1. Trang chủ
  2. » Giáo án - Bài giảng

200 cac bai tap on thi vao lop 10

17 354 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 642 KB

Nội dung

Tìm điều kiện của tham số để đồ thị hàm số tạo với trục Ox một góc nhọn, góc tù.. Tìm điều kiện của tham số để đồ thị hàm số đi qua một điểm A x0; y0 cho trớc.. Tìm điều kiện của tham s

Trang 1

Hoàng Văn Phư

ơng

An Lạc Chí Linh Hải Dương Nhơ cảm ơn: 0976 108 032

Phần I: các dạng phơng trình cơ bản.

Bài 1 Giải các phơng trình bậc nhất sau:

1/

6

2 3

1 2

3

2x− − x− = x+

2/ 2(x-1) - 3 = 5x + 4

3/ 5(x-2) + 3 = 1 – 2(x-1)

1

x− − x+ =

Bài 2 Giải các phơng trình bậc hai khuyết b,c

1/ 2x2 - 7x = 0

2/ 3

4

x2 + 9

5x = 0

3/ 5x - 3x2 = 0 4/ 7 2 5 0

5 14

x

x

5/ -4x2 + 18 = 0 6/ - 5x2 - 7 = 0 7/ 4x2 - 64 = 0

8/ 4x2 + 25 = 0

9/ 9x2 + 16 = 0 10/ 36 x2 – 7 = 0

11/ 25x2 - 1 = 0 12/ - 4+ 2

16

x

= 0

Bài 3 Giải các phơng trình sau:

1 (x- 1)( x - 2) = 10 - x

2 x2+ 2( 1 + 3) x + 2 3 = 0

3 (2x + 1) ( x+4) = (x-1) (x- 4) 4.a) x 2 + ( x + 2) 2 = 4 b) x( x + 2) - 5 = 0

5/ 5x2 - 2x + 6 = 13 6/ x2- 2 3x - 6 = 0

Bài 4 Giải các phơng trình chứa ẩn ở mẫu sau:

1/

x x

x

1 1

1

5

+

1

1

+

+

x

x

x

x

3/

4

1 4

1

3

+

+

x

6 4

x+x = + 5/ 1 1 5

x

− + =

6/ 40 24 19

8/

1

7 1

2 1

3

2

2

=

− +

x

x x x

x x

x

9/

x x

x

x

− +

1 3

7 3

4 9

14 2

Bài 5 Giải các phơng trình sau:

1/ 3x3 + 6x2 - 4x = 0

3 - x + 1 = (x- 1)(x-2) 4/ ( 5x2+ 3x+ 2)2 = ( 4x2 - 3x- 2)2

Dạng 4 Đa về PT bậc hai bằng PP đặt ẩn phụ

1/ 36x4 + 13x2 + 1 = 0

2/ x4 - 15x2 - 16 = 0

3/ 3x4 + 2x3 - 40x2 + 2x + 3 = 0

1

5 )

1

(

2

2

2

= +

x x

x

5/ x (x+1) (x +2 ) (x + 3 ) = 3 6/ ( 12x - 1 )(6x - 1)( 4x - 1)(3x-1) =330 7/ (x2 - 3x + 4 ) ( x2 - 3x +2 ) = 3 8/ ( 1 2) ( 11)2 =121

+

x x

Bài 6 Phơng trình chứa dấu giá trị tuyệt đối và phơng trình vô tỉ

1/ 4x2 −4x+1=2002

2/ 2y2 −20y+50 = 50

3/ 43−x =x−1

4/ x- x−1−3=0 5/ x−2−2 x−3 =2 6/ x+2− x−6 =2

7/ 3x2 - 14|x| - 5 = 0 8/ | x2 - 3x + 2| = x - 2 9/ | x2 - 3x - 4 | = |2x2 - x - 1|

10/ x2 - x - 6 = 0

Bài 7 Giải các hệ phơng trình sau:

1

2

2

5 6 0

3 4 0

 − − =

− − =



5

2

3 1 0

x

 − =

2.

2

2

6 0

x x

− − =



6

4 6 0

x x x

 − >

3.

2

2

2 0

x x

− − ≠



4 6 0

x x

− >

 − >

3 6 0

x x

− >

 − >

8 20 15 0

2 5 0

x x

− >

 − >

 Phần II: Rút gọn biểu thức

Tài liệu

ôn thi

vào bậc

THPT

Trang 2

Hoàng Văn Phư

ơng

An Lạc Chí Linh Hải Dương Nhơ cảm ơn: 0976 108 032

Dạng 1: Tìm điều kiện để các biểu thức xác định

Dạng 2: Rút gọn biểu thức

Dạng 3: Tính giá trị của biểu thức tại một giá trị của biến

Dạng 4: - Tính giá trị của biến khi biết giá trị của biểu thức

- Tìm x để giá trị của biểu thức thoả mãn một điều kiện nào đó

Dạng 5: Tìm x để biểu thức đạt GTLN; GTNN

Dạng 6: Tìm x để biểu thức đạt giá trị nguyên

Dạng 7: CM biểu thức thoã mãn 1 điều kiện với mọi x

Kiến thức bổ trợ:

1 Phép tính trên căn thức và 4 phép biến đổi

2 Các PP phân tích đa thức thành nhân tử ( Nhân tử chung, HĐT, Nhóm, tách )

3 PP quy đồng mẫu thức các phân thức

4 Phép tính trên căn thức

5 Các hằng đẳng thức đáng nhớ

Bài 1: Cho biểu thức:

A =  + + + − +1

1 1

2

x x

x x

x

x

:  +1−1

2

x

x

; Với x≥ 0 và x ≠ 1

a Rút gọn biểu thức A b.Tính giá trị của biểu thức A tai x = 3 - 2 2 Bài 2: Cho biểu thức:

A =





+

− +

1

1 1

1

x

x x

x

:

2 1

2 2

x x

  ; Với x > 0 và x ≠ 1

1 Rút gọn biểu thức A 2 Tìm x để

x

A

> 2

Bài 3: Cho biểu thức:

A =

1

1 1

1 1

2

− + +

+ +

+

x x

x

x x

x x

1 Tìm x để A có nghĩa 2 Rút gọn 3 CMR A<

3

1

4 Tính A tại x = 3- 2 2 Bài 4: Cho biểu thức:

A =

x

x x

x x

x

x

+

+

− +

3

1 2 2

3 6

5

9 2

1 Rút gọn 2 Tìm số nguyên x để biểu thức A đạt giá trị nguyên

Bài 5: Cho biểu thức:

M =

1 2 1 2

1

1 1

2

+

− +





+

− +

x

x x

x

x x

x x x

x

x x x x

a) Rút gọn b) Với giá trị nào của x thì M đạt GTLN, tìm GTLN đó Bài 6: Cho biểu thức: A =

x

x x x

x

x

+

1 1 2

a) Rút gọn A b) Tìm x để A = 6 c) Tìm giá trị nhỏ nhất của A Bài 7: Cho biểu thức:

P =

x

x x x

x x x x

x

+

+

, với x ≠ 1, x > 0 1 Rút gọn P 2 Tìm x để P = 29

Trang 3

Hoàng Văn Phư

ơng

An Lạc Chí Linh Hải Dương Nhơ cảm ơn: 0976 108 032

Bài 8: Cho biểu thức: A =  + + 

+





+

1

2 :

1

1 1

2

x x

x x

x x

x x

( 0 ≤ x ≠ 1)

1 Rút gọn A 2 Tính A khi x = 4 + 2 3

Bài 9: Cho biểu thức:

A =

x x x x

x x

+

1 :

1

2 1 Tìm x để A có nghĩa 2 Rút gọn A

Bài 10: Cho biểu thức: K =

x

x x x

x x

x

x

3

1 3 1

4 2 : 3 1

2 3

+





− + +

+

1 Rút gọn với x > 0 ; x ≠

4

1

2 Tính giá trị của K tại x =

4

1

3 Tìm x để K < 0 4 Tìm x để K có giá trị nguyên

Bài 11: Cho biểu thức: A =

x

x x

x

x x

x

x x

x

+ +





+

6 2 : 6

6 36

1 Tìm điều kiện của x để A xác định

2 CMR: giá trị của A không phụ thuộc vào x, với mọi x thuộc TXĐ

Bài 12: Cho biểu thức:P =

( )2

:

với a≥0,a≠1

1 Rút gọn 2 Tìm a để

P

1 đạt GTNN Tìm GTNN đó Bài 13 Cho biểu thức:A = 22 22 4 4 :(2 6)( 9 3)

x

1 Rút gọn 2 Tính giá trị của A biết |x| =

9 1

3 Tìm x để A ≤ 1 4 Tìm x ∈ N / x > 4 để A là 1 số nguyên.

x

a) Tìm TXĐ b) Rút gọn c) Tính A khi x = 9 d) Tìm giá trị của x để A = 1 Bài 15: Cho biểu thức: Y =





+





+ +

+

1 1

1

x x x

x x

, ( x > 0; x ≠ 1 )

1 Rút gọn biểu thức Y 2.Coi y là hàm số và x là biến số hãy vẽ đồ thị của hàm số y Bài 16: Cho biểu thức: A =

xy

x y y

:

y x

y x

− , với x > 0, y > 0, x ≠ y

1.Rút gọn biểu thức A 2.Tính giá trị của biểu thức A khi x = 5−2 6 , y = 5+2 6 Bài 17: Cho biểu thức: A = 3 4

1

x

x

2 1

x x

x

1 Rút gọn biểu thức A 2 Tìm giá trị của x để A > 1

4

a

1 Rút gọn biểu thức A 2 Tính giá trị của A khi a = 9

Trang 4

Hoàng Văn Phư

ơng

An Lạc Chí Linh Hải Dương Nhơ cảm ơn: 0976 108 032

Bài 19: Cho biểu thức: A =  x1−1 + x1+1 x x−+11 −2 ( x ≥ 0; x ≠ 1 )

1 Rút gọn biểu thức A 2.Tìm những giá trị nguyên của x để biểu thức A nhận giá trị nguyên

x

1 Rút gọn biểu thức A 2 Tính giá trị của A khi a = 3 - 2 2 Bài 21: Rút gọn các biểu thức sau:

− + − ( x ≥ 0; x ≠ 1 )

1

B

x

3 2

x

x y

+

−  − +  với b ≥0 và b ≠ 9

    với a > 0 và a ≠ 4

    với a > 0 và a≠1.

I=

x

x x

x x

x

+ + +

+

+

4

5 1 2

2 2

1

với mọi x≥0;x ≠4)

2

1 ( : ) 1

1 1 1

+ + +

+

x x

x

x x

x

x

L= (

x

1 -1

1

1 1

2

+

+

x

x x

x

M=

1

) 1 ( 2 2

1

2

− +

+

− + +

x

x x

x x x

x

x x

Chú ý: - Tất cả các biểu thức trên coi nh đã xác định

Trang 5

Hoàng Văn Phư

ơng

An Lạc Chí Linh Hải Dương Nhơ cảm ơn: 0976 108 032

Phần III: hệ phơng trình hai ẩn và Hàm số y = ax + b

1 Vẽ đồ thị hàm số y = ax + b

2 Tìm điều kiện của tham số để hàm số đã cho là hàm số bậc nhất

3 Tìm điều kiện của tham số để hàm số đã cho là hàm số đồng biến hay nghịch biến.

4 Tìm điều kiện của tham số để đồ thị hàm số tạo với trục Ox một góc nhọn, góc tù.

5 Tìm điều kiện của tham số để đồ thị hàm số đi qua một điểm A ( x0; y0) cho trớc

6 Tìm điều kiện của tham số để 2 đồ thị hàm số: cắt nhau, cắt nhau tại một điểm nằm trên

trục tung, hoành; song song; trùng nhau; vuông góc;

7 Tìm điều kiện của tham số để đồ thị hàm số cắt hai trục tạo thành một tam giác có chu vi

hay diện tích thoả mãn điều kiện cho trớc

8 Tìm cố định của đồ thị hàm số

9 Giải hệ phơng trình thông thờng bằng PP cộng đại số; PP thế và PP đặt ẩn phụ.

10 Tìm điều kiện để hệ phơng trình nhận 1 cặp số cho trớc làm nghiệm: - Cặp số cho sẵn

hoặc cặp số phải tìm

11 Tìm điều kiện để hệ có nghiệm.

12 Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào tham số.

13 Tìm điều kiện để hệ có nghiệm thoả mãn một hệ thức nào đó cho trớc.

14 Tìm điều kiện để hệ có nghiệm nguyên

15 Tìm điều kiện để hệ có nghiệm và tìm GTLN, GTNN của biểu thức chứa nghiệm.

16 Tìm giao điểm của đồ thị hàm số với 2 trục và của 2 đờng thẳng y = ax + b và y =

a’x + b’

17 Tìm điều kiện để 3 đờng thẳng đồng quy.

18 Lập phơng trình của một đờng thẳng:

• Đi qua 2 điểm A (x1; y1) và B(x2; y2) cho trớc

• Đi qua điểm A (x1; y1) và vuông góc với đờng thẳng cho trớc

• Đi qua điểm A (x1; y1) và song song với đờng thẳng cho trớc

Hàm số y = ax + b

Bài 1: Với giá trị nào của m thì các hàm số sau là hàm số bậc nhất:

a) y =( 2m + 1 )x - 3m + 2 b) y = 5−m ( x - 1 ) c) y =

1

1

+

m

m

x + 2 7

d) y = 4mx + 3x - 2 e) y = ( m2 - 4m )x2 + ( m- 4 )x + 3

Bài 2 Chứng minh các hàm số sau:

a) y = (6 + 2 2)x - 9x + 3 nghịch biến ∀x ∈ R

b) y = ( 11 - 3) x + 2x - 4 đồng biến ∀x ∈ R

Bài 3 Cho hàm số y = (m-1)x + 2m - 1

1 Tìm m để hàm số luôn nghịch biến

2 Tìm m để hàm số đi qua điểm A(-1;3) Vẽ đồ thị với m vừa tìm đợc

3 Tìm m để đồ thị hàm số tạo với chiều dơng trục hoành một góc tù

Bài 4 Cho hàm số y = (m-1)x + 2m - 1

1 Với giá trị nào của m thì đồ thị hàm số đi qua điểm ( 2- 1; 2 )

2 Tìm m để đồ thị hàm số tạo với chiều dơng trục hoành một góc nhọn

3 Tìm m để đồ thị hàm số cắt hai trục toạ độ tạo thành một tam giác có diện tích =

2 1

4 Tìm điểm cố định của hàm số

Bài 5 Cho hàm số y = (m2 - 2)x + m + 2

1 Tìm giá trị của m để đồ thị h/s song song với đồ thị hàm số y = - x + 1

Trang 6

Hoàng Văn Phư

ơng

An Lạc Chí Linh Hải Dương Nhơ cảm ơn: 0976 108 032

2 Tìm m để đồ thị của hàm số cắt đờng thẳng x = 1 và cắt đồ thị của hàm số

y = 3x - 1 tại một điểm

Bài 6.

1 Viết phơng trình đờng thẳng đi qua hai điểm A(2;1) và B(-1;5 )

2 Tìm tọa độ giao điểm của đồ thị trên với hai trục toạ độ

3 Tính diện tích hình phẳng giới hạn bởi hai trục toạ độ và đờng thẳng trên

Bài 7

1 Viết phơng trình đờng thẳng đi qua điểm A(2;5) và vuông góc với đờng thẳng y = 3x - 2

2 Viết phơng trình đờng thẳng đi qua điểm A(4;1) và song song với đờng thẳng y = 2x + 3

Bài 8.

Cho hàm số y = ( m-1)x + m + 3

1 Tìm giá trị của m để đồ thị hàm số song song với đồ thị y= -3x +1

2 Tìm m để đồ thị hàm số đi qua điểm ( 2; -3 )

3 CMR đồ thị của hàm số luôn đi qua một điểm cố định ∀giá trị của m Tìm giá trị ấy

4 Tìm giá trị của m để đồ thị của hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 1 ( đơn vị diện tích )

Bài 9.

Cho hàm số y = (m + 2)x + m-3

1 Tìm m để đồ thị hàm số luôn nghịch biến

2 Tìm m để đồ thị của hàm số tạo với chiều dơng trục hoành một góc bằng 450

3 Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -3

4 Tìm m để đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng -2

5 Tìm m để đồ thị của các hàm số y = 2x-1, y = -3x + 4 và y=(m+2)x + m -3 đồng quy

Bài 10.

Cho 2 điểm A(1; 1) và B( 2; -1)

1 Viết phơng trình đờng thẳng đi qua 2 điểm A và B

2 Tìm m để đờng thẳng y = (m2 + 3m )x + m2 – 2m + 2 song song với đờng thẳng AB đồng thời đi qua điểm C ( 0; 2 )

Bài 11.

Cho hàm số y = (2m - 3)x + m- 1

1 Tìm m để đồ thị của hàm số đi qua điểm A(1;4)

2.Tìm m để đồ thị của hàm số đi qua điểm cố định với mọi giá trị của m, tìm điểm cố định ấy

3 Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ x = 2- 1

Bài 12 Cho hàm số y = 2x + m (d)

1 Tìm m để đồ thị của hàm số đi qua điểm B ( 2; -5 2 )

2 Tìm m để đồ thị của hàm số (d) cắt đồ thị hàm số y = 3x+2 trong góc phần t thứ IV

Bài 13

Cho hàm số y = x + 2m - 1 (d) Tìm m để đồ thị của hàm số (d) cắt đờng thẳng

y = 2x + 1 trong góc phần t thứ II

Bài 14

Tìm m để đồ thị hàm số y = (m-3)x+2m +1 và y = 4x - m +2 cắt nhau tại một điểm trên trục tung

Bài 15.

Cho đt y = (1- 4m )x + m- 2

1 Tìm m để đồ thị của hàm số đi qua gốc toạ độ

2 Tìm m để khoảng cách từ gốc toạ độ tới đồ thị hàm số bằng 1

3 Tìm m để đồ thị của hàm số song song với đt y = -x - 1

Bài 16

Trên mặt phẳng toạ độ Oxy, cho đờng thẳng y = (2m+1)x - 4m – 1 và điểm A( -2; 3 ) Tìm m

để khoảng cách từ A đến đờng thẳng trên là lớn nhất

Trang 7

Hoàng Văn Phư

ơng

An Lạc Chí Linh Hải Dương Nhơ cảm ơn: 0976 108 032

Bài 17.

Trên mặt phẳng toạ độ Oxy, cho A(2; 3) và điểm B (1; -4) và điểm C nằm trên trục Ox Tìm

toạ độ điểm C để tam giác ABC có chu vi nhỏ nhất

Hệ phơng trình

Bài 1 Giải các hệ phơng trình sau:

x y

x y

− =

 − =

4x + 3y = 2

7 x - 3y = 5

3y - 7 = 8

x -2y = -3

x y

2 4 0

x y x

+ = −

 + =

 6

x +y- 10 = 0

x 2

- = 0

y 3



7

x

3

2 3 5x- 8y = 3

y

 − =

1 1

1

3 4

5

x y

x y

 − =



 + =



9

2

1

10

x 2 - y 3= 1

x + y 3 = 3





11 2(x-2) + 3(1+y) = -2

3(x-2) - 2(1+y) = -3

5( x + 2y) = 3x - 1 2x + 4 = 3(x-5y) - 12

4x - 5 (2y - 1) = (2x - 3) 3(7x + 2) = 5 ( 2y -1) - 3x

 14

4





15 ( x+5)(y-2) = xy (x-5)(y+12) = xy

3x + 5y = -1 3

x + y = 1 5



17





Bài 2 Tìm giá trị của a và b:

a Để hệ phơng trình 3ax - (b +1)y = 93

bx + 4ay = -3

b Để hệ phơng trình (a-2)x + 5by = 25

2ax - (b - 2)y = 5

 có nghiệm là (x,y) = (3;-1)

Bài 3 Tìm giá trị của a và b để hai đờng thẳng (d1): (3a-1)x + 2by = 56

và (d2):

2

1

ax - (3b + 2 )y = 3 cắt nhau tại điểm M(2;5)

Bài 4 Tìm a,b để đờng thẳng ax- 8y = b đi qua điểm M( 9;- 6) và đi qua giao điểm của 2 đờng

thẳng (d1): 2x + 5y = 17 và (d2): 4x -10y = 14

Bài 5 Tìm m để.

a Hai đờng thẳng (d1): 5x - 2y = 3, (d2) y+x = m cắt nhau tại một điểm trên Ox Vẽ hai đờng

thẳng này trên cùng một mặt phẳng toạ độ

b Hai đờng thẳng (d1): 5x - 2y = 3, (d2) y+x = m cắt nhau tại một điểm trên Oy

Bài 6 Tìm giá trị của m để nghiệm của hệ phơng trình

2

y x





cũng là nghiệm của pt: 3mx- 5y = 2m + 1

Bài 7 Cho hệ phơng trình: mx - y = 1

x + my = 2

1 Tìm m để hệ có nghiệm duy nhất Giải hệ phơng trình theo tham số m

2 Gọi nghiệm của hệ phơng trình là (x;y).Tìm các giá trị của m để x- y = -1

3 Tìm m để hệ có nghiệm dơng

Trang 8

Hoàng Văn Phư

ơng

An Lạc Chí Linh Hải Dương Nhơ cảm ơn: 0976 108 032

Bài 8 Cho hệ phơng trình: x - 2y = 3- m

2x + y = 3 ( m+2)

1 Giải hệ với m = -1

2 Tìm m để hệ có nghiệm (x; y)

a Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m

b Tìm m để biểu thức x2 + y2 đạt giá trị nhỏ nhất.Tìm giá trị ấy

Bài 9 Cho hệ phơng trình : (a- 1 )x + y = a

x + (a-1) y = 2

1 Tìm a để hệ có nghiệm (x;y)

2 Giải hệ theo a

3 Tìm đẳng thức liên hệ giữa x và y không phụ thuộc vào a

4 Tìm giá trị của a thoả mãn điều kiện 6x2 - 17 y = 5

5 Tìm các giá trị của a để biểu thức

y x

y x

+

−5 2

nhận giá trị nguyên

Bài 10

a Giải hệ phơng trình 3x - 4y = -5

4x + y = 6

b Tìm các giá trị của m để các đờng thẳng sau cắt nhau tại một điểm:

y = 6 - 4x ; y =

4

5

3x+

và y = (m-1)x + 2m

Bài 11 Tìm m để hệ mx - y = 2

3x + my = 5

 có nghiệm (x;y) sao cho

x > 0

y < 0

Bài 12 Tìm giá trị nguyên của m để hệ mx - 2y = 3

3x + my = 4

 có nghiệm (x;y) sao cho

x < 0

y > 0

Bài 13 (bài1/25- TVHinh) Cho hệ phơng trình 4 4 0

x y

x m

− + =

 + + =

1 Tìm m nguyên để hệ có nghiệm nguyên

2 Tìm các giá trị của m hệ có nghiệm thoả mãn hệ thức x - y = 1

3 Tìm các giá trị của m hệ có nghiệm thoả mãn hệ thức x2 + y2 = 65

Bài 14 Cho hệ phơng trình :2x - ay = ax + y = a + 2

a Giải hệ phơng trình khi a = -1

b Gọi nghiệm duy nhất của hệ pt là (x; y) Tìm các giá trị của a để 3x - 2y = 2

Bài 15 Cho hệ phơng trình 2x + y = 1x + ay = 3

Bài 16 Cho hệ phơng trình x - my = 2m mx - 4y = m + 6

 Gọi cặp (x;y ) là nghiệm duy nhất của hệ phơng trình Tìm các giá trị của m để 3(3x + y - 7 ) = m

Bài 17. Cho hệ phơng trình 2 2

x y m

− = −

 + = +

 Phần IV: Phơng trình bậc hai

1 Giải hệ phơng trình khi a = 1

2 Tìm a để hệ phơng trình vô nghiệm

1) Giải hệ phơng trình với m = 1.

2) Tìm m để hệ có nghiệm (x; y) thoả mãn:

x2 + y2 = 10.

Trang 9

Hoàng Văn Phư

ơng

An Lạc Chí Linh Hải Dương Nhơ cảm ơn: 0976 108 032

1 Tìm m để phơng trình đã cho là phơng trình bậc hai

2 Tìm m để phơng trình nhận 1 số cho trớc làm nghiệm Tìm nghiệm còn lại

3 CMR phơng trình đã cho luôn có nghiệm hoặc 2 nghiệm phân biệt với mọi m

4 Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m

5 Tìm m để PT có nghiệm thoả mãn hệ thức cho trớc

6 Tìm m để PT có nghiệm và tìm GTLN,GTNN của biểu thức chứa nghiệm

7 Tìm m để phơng trình đã cho có hai nghiệm cùng dấu, khác dấu

8 Tính giá trị của biểu thức chứa nghiệm

9 Lập PT bậc hai nhận 2 số cho trớc làm nghiệm

10 Sự tơng giao giữa đờng thẳng y = ax + b và đồ thị hàm số y = ax2

Bài 1 Tìm m để các phơng trình sau là phơng trình bậc hai:

a) (1-3m) x2 + 2(m-1)x - 2m-3 = 0

b) ( m2-1) x2 + 2x - 2m+5 = 0

Bài 2 1.Với giá trị nào của m thì các PT sau có nghiệm kép Tìm nghiệm kép ấy

a) x2 - (m + 2)x +m2 - 4 = 0

b) (m + 3)x2 - mx + m = 0

2.Tìm m để phơng trình ( m2-9) x2 + 2(m + 3)x +2 = 0 vô nghiệm

3 Tìm k để PT kx2 + 2(k - 1)x + k + 1 = 0 có hai nghiệm phân biệt

Bài 2 Cho PT x2 +2(m-1) - 2m-3 = 0 (1)

1 Giải PT với m = 1

2 CMR PT (1) luôn có 2 nghiệm phân biệt với mọi giá trị của m

3 Gọi x1, x2 là 2 nghiệm của PT (1) Tìm m để 0

1

2

2

x

x

x x ( Đ/S m < 2

3

− )

Bài 3 Cho PT (m - 1) x2 - 2(m+1)x + m- 2 = 0

1 Giải pt với m = -1

2 Tìm m để pt có 2 nghiệm phân biệt

3 Tìm m để pt có nghiệm kép Tìm nghiệm kép ấy

Bài 4 Cho pt x2 - 2( k-1)x + 2k - 5 = 0

a Giải pt với k = 1

b CMR phơng trình luôn có 2 nghiệm phân biệt với mọi giá trị của k

c Tìm k để pt có 2 nghiệm cùng dấu khi đó 2 nghiệm cùng dấu gì ?

d Tìm k để pt có 2 nghiệm x1, x2 thoả mãn hệ thức |x1|-|x2| = 14

Bài 5 Cho pt : x2 - ( 2m - 1 ) + m2 - m- 1 = 0 (1)

1 CMR phơng trình luôn có nghiệm với mọi giá trị của m

2 Giải phơng trình với m =

2 1

3 Gọi x1, x2 là 2 nghiệm của pt (1)

a Tìm hệ thức lên hệ giữa x1, x2 không phụ thuộc vào m

b Tìm m sao cho ( 2x1 - x2) ( 2x2 - x1) đạt GTNN

Bài 6 Cho pt bặc 2 : x2 - 2( m + 1 )x + m2 + 3m + 2 = 0 (1)

1 Giải phơng trình (1) với m = -1

2 Tìm m để PT (1) luôn có 2 nghiệm phân biệt

3 Gọi x1,x2 là 2 nghiệm của PT Tìm m để x1 + x2 = 12

Bài 7.Cho phơng trình x2 - 2mx + 2m - 3 = 0

1 Giải pt với m =

2 3

2 CMR PT luôn có nghiệm với mọi giá trị của m

3 Gọi x 1, x2 là 2 nghiệm của phơng trình

Trang 10

Hoàng Văn Phư

ơng

An Lạc Chí Linh Hải Dương Nhơ cảm ơn: 0976 108 032

a Tìm hệ thức liên hệ giữa x1, x2 độc lập với m

b Tìm GTNN của hệ thức A= x1 + x2

4 Tìm m để phơng trình có 2 nghiệm trái dấu

Bài 8 Cho PT : x2 - 4x + m + 1 = 0

1 Giải phơng trình với m = -1

2 Tìm m để phơng trình có nghiệm

3 Tìm m để phơng trình có 2 nghiệm trái dấu, khi đó 2 nghiệm này mang dấu gì ?

4 Tìm m sao cho PT có 2 nghiệm thoả mãn hệ thức x1 + x2 = 10

Bài 9 x2 - 2(m - 1)x + m - 3 = 0

1 Giải phơng trình với m = 3

2 CMR phơng trình luôn có nghiệm ∀m

3 Xác định m để pt có 2 nghiệm bằng nhau về giá trị tuyệt đối và trái dấu nhau

4 Tìm hệ thức liên hệ giữa 2 nghiệm không phụ thuộc vào m

5 Tìm m để phơng trình có 1 nghiệm bằng 3 Tìm nghiệm còn lại của phơng trình

6 Tìm m để PT có 2 nghiệm cùng dấu dơng

7 Tìm m để PT có 2 nghiệm x1, x2 thoả mãn hệ thức |x1 |+|x2| = 1

Bài 10 Cho pt x2 - 2(m +2)x + m +1 = 0

1 Giải pt với m= -2

2 Tìm m để phơng trình có nghiệm

3 Tìm hệ thức liên hệ giữa x1,x2 độc lập với m

4 Tìm m để x1(1- 2x2) + x2(1- 2x1) = m2

Bài 11 Tìm m để PT: x2 - (m +3)x + 2(m+2)= 0 (1)

có 2 nghiệm x1,x2 thoả mãn x1 = 2x2

Bài 12 Cho PT: x2 - 2(m + 1)x + 2m - 15 = 0

1 Giải pt khi m =-1

2 Gọi 2 nghiệm của phơng trình là x1và x2.Tìm các giá trị của m thoả mãn x2+5x1 = 4

3 Tìm m để pt có 2 nghiệm cùng dấu

4 Tìm m để pt có nghiệm bằng -2 Tìm nghiệm còn lại của PT

Bài 13 Cho phơng trình x2 - (m + 4)x + 3m +3 = 0

1 Tìm m để phơng trình có 1 nghiệm bằng 2 Tìm nghiệm còn lại của phơng trình

2 Xác định m để PT có hai nghiệm x1,x2 thoả mãn x1 + x2 ≥0

Bài 14 Gọi x1, x2 là hai nghiệm của phơng trình x 2 - 2(m-1)x 4 = 0.Tìm m để– |x1 |+|x2| = 5

Bài 14 Cho Parabol y = -

2

1

x2 và điểm N(1;-2)

1 CMR phơng trình đờng thẳng đi qua M có hệ số góc là k luôn cắt Parabol tại 2 điểm phân biệt A,B với mọi giá trị của k

2 Gọi xA , xB lần lợt là hoành độ của A và B Tìm k để

x2

A + x2

B - 2xAxB(xA + xB) đạt GTLN Tìm giá trị ấy

Bài 15 Cho h/s y= x2 (P) và đờng thẳng y = 2mx - 2m + 3 (d)

1 Tìm giao điểm của Parabol (P) và đờng thẳng (d) khi m = 0

2 CMR đt luôn cắt Parabol tại mọi giá trị của m

3 Tìm m để đờng thẳng cắt Parabol 2 điểm có hoành độ trái dấu

4 Gọi x1,x2 là hoành độ giao diểm giữa đt và Parabol

Tìm m để x2(1-x2) + x2(1-x2) = 4

Bài 16 Cho h/s y = f(x) = -2x2 có đồ thị là ( P )

1 Tính f(0); f( 2); f(

2

1 ); f(-1)

2 Tìm x để h/s lần lợt nhận các giá trị 0; -8; -18; 32

Ngày đăng: 15/12/2015, 23:33

TỪ KHÓA LIÊN QUAN

w