ĐỀ 58
I.PHẦN CHUNG (7 điểm)
Câu I (3 đ)
Cho hàm số y = x3 +(m -1) x2 –(m +2)x -1 (1)
a) Khảo sát vẽ đồ thị (C) của hàm số khi m = 1
x
3
b) Viết phương trình đường thẳng (d) vuông góc với đường thẳng y =
Câu II (3 đ)
1) Giải phương trình 16x -17.4x +16 = 0;
và tiếp xúc với đồ thị (C) của hàm số
π
2
∫ ( 2 x + 1) sin xdx
0
2) Tính tích phân
( 0,5 )
sin 2 x
3) Tìm giá trị lớn nhất của biểu thức
Câu III (1đ) Cho hình chóp tam giác S.ABC có SA, SB, SC đôi một vuông góc nhau và SA = a, SB = b,
Tính độ dài đường cao vẽ từ S của hình chóp S.ABC.
II.PHẦN RIÊNG (3 điểm)
1 THEO CHƯƠNG TRÌNH CHUẨN
x = 1 + 2t
y = −1 + t
z = 3 − t
Câu IV.a (2đ) Trong không gian Oxyz cho đường thẳng (d):
a) Viết phương trình mặt phẳng (P) đi qua A(2; 0; 0) và vuông góc với đường thẳng (d)
b) Tìm tọa độ giao điểm của (d) với mặt phẳng (P).
(
)
2 − i 3 x + i 2 = 3 + 2i 2
Câu IV.b (1đ) Giải phương trình sau trên tập số phức
2. THEO CHƯƠNG TRÌNH NÂNG CAO
x = 1 + 2t
y = −1 + t
z = 3 − t
Câu IV.a (2đ) Trong không gian Oxyz cho đường thẳng (d):
a) Tìm tọa độ hình chiếu vuông góc vẽ từ điểm A(2; 0; -1) lên đường thẳng (d).
b) Tìm tọa độ giao điểm B đối xứng của A qua đường thẳng (d).
y = 3− x +
Câu IV.b (1đ) Tìm giá trị lớn nhất của biểu thức
x
SC = c.