trình bày về các kết quả chuẩn bị, các không gian hàm
Trang 1KhilO sat phuong trinh parabolic phi tuyin
trong mi~n hinh cdu
trang5
CHUONG2 cAc KET QuA CHuAN BJ, cAc KHONG GIAN HAM
11.1.cAc KHONG GIAN HAM.
f)~t 0 = (0,1),ta b6 qua dinh nghia cac khong gian ham thong d\lng:
em (0), U (0), Hm (0), wm,p (0).
V 6i m6i ham v ECO(0) ta dinh nghia
(2.1)
(
I
J
I/2
Ilvll=IIvIIH = fr2v2(r)dr
va dinh nghiaH la d~ydu hoa cua khong gian CO(0) d6i v6i chufin11.11.
TuO'ng t\1',v6i m6i ham v E cl (0), ta dinh nghia
(2.2) IlvIIv =~lv112 +Ilvft2
va dinh nghia V la d~ydu hoa cua khong gian cl (0) d6i v6i chufin IHlv'
Chli y r~ng chufin 11.11 va IHlv1~n luqt: duQ'c sinh ra tit cac tich vo hu6ng
(2.3)
I
(u, v) = fr2u(r)v(r)dr,
0
(2.4)
I
(u,v)+ (u', v') = fr2[u(r)v(r) + u'(r)v'(r)Vr.
0
Khi do ta dS dang chung minh r~ng H, V la cac khong gian Hilbert.
BB d~ 2.1 V alf9'cnhung lien t¥c va nlim tru m(lt trang H.
Chung minh DS th~y r~ng Ilvll::;Ilvllvv6i mQi v E V, do do phep nhling tit V vao H la lien t\lc M~t khac CI(O)c Vva tru m~t trong H, do do V tm m~t trong H.
H9c vien Nguyln Vii Dziing
Trang 2KhilO sat phuong trinh parabolic phi tuyin
trong miJn hinh cdu
trang 6
(2.5)
(2.6)
(2.7)
(2.8)
IIvll2 ~ ~(V2(1)+ Ilvf )2
Iv(l)! ~ 2/Jvllv'
rlv(r)1 ~ F5llvllv'
v2(l),;ellv'll' +(3+ ~)vI12
Chung minh
i/ Nghi?m lqi (2.5).
IIvll2 =fr2v2 (r)dr =~v2 (1)- 2 fr3v(r)v'(r)dr
Ta suy ra
~ -v2 (1) + - fr2v(r)v'(r)dr
~ -v2(1) +-lIvllllv'll3 3
~~v2(1)+~~JvII2 +lIvf)3 3
21Jv112~ ~(V\l) +llvr)2
Do do (2.5) duQ'c chUng minh
ii/ Nghi?m lqi (2.6).
Taco
v2(1) =f(r3v2(r)) dr = f(3r2v2(r)+2r3v(r)v'(r)}ir
~ 31Jv112 + 21Jv11llv'll
~ 31Jv112 +IJvII2 + Ilvf
HQcvien Nguyln Vu Dzung
Trang 3Khao sat phuong trinh parabolic phi tuyin
trong mi~n hinh cdu
trang 7
~ 4~ivII2+Ilvf )=4Iiv11~.
V~y
Iv(1)1 ~ 2livllv'
Do do (2.6) duQ'c chUng minh
.iill Nghi?m Igi (2.7)
Taco
2 fS2V(S)V'(s)ds=v2 (s) - r2v2 (s) - 2 fSV2 (s)ds
~ v2 (1) - r2v2 (r).
Ta sur fa
1
r2v2 (r) ~ v2 (1) - 2 fS2V(S)V'(s)dS
r
1
~ v2 (1) + 2 ~r2v(r)v'(r)ldr
0
~ v2 (1) + 21iv11llv'll
~ v2 (1) + IIvl12+ Ilvf
~ 5~ivII2+ Ilvf )
V~y
rlv(r)1 ~ Fsllvllv'
Do do (2.7) duQ'c chung minh
4il Nghi?m Igi (2.8)
Theo chung minh (2.6) ta co
v2 (1) ~ 311vl12+ 21iv11llv'll
~ 31iv112 + :IIvl12 + Bllv'112
H9C vien Nguyin Vii Dziing
Trang 4KhilO sat phuong trinh parabolic phi tuyin
trang miJn hinh cdu
trang 8
~(3+ ~)vI12+£llvf
Do do (2.8) duQ'cchUngminh.
V <::;H <::;V', vai cac phep nhung lien t~c va nlim tru m(Lt.
Chung minh Trn6c h~t ta chUng minh r~ng H nhung trong V' Vi V<=.H,
v6i mQi WE H, anh X?
Tw : V ~ IR
1
V H Tw(v) =(w,v)=fr2w(r)v(r)dr
0
la tuy~n tinh lien t\lCtren v, tuc la TwE V'.
Ta xet anh X?
T:H~V'
wHT(w)=Tw'
Khi do ta co
(Tw,v)V,v, = (w,v), VVEV, VwEH.
Ta se chung minh toan tu T thoa cac tinh chfitsail:
(i) T: H ~ V' la dO'nanh,
(ii) IITwllv'~ IHI, VWE H,
(iii) T(H) = {Tw: WEH} la tru m~t trong V'.
Chung minh (i) DS thfiy r~ng T tuy~n tinh Th~t v~y, n~u Tw= 0, thi
(W,v) = (Tw,v)v',v =0, VVEV.
Do Vtru m~t trong H, nen ta co
(w,v)=O, VvEH
Do do W= o V~y T la dO'llanh, nghla la, mQt phep nhung tir H vao V'.
H9C vien Nguyln Vi1Dzi1ng
Trang 5KhilO sat phlfang trinh parabolic phi tuyin
trang miJn hinh cdu
trang 9
IITwllv'= sup I(Tw,v)1= sup I(w,v)1
VEV, JIvIlv =\ VEv,llvllv=\
~ sup 11~111vII
VEV,llvIIv=\
~ sup 11~lllvIIv=II~I.
VEv,l/vllv=\
Chung minh (Hi) Ta chung minh r~ng m6i phiSm ham tuySn tinh lien t\lC
tren V' va tri~t tieu tren T(H)thi cling tri~t tieu tren V' Coi L E (V')' , vai
(L,Twlv;v'= 0, VTwE T(H). Ta chUng minh r~ng L =O Th?t V?y, do V phim x~, tuc 18.(V')'= V, theo nghla
(*) VL E (V')', 31 E V: (L,z)v-,v' = (z,/)v',v' Vz E V'.
L~y z = TwE V', ta co
0 = (L,Tw)v",v'= (Tw,l)v',v = (w,/)v',v' VWEV.
Do V tru m~t trong H, nen ta co
(w,/) = 0, VWEH.
V~y 1 = O Theo (*) ta co
(L,z) v,v " ,=(z,/) v, ' v =0, VZEV'.
V~yL tri~t tieu tren V'.
Chu thich 1.1 Tir b6 dS (2.3) ta dung ky hi~u tich vo huang (-,.) trong H d@chi c~p tich d6i ng~u giua V va V'.
B8 d~ 2.4 Phep nhung V C;H fa compact.
Chung minh cua b6 dS 2.4 co th@tim th~y trong [7]
Chu thich 1.2 Tir b6 dS 2.2 suy ra r~ng (v2(1)+I/v'I12t2 vaIlvllv 1a hai chuAn
tuang duang tren V va ta co
(2.9) Hllvllv~ ijlvf +llv(l)llz tz ~F5llvllv'Vv E V.
Th~t v~y, b~t d~ng thuc thu nh~t cua (2.9) co duQ'c 1ado:
H9C vien Nguyln Vii Dziing
Trang 6Khao sat phuang trinh parabolic phi tuyin
trong miJn hinh c6u
trang 10
~~~Ivf + Ilv(1)112)
2 Bat d~ng thuc con l<;licua (2.9) duQ'c suy ra tir:
Ilvf +llvl12~llvf +41Iv"~~51Ivll~.
Ta cling chli yr~ng
(2.10) limrv(r)=O, VveV.
r-+O+
(xem [1] b6 dS 5.40, p.128)
M~t khac, do HI (c,l) C CO([c,l]), 0 < c < 1 va
(2.11) cllvIIHI(e,l)~ IlvIIv'Vv e V, 0 < c < 1
Ta suy ra r~ng
(2.12) VI[e,l]eCO([c,l]), Ve, O<c<1.
Tir (2.10), (2.12) ta suy ra r~ng
(2.13) rveCO([O,l]), VveV.
Cho x la kh6ng gian Banach thgc d6i v6i chuftn IHlx'Ta ky hi~u LP(O,T;X),
1 ~ P ~ 00, la kh6ng gian cac lap tuang duang chua ham u: (O,T)~ X do
duQ'c, sao cho
T
fllu(t)II:dt < 00, 1 ~ P < 00,
°
hay
:3M > 0: Ilu(t)llx~ M, a.e., t e (O,T), v6i P=00.
Ta trang bi LP (O,T;X), 1 ~ P ~ 00,b6i chuftnnhu sau
(
T
)
IIP
IlullLP (O,T;X) = fllu(t)II: dt , v6i 1 ~ P < 00,
H9C vien Nguyln Vii Dzfmg
Trang 7IluIILOO(O,T;X)=ess supllu(t)llxO<t<T
==inf{M > a: Ilu(t)llx5,M, a.e., t E (a,T)}, v6i p =00.
BB d~ 2.5 (Lions [3]) Y(a,T;X), 15,p 5,00 fa kh6ng gian Banach.
BB d~ 2.6 (Lions [3]) GQi X' fa d6i ngdu ciLa X Khi do y' (a,T;x'), vai
1 1
f ' ~~ ~ , P
-+ -;- = 1, 1< p < 00, a uOl ngau cua L a,T;X} non nlfa, neu X p an X(l
thi Y (a,T;X) cf1ngphiln x(l.
,
BB d~ 2.7 (Lions [3]) (L1(a,T;X)) = D>(a,T;X').
Hon nfra, cae kh6ng gian L1(a,T;x),L"'(a,T;X') kh6ng phan X(l.
Chti thieh 2.3 NSuX = LP(Q) thi y(a,T;X)= LP(Qx (a,T)}
11.3 PHAN BO CO GIA TRJ VECTO
Binh nghia 2.1 Cho X hi mQt khong gian Banach th\lc MQt anh X<;ltuySn
tinh lien t\lC tll D((a,T)) v~LOX gQi la mQt (ham sur rQng) phan b6 co gia trj trong X T~p cac phan b6 co gia trj trong X ky hi~u la
D'(a,T;X)= L(D(a,T);X)={f: D(a,T)~ X / f tuySn tinh, lien t\lc}.
Chti thieh 2.4 Ta ky hi~u D(a,T) thay cho D((a,T)) ho~c c;((a,T)) dS chi khong gian cac ham s6 th\lc khii vi vo h<;lnco gia compact trong (a,T). Binh nghia 2.2 Cho f E D'(a,T;X} Ta djnh nghla d<;loham ~ theo nghla phan b6 cua f b6i cong th(rc
(2.14) (~,rp)=-(f,:~), 'VrpED(a,T).
Cae tinh eh~t.
(i) Cho v E Y (a,T;X) Ta lam tuang (rng v6i no b6i anh x<;l Tv :D(a, T) ~ X
F~'~N
001206
nhu sail:
Trang 8Khao sat phlfO'ng trinh parabolic phi tuyin
trong miJn hinh cdu
trang 12
T
(2.15) (Tv,rp) = fv(t)rp(t)dt, VrpED(a,T).
0
Ta co thS nghi~m l~i r~ng TvE D'(a,T;X} Th~t v~y:
0) Anh x~ Tv: D(a,T) ~ X la tuySn tinh.
OJ) Ta nghi~m l~i anh x~ Tv : D(a,T) ~ X la lien t\lc.
Gia sir {rpJc D(a,T), sao cho rpj~ a trong D(a,T) Ta co:
(2.16)
I/(Tv,rpj)1Ix =IlfV(t)rp/t)dt x ~ ~lv(t)rpj(t)lIxdt
,; (plv(t)II~dtr(~Iq>j (t )II~dtr' > 0, J > +00,
Do do(Tv,rpj)~ a trong X khi j ~ +00.V~y TvED'(a,T;X}
(ii) Anh x~ v ~ Tv la mQt don anh tuySn tiOOtir LP(a,T;X) vao D'(a,T;X}
Do do, ta co thS d6ng nhftt T"= v Khi do ta co kSt qua sau:
D~o ham trong LP(a,T;X)
Do b6 dS 2.8, ph~n tir IE LP(a,T;X) ta co thS coi I va do do dl la ph~n tir
dt
cua D'(a,T;x} Ta co cac kSt qua sau.
BA d~ 2.9 (Lions [3]) Niu IE L1(a,T;X) va I' E L1(a,T;X), thi I bling hdu
hit vai m(Jt ham lien t1:lC tic [a,T]~ X.
Chung minh bA d~ 2.9: Chung miOOb~ng OOiSubu6c:
t
0
T ' hJ
bJ
Th"t " ruac et, ta c ung mIll rang dt = dt = I t eo ng Ia p an o. ~ v~y,
VrpE D(a,T), ta co:
H9C vien Nguyln Vii Dziing
Trang 9Khao sat phuong trinh parabolic phi tuyin
trong miJn hinh cdu
trang 13
(2.17)
=
K
t
J
0 0 dt 0 s dt
T
= fl'(s)rp(s)ds = (I',rp).
0
V?y
:~ = ~ = I' trong D'(O,T;X).
Th?t V?y,gia su v= H - f Ta co v' = 0 theo nghia phan b6 (do bu6c 1) Ta
se chung minh r~ng v= C theo nghia phan b6 Th?t V?y v' = 0 tuang duang v6i
T
(2.18) fv(s)rp'(s)ds=O, VrpED(O,T).
0
Coi rpE D(O,T), ta co thS viSt rp du6i d~mg rp=Arpo+ <1>', trong do
<I>E D(O,T), CPo thoa frpo(s)ds = 1vaA = frp(t)dt.
T
Th?t V?y, vi f(rp(t) - Arpo(t))dt= 0 lien nguyen ham cua rp(t) - Arpo(t) tri~t tieu
0
t
t~i t=0 sethuQc D(O,T) ChQn <I>(t) = f(rp(s) - Arpo(S))ds trong (2.18), thay rp'
0
b6i <1>',ta thu duQ'c:
T
fv(s)<I>'(s)ds = 0, v rpE D(O,T),
0
hay
T
fv(s )[rp(s) - Arpo(s)}is = 0, V rp E D(O, T),
0
H9C vien Nguyln Vu Dzung
Trang 10KhiLOsat phuang trinh parabolic phi tuyin
trong mi~n hinh cdu
trang 14
hay
(2.19) fv(s)lp(s)ds = A fv(s)lpo(s)ds = flp(t)dt fv(t)lpo(t)dt, Vlp E D(O,T).
T
D~t C = fv(t)lpo(t)dt, ta suy tu (2.19) dng
0
T
f(v(s) - C}P(s)ds = 0, VlpE D(O,T).
0
V~y
v(t) =C trong D'(O,T;X).
T
Bmyc 3: Ta sir d\lng tinh ch~t sau: NSu WE Ll(O,T;X) va fw(t)lp(t)dt= 0,
0
Vlp E D(O,T), thi wet)==0 v6i h~u hSt tE (O,T).DiSunay co dugc 1ado anh
X(;lw H Tw tu Ll(O,T;X) vao D'(O,T;X) 1a dan anh (tinh ch~t (ii) 6 tren).
Tu cac bu6c 1, 2 ,3 6 tren ta suy ra r~ng I =H + C theo nghia phan b6.
Tuong tv ta co b6 dS sau:
B6 d~ 2.10 (Lions [3]) Niu IE LP(O,T;X) va I' E LP(O,T;X) thi I bang
hdu hit vai m(Jt ham lien t1;lCtit [0,T] ~ x.
11.4.BO DE VE TINH COMPACT CUA LIONS [3].
Cho ba khong gian Banach Xo, Xl, X v6i Xo C X C Xl sao cho: (2.20) Xo, Xl 1a phan X(;l,
(2.21) Phep nhung X0C X 1a compact.
V 6i 0 < T < 00, 1 ~ Pi ~ 00, i = 0, 1 ta d~t
(2.22) W(O,T)= {vELPO(O,T;Xo):V'ELPI(O,T;Xt)}
Ta trang bi W(O,T) b6i chu€tn
(2.23) Ilvllw(O,T)=Ilvlleo(O,T;Xo) +llvtPl(O,T;xd'
Khi do W(O,T) 1am9t khong gian Banach HiSn nhien W(O,T)c LPo(0,T;X).
H9C vien Nguyln Vil Dzilng
Trang 11Khao sat phuong trinh parabolic phi tuyin
trong miJn hinh cdu
trang 15
Ta cling co kSt qua sau day lien quail dSn phep nhung compact
B8 d~ 2.11 (BE>dS vS tinh compact cua Lions [3])
Vbi giG thiit (2.20), (2.21) va niu 1<Pi <00, i = 0, 1, thi phep nhung
W(O,T)4LPo(O,T;X) la compact.
Chung minh bE>dS 2.11 co thS tim th~y trong Lions [3], trang 57
11.5.BO DE VE SV'HQI TV YEU TRONG Lq (Q).
BE>dS sau day lien quail dSn S\fhQi t\1ySu trong Lq (Q).
B8 d~ 2.12 (Xem Lions [3], trang 12)
Cho Q la tqp ma hi chqn cila IRN va Gm, G E Lq(Q), 1 < q < 00, saD cho
IIGmtq(Q)~ C, trong ao C la hlmg s6 aQc lqp vbi m,
va
Gm~ G a.e (r,t) trong Q.
Khi ao
Gm~ G trong Lq(Q)yiu.
11.6.BO DE GRONWALL.
BE>dS cu6i cling trong ph~n mlY lien quail dSn mQt b~t phuong trinh tich phan va no r~t c~n thiSt cho vi~c danh gia tien nghi~m trong cac chuang sau.
B8 d~ 2.13 (BE>dS Gronwall)
GiGsir I: [0,T]~ IR la ham khGrich, kh6ng am tren [0,T] va thoa bat &!ing
thUG
t
Jet) ~ c1 + Cz fl(s)dS, vbi hllU hit t E [o,Tl
0
trong ao c1' Cz la cac hlmg s6 kh6ng am Khi ao
J(t) ~ C1eC2t, vbi hdu hit t E [O,TJ
H9C vien Nguyin Vii Dzilng
Trang 12KhilO sat phuong trinh parabolic phi tuyin
trang miJn hinh cdu
trang 16
Ta cling dung cac ky hi~u u(t), u'(t) = uJt), ur(t) = Vu(t), urr(t)dSchi
u(r,t), -(r,t),ot -(r,or t), ~(r,t),or Ian IuQ't
H9C vien Nguyln Vii Dziing