ABC cú trc tõm H(1; 1) , im M(1; 2) l trung im AC v phng trỡnh cnh BC l: 2x y Xỏc nh ta cỏc nh A, B, C ca tam giỏc ABC ? Cõu 8.a (1,0 im) Ct hỡnh nún (N) nh S cho trc bi mt phng qua trc ca nú, ta c mt tam giỏc vuụng cõn cú cnh huyn bng a Tớnh din tớch xung quanh ca hỡnh nún (N) Tớnh th tớch cu ni tip hỡnh nún (N) Cõu 9.a (1,0 im) Cho hai ng thng d1 v d ct ti im O Trờn d1 ly im phõn bit khỏc im O Trờn d ly n im phõn bit khỏc im O Tỡm n s tam giỏc to thnh t n im trờn (k c im O) l 336 B Theo chng trỡnh nõng cao Cõu 7.b (1,0 im) Trong mt phng ta Oxy cho ng thng (d): x + y = ct ng trũn (C) cú phng trỡnh: x y x y ti hai im A v B Tỡm im C trờn ng trũn (C) cho din tớch tam giỏc ABC ln nht? Cõu 8.b (1,0 im) Cho hỡnh tr (T) cú bỏn kớnh ỏy bng a Mt mt phng () song song v cỏch trc OO ' a ca hỡnh tr bng ct hỡnh tr (T) theo thit din l hỡnh vuụng Tớnh din tớch xung quanh ca hỡnh tr (T) v tớnh th tớch cu ngoi tip hỡnh tr (T) Cõu 9.b (1,0 im) Mt hp ng viờn bi xanh, viờn bi , viờn bi vng Chn ngu nhiờn viờn bi Tớnh xỏc sut viờn bi c chn, ú cú ỳng mt viờn bi xanh ? Thớ sinh khụng c s dng ti liu Giỏm th coi thi khụng gii thớch gỡ thờm H v tờn thớ sinh: ; S bỏo danh: HT P N THI TH I HC (LN 1) KHI A V A1 Nm hoc: 2013-2014 Cõu 1: a)(1,0 ) (2,0 im) 2x x2 - TX: D = R \ {2} - S bin thiờn: + ) Gii hn: lim y Do ú THS nhn t y = lm TCN Hm s y = x lim y ; lim y Do ú THS nhn t x = lm TC x x +) Bng bin thiờn: Ta có : y = < x D x x y y 0,25 0,25 - - 2 Hm s nghch bin trờn hai khong ;2 v 2; , hm s khụng cú cc tr + ) V th 0,25 -5 10 0,25 -2 -4 b)(1,0 ) Ly im M m; C Ta cú : y ' m m2 m Tip tuyn (d) ti M cú phng trỡnh : 1 y x m m2 m Giao im ca (d) vi tim cn ng l : A 2; m2 Giao im ca (d) vi tim cn ngang l : B(2m ; 2) Ta cú : AB2 m m Du = xy m = hoc m=3 0,25 0,25 0,25 Cõu 2: Cõu 3: 1/ (1 ) Vy im cú hai im cn tỡm M1 (1;1) v M (3;3) (1,0 im) sin 2x +sinx+3cosx+2=0 sin 2x cos2x+sinx+3cosx+2=0 2sinx.cosx+2cos x sinx+3cosx+2=0 sinx(2cosx+1)+(2cosx+1)(cosx+1)=0 (2cosx+1)(sinx+cosx+1)=0 2cosx+1=0 (1) (2cosx+1)(sinx+cosx+1)=0 sinx+cosx+1=0 (2) x k.2 * (1) 2cosx+1=0 cosx=cos (k  ) x k.2 x k.2 * (2) s inx+cosx+1=0 sin x+ sin (k  ) x k.2 Vy phng trỡnh ó cho cú nghim l: 2 x k.2; x k.2; x k.2; x k.2 3 (1,0 im) x log5 x x x 3x x 0,25 0,25 0,25 0,25 0,25 x log x x x x x (I) 2 log x x x x x (II) log x x x x Xột hm s: f (x) log x x x x x Ă x2 x t t x1 Ta c f (t) log 2t t t t ; f ' (t) 0; t ; v f(2)=0 , Nờn Hm s f(t) ng bin ; x x + (I) 2 f (t) f (2) log x x x x x x x x x (*) t x x2 x x x + (II) 2 f (t) f (2) log x x x x x x x x (**) t x x x2 Cõu 4: 0,25 0,25 T (*) v (**) Suy nghim ca bpt ó cho l S 1; (1,0 im) 0,25 0,25 x3 y y x 2 x x y y (1) (2) x x iu kin: 2 y y 0 y 0,25 t t x x t 1, t 0; ta cú (1) x y y x (t 1)3 y y 3(t 1) t3 3t2 = y3 3y2 (*) Hm s f(u) = u3 3u2 nghch bin trờn on [0; 2] nờn: (*) t 3t y3 3y f (t) f (y) t y y = x + (2) x x 2( x 1) ( x 1) 2 x x t v x 0,25 v[0; 1] v (2) v 2v v (loai) x y v x y Vy h ó cho cú hai nghim (x; y) ( 3;1 3) v (x; y) ( 3;1 0,25 3) 0,25 Cõu 5: (1,0 im) S K H 600 B I 300 C J A *Tam giỏc ABC vuụng ti A, ã ã ACB 300 ABC 600 , AC a 3; BC 2a 1 a BC a; IH IA 2 ã ã ã SH (ABC) (SC, (ABC)) (SC, HC) SCH 60 * I l trung im BC nờn IA IB IC HC IH IC2 2IH.IC.cos600 a2 a a a .a 2 Trong tam giỏc SHC: SH HC.tan 60 a 3a 2 0,25 SABC AB.AC a.a a 2 1 a 3a a 3 (vtt) VS.ABC SABC SH 3 2 Gi J l trung im AI, tam giỏc ABI u nờn BJ AI a BJ (SAH) d(B, (SAH)) BJ BJ SH Cõu 6: Cõu 7.a 1 a K l trung im SB nờn d(K,(SAH)) d(B, (SAH)) BJ 2 (1,0 im) Ta cú: 2a 3b 4c (2a 1) (3b 2) (4c 3) 3.3 (2a 1)(3b 2)(4c 3) (2a 1)(3b 2)(4c 3) 1 * A 2a 3b 4c 2a 3b 4c 1 (2a 1) (3b 2) (4c 3) 2a 3b 4c 3 3 (2a 1)(3b 2)(4c 3) (2a 1)(3b 2)(4c 3) t t (2a 1)(3b 2)(4c 3); t 3 A 3t 6; t t 3 3t t f (t) 3t f ' (t) 0, t 0; t t t Suy hm f(t) nghch bin trờn 0; 1 Do ú: t f (t) f 16 3 Vy A f (t) 16 Giỏ tr nh nht ca biu thc A l 16 2a a 3 t (2a 1)(3b 2)(4c 3) 1 Khi 3b b 2a 3b 4c 4c c (1,0 im) 0,25 0,25 0,25 0,25 0,25 0,25 0,25 A M(-1;2) H(1;-1) B 2x-y +1=0 C *Pt ng cao AH i qua H(1;-1) v vuụng gúc vi BC l: AH : 1(x 1) 2(y 1) x 2y 0,25 *Gi C x C ; 2x C BC M(-1;2) l trung im AC nờn A x C ;3 2x C M A AH (2 x C ) 2(3 2x C ) x C C(1;3), A(3;1) uuur *Pt ng cao BH i qua H(1 ;-1) v nhn AC (4; 2) lm vt phỏp tuyn BH : 4(x 1) 2(y 1) 2x y * B l giao im ca BH v BC , nờn B(0;1) Cõu 8.a 0,25 0,25 0,25 (1,0 im) S I A Cõu 9.a Cõu 7.b O B *Gi thit din qua trc ca hỡnh nún (N) l tam giỏc SAB vuụng cõn ti S, AB a SA SB a a O l trung im AB SO OA OB a a * Sxq .R.l .OA.SA .a 2 * Trong tam giỏc SAB, k ng phõn giỏc ca gúc A ct SO ti I, Suy I l tõm cu ni tip hỡnh nún (N), bỏn kớnh l IO IO AO IO IO Ta cú: IS AS IO+IS SO a 2 a a(2 2) IO 2 2 2 a (2 2)3 VC .IO3 (vtt) 3 (1,0 im) * TH1: im trờn d1 , im trờn d S tam giỏc to thnh: C16 Cn2 * TH2: im trờn d1 , im trờn d S tam giỏc to thnh: C 26 C1n * TH3: im O, im trờn d1 , im trờn d S tam giỏc to thnh: C16 C1n Theo bi ta cú: C16 Cn2 C62 C1n C16 C1n 336 n 2, n Ơ n 6n 112 n Vy n=8 n 14 (loai) (1,0 im) * trũn (C) cú tõm I(2;2), bỏn kớnh R=2 Ta giao im ca (C) v (d) l nghim ca h: 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 x x y y 2 x x y 4x y y Hay A(2;0), B(0;2) y C M I B H A O 0,25 x Hay (d) luụn ct (C ) ti hai im phõn bit A,B Ta cú SVABC CH AB (H l hỡnh chiu ca C trờn AB) SVABC max CH max C (C ) (V) D dng thy CH max xC V d Hay V: y = x vi V: I (2; 2) V 0,5 C (2 2; 2) Cõu 8.b Vy C (2 2; 2) thỡ SVABC max (1,0 im) O A K B I O1 A1 B1 *Gi ABB1A1 l thit din ca mp () v hỡnh tr (T) (hỡnh v ) Gi K l trung im AB OK AB, OK AA1 OK mp(ABB1A1 ) a d(OO1 , (ABB1A1 )) d(O, (ABB1A1 )) OK 2 a a AK OA OK a AB 2.AK a ABB1A1 l hỡnh vuụng nờn OO1 AA1 AB a * Sxq 2..OA.OO1 2..a.a 2a (vdt) * Gi I l trung im OO1 nờn I l tõm mt cu ngoi tip hỡnh tr (T) Bỏn kớnh IA OA OI2 a2 3a a 0,25 0,25 0,25 S GD&T QUNG NAM TRNG THPT CHUYấN NGUYN BNH KHIấM Kè THI TH THPT QUC GIA NM 2015 MễN TON Thi gian lm bi : 180 phỳt CHNH THC: Cõu 1) (2,0 im) Cho hm s y = x + x - (1) a) Kho sỏt s bin thiờn v v th (C) hm s b) Vit phng trỡnh tip tuyn vi th (C), bit tip tuyn vuụng gúc vi ng thng y = - x Cõu 2) (1,0 im) x a) Gii phng trỡnh: cos x + cos - = b) Tỡm s phc z tha iu kin z + z = v z + z - 8i l mt s thc Cõu 3) (0,5 im) Gii phng trỡnh: log ( x - x + 10) - log ( x - 2) = log ( x + 5) Cõu 4) (1,0 im) Gii h phng trỡnh: ùỡ x ( x + y - 4) + y (3 y - 4) + + 2( x + y ) = ( x + y ) + 4(1 - xy ) + ùợ x - xy + 22 - - y = x - y + Cõu 5) (1,0 im) Tớnh tớch phõn I = p ũ ( x + + tan x) sin xdx Cõu 6) (1,0 im) Cho hỡnh lng tr ABC.ABC, ỏy ABC cú AC = a , BC = 3a , ã ACB = 300 Cnh bờn hp vi mt phng ỏy gúc 600 v mt phng (ABC) vuụng gúc vi mt phng (ABC) im H trờn cnh BC cho BC = 3BH v mt phng (AAH) vuụng gúc vi mt phng (ABC) Tớnh th tớch lng tr ABC.ABC ' v khong cỏch t B n mt phng (AAC) Cõu 7) (1,0 im) Trong mt phng ta Oxy cho tam giỏc ABC vi A( 3; 4), tõm ng trũn ni tip I(2; 1) v tõm ng trũn ngoi tip J( - ;1 ) Vit phng trỡnh ng thng BC Cõu 8) (1,0 im) Trong khụng gian ta Oxyz, cho hai im A(4; 2; 11), B( 2; 10; 3) v mt phng (P): x + y z = Vit phng trỡnh mt phng trung trc on AB v tỡm im M trờn mt phng (P) cho MA = MB = 13 Cõu 9) (0,5 im) Mt hp ng xanh , bi v bi vng Ly ngu nhiờn bi t hp Tớnh xỏc sut bi ly cú mu v s bi xanh v s bi bng Cõu 10) (1,0 im) Cho hai s thc a, b thuc khong (0, 1) tha (a + b3 )(a + b) - ab(a - 1)(b - 1) = Tỡm giỏ tr ln nht ca biu thc sau: 12 a + b4 + ab P= ab 36 + (1 + 9a )(1 + 9b ) HNG DN CHM MễN TON THI TH THPT QUC GIA NM 2015 Cõu ỏp ỏn im Cõu1) a) y = x3 + x - y = -Ơ , lim y = +Ơ + TX D = R , xlim đ-Ơ x đ+Ơ ộ x = ị y = -2 + y ' = 3x + x , y ' = x = -2 ị y = -+ BBT -Ơ x +Ơ -2 y + 0 + Ơ y Cõu -Ơ -2 (2,0) + Hm B trờn cỏc khong ( -Ơ ; -2 ), (0; + Ơ ) v NB trờn khong ( -2 ; 0) im cc i th ( -2 ; 2); im cc tiu th (0; -2 ) -+ th 0,25 0,25 0,25 -10 -5 0,25 10 -2 -4 b)Tip tuyn vuụng gúc vi ng thng y = - x nờn tip tuyn cú h s gúc bng 9 ộ x0 = ị y0 = 2 Ta cú y '( x0 ) = 3x0 + x0 = x0 = -3 ị y0 = -2 + Phng trỡnh tip tuyn ti im (1, 2) l y = 9( x - 1) + -+Phng trỡnh tip tuyn ti im ( 3, ) l y = 9( x + 3) - 0,25 0,25 0,25 0,25 Cõu (1,0) Cõu 2) x x x x a) cos x + 2cos - = 4cos - 3cos + cos - = 3 3 x x x (cos - 1)(4 cos + 6cos + 3) = 3 Cõu ỏp ỏn x x cos = = k 2p x = 6kp , k ẻ Z 3 -b) Gi z = x + yi Ta cú z + z = ( x + yi ) + ( x - yi) = x = (1) 2 z + z - 8i = ( x + yi) + 2( x - yi ) - 8i = ( x - y + x) + (2 xy - y - 8)i l s thc nờn xy - y - = (2) T (1) v (2) ta gii c x = v y = Vy z = + 2i -ỡ x - x + 10 > ỡx < x > ù ù Cõu x-2>0 ớx > x>5 (0,5) Cõu 3) b)K ù ù x > -5 ợ ợx + > 0,25 im 0,25 0,25 0,25 0,25 Vi K trờn phng trỡnh tng ng : log ( x - x + 10) - log ( x - 2) = - log ( x + 5) log ( x - x + 10)( x + 5) = log ( x - 2) - ( x - x + 10)( x + 5) = x - ( x - 5)( x + 5) = x = 26 (vỡ x > 5) -ỡù x( x + y - 4) + y (3 y - 4) + + 2( x + y ) = ( x + y ) + 4(1 - xy ) + (1) Cõu 4) ùợ x - xy + 22 - - y = x - y + 3(2) Cõu (1,0) +Ta cú (1) ( x + y - 2) + + ( x + y - 2) = ( y - x) + + ( y - x) + Xột hm f (t ) = t + + t , t ẻ R Ta cú f '(t ) = t t +4 +1 = t2 + + t t +4 > 0, "t ẻ R Suy f(t) ng bin trờn R + Ta cú (1) f ( x + y - 2) = f ( y - x ) x + y - = y - x y = - x + Th y = x vo (2) ta cú : x + x + 22 - x = x + x + (3) Vi K x ta cú 0,25 0,25 0,25 (3) ( x + x + 22 - 5) - ( x - 1) = x + x - x2 + x - x + x + 22 + - x -1 = ( x - 1)( x + 3) x +1 0,25 ộ ổ ửự ( x - 1) + ( x + 3) ỗ1 ữỳ = x = x + x + 22 + ứ ỷỳ ố ởờ x + ổ 1 + ( x + 3) ỗ1 ữ > (phi gii thớch) x +1 x + x + 22 + ứ ố -x = ị y = Vy h cú nghim (x ; y) = (1 ; 0) Vỡ vi x thỡ Cõu ỏp ỏn p p im p sin x dx cos x 0 -ỡu = x + ỡ du = dx ịớ + t ợ dv = sin xdx ợv = - cos x Cõu Cõu 5) I = (1,0) Ta cú ũ ( x + + tan x)sin xdx = ũ ( x + 1)sin xdx + ũ p p p p 2 = -( + 1) + + sin x 04 = p +1 ( x + 1) sin xdx = ( x + 1) cos x + cos xdx ũ0 ũ0 p 0,25 0,25 0,25 p p p + sin x dx = -d (cos x) = ũ0 cos2 x ũ0 cos2 x cos x = - + Vy I = p+ Cõu Cõu 6) (1,0) ỡ( A ' BC ) ^ ( ABC ) A' ù ị A ' H ^ ( ABC ) ớ( A ' AH ) ^ ( ABC ) ù A ' H = ( A ' BC ) ầ ( A ' AH ) ợ C' B' Suy ã A ' AH = 600 ị A ' H = AH tan 600 = a 0,25 0,25 9a 4 -Vỡ AH + AC = HC ị HA ^ AC ị AA ' ^ AC 1 S A ' AC = AC AA ' = a 3.2a = a 2 H 0,25 -AH = AC + HC - AC.HC cos 300 = a ị AH = a A B 0,25 C VABC A ' B 'C ' = S ABC A ' H = 3a a = 0,25 a 3a ị d ( B, ( A ' AC )) = 3.VA ' ABC = = S A ' AC a -Cõu Cõu 7) (1,0) 125 + Phng trỡnh ng trũn ngoi tip tam giỏc ABC : ( x + ) + ( y - 1) = (1) x+3 y+4 x - y -1 = = + Phng trỡnh ng thng AI : + 1+ -Cõu ỏp ỏn + ng thng AI ct ng trũn ngoi tip ti im th hai l D, trung im cung BC Honh im D l nghim khỏc ca phng trỡnh : ộ x = -3 125 ( x + ) + ( x - 2) = Suy D( ; ) ờx = 2 -A B ã = IBC ã + CBD ã = B + A suy ã ã = + v IBD ã ị DI = DB = DC + Ta cú BID BID = IBD 2 2 ị B, C nm trờn ng trũn tõm D bỏn kớnh DI cú phng trỡnh : 50 ( x - )2 + ( y - )2 = (2) 2 + Ta im B v C l nghim h phng trỡnh (1) v (2) 125 ỡ + + = ( ) ( 1) x y 2 ùù ùỡ x + y + x - y - 30 = ỡ10 x + y - 50 = ớ 2 ùợ x + y - x - y + 20 = ợ x + y - x - y + 10 = ù( x - ) + ( y - ) = 50 ùợ 2 Suy phng trỡnh ng thng BC : 10 x + y - 50 = hay x + y - 10 = -Cõu 8) Cõu + Mp trung trc (Q) ca on AB qua trung im I(1; 6; 7) ca AB nhn AB = (-6; -8; -8) (1,0) lm VTPT Suy phng trỡnh mp(Q): -6( x - 1) - 8( y + 6) - 8( z - 7) = x + y + z - = + Gi D = (Q) ầ (P) ng thng D l hp cỏc im tha h phng trỡnh: ỡ3 x + y + z - = (1) ợx + y - z - = + (P) cú VTPT nP = (1;1; -1) , (Q) cú VTPT nQ = (3; 4; 4) suy D cú VTCP u = [nP , nQ ] = (8; -7;1) Trong (1) cho x = gii c y = 2; z = suy 0,25 0,25 im 0,25 0,25 0,25 0,25 0,25 0,25 D i qua im I(1; 2; 1) Vy phng trỡnh tham s ng thng D ỡ x = + 8t ù y = - 7t ù z = -1 + t ợ +M ẻ D thỡ M ẻ (P) v MA = MB Ta cú M(1 + 8t ; 7t ; + t) MA = 13 (8t - 3) + (4 - 7t )2 + (t - 12) = 169 114t - 128t = t = hoc t = 64 / 27 569 334 ;; ) Vy cú hai im M tha bi toỏn : M (1; 2; -1) , M ( 57 57 57 Cõu 9) Cõu (0,5) + Cú C12 = 792 cỏch chn bi t hp 12 bi ị W = 792 + Gi X l bin c : bi ly cú mu v s bi xanh v s bi bng 1 TH1 : 1X, 1, 3V ị cú C3C4C5 = 120 cỏch chn 2 TH2 : 2X, 2, 1V ị cú C3 C4 C5 = 90 cỏch chn Cõu 10 (1,0) Suy W X = 120 + 90 = 210 WX 210 35 = = Vy P(X) = W 792 132 12 a + b4 + ab Cõu 10) P = ab 36 + (1 + 9a )(1 + 9b ) -(a + b3 )(a + b) = (1 - a)(1 - b) (*) GT : (a + b )(a + b) - ab(a - 1)(b - 1) = ab (a + b3 )(a + b) ổ a b = ỗ + ữ (a + b) ab ab = 4ab Vỡ ab aứ ố b 0,25 0,25 0,25 0,25 v (1 - a )(1 - b) = - ( a + b) + ab Ê - ab + ab , ú t (*) suy 4ab Ê - ab + ab , ỡ ù0 < t Ê 0 0) ta c t Ê - 3t ù 4t Ê (1 - 3t ) ợ Ta cú (1 + 9a )(1 + 9b ) 36ab ị 12 36 + (1 + 9a )(1 + 9b ) 2 Ê + ab a + b4 Ê 3ab - 2ab = ab ab + ab Du ng thc xy a = b = Suy P Ê + ab v 3ab - 0,25 + t vi < t Ê , 1+ t 1 > 0, "t ẻ (0, ] ị f(t) ng bin trờn (0, ] ta cú f '(t ) = (1 + t ) + t ỡa = b 1 ù + , du ng thc xy f(t) Ê f ( ) = a=b= 10 ùợt = ab = 1 + t c ti a = b = Vy MaxP = 10 Xột hm f (t ) = 0,25 0,25 [...]... 2(c a ) 2(b c) 2 2 ng thc xy ra khi v ch khi a = b = c = 1 Vy max P = 0 ,25 0 ,25 0 ,25 3 khi a = b = c = 1 2 0 ,25 THI TH K THI THPT QUC GIA LN 1 S GD V T BC GIANG TRNG THPT NGễ S LIấN Nm hc 2015 - 2016 MễN: TON LP 12 Thi gian lm bi: 120 phỳt, khụng k thi gian phỏt Cõu 1 (2,0 im) Cho hm s y = x3 3x2 + 2 (1) 1) Kho sỏt s bin thi n v v th (C) ca hm s (1) 2) Vit phng trỡnh tip tuyn ca (C) bit tip tuyn... d thi cho BTC 2 Thi th THPT Quc gia ln 2 s c t chc vo chiu ngy 18 v ngy 19/4/2015 ng ký d thi ti Vn phũng Trng THPT Chuyờn t ngy 28/3/2015 TRNG I HC VINH TRNG THPT CHUYấN P N THI TH THPT QUC GIA NM 2016 Mụn: TON; Thi gian lm bi: 180 phỳt Cõu ỏp ỏn im a) (1,0 im) Cõu 1 (2,0 im) Khi m 2 hm s tr thnh y 1 3 1 2 1 x x 2x 3 2 3 1 0 Tp xỏc nh: D 2 0 S bin thi n: *) Chiu bin thi n: Ta cú y x 2 ... ln nht ca P l 2 khi x ;y 2 2 2 1 1 1 giỏ tr nh nht ca P l khi x ;y 2 2 2 2 P xy 0 ,25 0 ,25 0 ,25 0 ,25 TRNG THPT KHOI CHU CHNH THC THI KHO ST CHT LNG LN I Nm hc 2015 2016 MễN: TON LP 12 Thi gian lm bi: 150 phỳt, khụng k thi gian giao ( thi gm 01 trang) Cõu 1( 2,0 im) Cho hm s y x3 3x2 (C) a) Kho sỏt s bin thi n v v th ca hm s (C) b) Tỡm m ng thng i qua 2 im cc tr ca th (C) to vi ng 4 5 thng... ( c ) f '( c ) f '(c) 0 c 3 c2 1 (1 c 2 ) 2 0,5 0 ,25 T ú ta CM c: c 3 a b 2 3 maxVT = max f ( c) = f ( 3) 3 khi a b 2 c 3 2 a 2 3a 1 0 0 ,25 TRNG THPT GIA VIN A THI TH THPT QUC GIA T I NM HC 2015 2016; Mụn: TON Thi gian lm bi: 120 phỳt (khụng k thi gian giao ) Cõu 1: (2,0 im) Cho hm s y 2 x 3 6 x 2 1 Kho sỏt s bin thi n v v th (C) ca hm s 2 Tỡm m th (C) ct ng thng d : y... 0 D thy v trỏi l hm s ng bin trờn [- 4;1] nờn phng trỡnh trờn cú nghim duy nht x = 3 0 ,25 Khi x = 3 ta c y = 3 Vy h cú nghim ( 3;3) 0 ,25 -Ht - 4 S GD & T TP H CH MINH K THI TH THPT QUC GIA 2016 thi mụn: Toỏn (Thi gian lm bi: 180 phỳt, khụng k thi gian phỏt ) 2x - 1 x- 2 a) Kho sỏt s bin thi n v v th (C) ca hm s Cõu 1 (2,0 im) Cho hm s y = b) Tỡm m ng thng (d) : y = x + m ct... 1 2 0 .25 Vy P 3z z2 1 2 1 3 4 4 x y z2 z2 z 2 2 3 3 4 4 t P f z 3z3 3z vi z ; K 3 3 z 1 K 3 2 Cú f z 9z 3 , f z 0 z 1 K 3 Do 2 x2 y2 z2 8 (1,0 ) 4 4 Ta cú: f ,f 3 3 2 Do vy max P khi z 3 1 4 4 1 2 2 , f ,f 3 3 3 3 3 3 2 3 ;x y 0 .25 0 .25 0 .25 1 3 4 TRNG I HC VINH TRNG THPT CHUYấN THI TH THPT QUC GIA NM 2016 Mụn: TON Thi gian lm... 0.5 9 k 0 .25 Tk1 C9k 59k.x7k18 Vỡ s hng cha x3 nờn 7k 18 3 k 3 Vy h s ca s hng cha x3 trong khai trin l C93.56 1.312.500 0 .25 0 .25 0 .25 PT sin2 x cos2 x sin x cos x cos2 x 0 0 .25 sin x cos x sin x 2cos x 0 4 (1,0 ) 5 0 .25 sin x cos x 0 1 sin x 2cos x 0 2 0 .25 1 tan x 1 x 4 k k 2 tan x 2 x arctan2 k k 0 .25 0 .25 S 0 .25 B C K H M 5 (1,0 ) A T gi thit ta cú... 1; c 1 x y z t a 1 1 b 2 0 .25 2 1 ab 0.5 2 1 2 c 1 1 ab 1 c 1 c 2 c 1 , c 1; 1 c 2 c ; f 'c 0 c 4 1 c c 1 c BBT c 1 f(c) 4 + 0 - 0.5 5 f(c) Vy giỏ tr ln nht ca P l 3 2 2 2 1 5 t c khi a b ; c 4 hay x 2 y 4 z 2 4 S GD & T THANH HểA TRNG THPT TNH GIA 1 KIM TRA CHT LNG THPT QUC GIA MễN TON (Nm hc 2015 2016) Thi gian: 180 phỳt ( khụng k thi gian phỏt ) Cõu 1: ( 2 im) Cho hm... CHM Lu ý: Bi thi c chm theo thang im 10, ly n 0 ,25; khụng quy trũn im Cõu Ni dung 1 (2,0 1/ (1,0 im) im) TX: D = R y ' 6 x 2 6 x im 0 ,25 x 0 Ta cú y(0) = 0; y( 2) = 8 y' 0 x 2 Gii hn 0 ,25 Bng bin thi n ng bin, nghch bin Cc tr 0 ,25 V th 0 ,25 2/ (1,0 im) Honh giao im ca th (C) v ng thng d l nghim ca phng trỡnh: x 0 2 x 3 6 x 2 mx x 2 x 2 6 x m 0 2 2 x 6 x m 0 (*) 0 ,25 hai th... s dng ti liu Cỏn b coi thi khụng gii thớch gỡ thờm H tờn thớ sinh: ; S bỏo danh: S GD V T BC GIANG P N THI TH K THI THPT QUC GIA LN 1 TRNG THPT NGễ S LIấN NM HC 2015 - 2016 MễN: TON LP 12 Chỳ ý: Di õy ch l s lc cỏch gii v ỏp s Bi lm ca hc sinh phi lp lun cht ch, y Nu hc sinh lm theo cỏch khỏc v lp lun cht ch thỡ vn cho im tng ng Cõu Ni dung im *) TX: *) S bin thi n: +) Gii hn ti vụ cc: ... max P = 0 ,25 0 ,25 0 ,25 a = b = c = 0 ,25 THI TH K THI THPT QUC GIA LN S GD V T BC GIANG TRNG THPT NGễ S LIấN Nm hc 2015 - 2016 MễN: TON LP 12 Thi gian lm bi: 120 phỳt, khụng k thi gian phỏt ... ;y 2 2 P xy 0 ,25 0 ,25 0 ,25 0 ,25 TRNG THPT KHOI CHU CHNH THC THI KHO ST CHT LNG LN I Nm hc 2015 2016 MễN: TON LP 12 Thi gian lm bi: 150 phỳt, khụng k thi gian giao ( thi gm 01 trang) Cõu... y 0 .25 0 .25 0 .25 TRNG I HC VINH TRNG THPT CHUYấN THI TH THPT QUC GIA NM 2016 Mụn: TON Thi gian lm bi: 180 phỳt, khụng k thi gian phỏt 1 x m x mx (1), m l tham s 3 a) Kho sỏt s bin thi n

Ngày đăng: 30/01/2016, 12:08

TỪ KHÓA LIÊN QUAN

w