trình bày về các kết quả chuẩn bị các không gian hàm
Trang 1CHUaNG 2
CAC KET QUA CHUAN BJ CAC KHONG GIAN HAM
11.1 CAC KHONG GIAN HAM
D~t 0 = (0,1), ta bo qua dinh nghia cac khong gian ham thong
dl;lng: em (0), LP(0), Hm (0), Wm,p(0).
Vai m6i ham v E eo (0) ta dinh nghia II vII nhusau
(1
)
1/ 2
(2.1) Ilvll=llvllH=lfrv2(r)dr .
Ta dinh nghiaH la d~y du h6a cua khong gian eo (0) d6i vai
chua'n 11.11.
Tuong tlf, vai m6i ham v E el (0) ta dinh nghia 11.11 v nhusau
(2.2)
IIvIlv=(llvI12+II/IIT'
va dinh nghia V la d~y du h6a cua khong gian el (0) d6i vai chua'n 11.11 v
Chli Y r~ng cac chua'n 11.11 va 11.11 v l~n luQt duQc sinh ra tu cac
tich vo huang
(2.3)
1
(u,v) = fru(r)v(r)dr,
0
1
(2.4) (u,v)+(ul,v/)= fr[u(r)v(r)+ul(r)/(r)] dr.
Khi d6, ta d~ dang chung minh dng H, V la cac khong gian
Hilbert
Trang 2B6 d~ 2.1 V tru m~t trang H vdi phep nhung lien tf:lc.
Chung minh Hitin nhien ding II v II ~ II v IIv ' 'v'vE V, do do phep
nhung tu V v~lOH la lien t1;1C.M~t khac C](0) c V va tru m~t
trong H, do do V tru m~t trong H.
B6 d~ sail cho mQt s6 danh gia thuong sa d1;1ng.
B6 d~ 2.2 Vdi mQi v E Cl (0), &> 0 va r E [0,1], ta co:
(2.5)
(2.6)
(2.7)
(2.8)
IIvll2 ~11/112 +v2(l),
Iv(l) I~vGllvIIv'
Frlv(r)I~21Ivllv'
v2(l)~&llv/r +(2+ :)llvI12.
Chung minh.
0 ~ r2 < r ~ 1, ta co
IIvl12= frv2(r)dr=~v2(l)- fr2v(r)/(r)dr
]
~ ~v2(l) + Sri v(r)v/ (r) I dr
~~v2(l)+llvllll/112 .
<;~ v2(1) + ~(1IvI12+llvf}
Suy ra IIvl12~v2(l)+llv/r.
Do do (2.5) dU<;1c chung minh.
Nghi~m l(li (2.6).
]
Ta co v2(1)=f(r2v2 (r))/ dr
0
Trang 31 1
= 2 frv2(r)dr + 2 fr2v(r)v/ (r)dr
~21IvIl2+2I1vllll/11
~211v112+lIv112+II/f
~3(lIvIl2+11/f)=3I1vll~
V~y I v(1) I~ J311 v IIv va (2.6) ducjc chung minh.
Nghi~m l(;li (2.7).
Ta co
2 fs v(s)/ (s )ds = fs d(v2(s))
1
=v2(1) - rv2(r) - fv2(s)ds ~ v2(1) - rv2(r).
r
Suy fa
1
rv2(r) ~ v2(1) - 2 fsv(s)/ (s)ds
r
1
~ v2(1) + 2 Sri v(r)/ (r) I dr
0
~ v2 (1) + 211villi/II
~v2(1)+llvI12 +11/112
~31Ivll~ +llvll~ =4I1vll~.
V~y ~lv(r)I~21Ivllv'
Do do (2.7) ducjc chung minh.
Nghi~m l(;li (2.8).
Theo chung minh (2.6) ta co
V2(1):0; 211v112+211v1111/ II=211 v 112+ 2 J-)IvII.J&.1I/11
~(2+ ~)lIvIl2+c:II/f
Trang 4Do do (2.8) du'<Jcchung minh.
B6 d~ 2.3
Ta dang nhtit H wJi HI (d6'i ngau cila H) Khi do ta co
V C H ==HI C vi, vdi cac phep nhung lien tl;lcva ndm tru mcJt.
Chung minh Tru'dc he't ta chung minh r~ng H nhung trong Vi
VI VcH,vdimQi wEH, anhxC;l Tw:V~R
1
xacdinhbdi vHTw(v)=(w,v)= frw(r)v(r)dr
latuySn tlnh lien t\lC tren V, tuc la Tw E vi.
Ta xet anh Xc;lT: H ~ Vi
wHT(w)=Tw'
Khi do ta co
(Tw,V)VI,v = (w, v), \iv E V, \iw E H.
Ta se chung minh r~ng toan tii'T thoa cac tinh cha't sail
(i) T : H ~ Vi la d(/fl anh,
(ii) IITwllvl~llwll, \iwEH,
(iii) T(H) = {Tw: w EH} la tru mcJttrang Vi.
Chung minh (i) D~ tha'yr~ng T tuySn tinh NSu Tw=0 thl
(W,V)=(TW,V)VIV=O,, \iVEV.
VI V tru ffi~ttrong H, nen ta co
(w,v)=O, \ivEH.
Do do w = O V~y T la don anh, nghla la, ffiQtphep nhung tu H
vao vi
Chung minh (ii) Ta co vdi inQi v EH,
Trang 5IITwllvl = sup I(Tw,v)l= sup I(w,v) I
VEV,llvllv=l VEV,llvllv=l
::; sup IIWIIIIVII::; sup IIWllllVllv =IIWII.
VEV,IIv Ilv=l VEV,IIv Ilv=l
Chung minh (iii) Ta chung rninh ding rnQi phiS-rn ham tuye'n
tinh lien wc tren vi va trit$t lieu tren T(H) thl ding trit$t lieu
A
V I
tren
Coi L E (Vi ivai (L,Tw)VII Vi = 0,, \:fTwE T(H) Ta chung rninh
rang L =0, th~t v~y, do V phein X'.l,tuc la (VI)1 = V theo nghla
(*) \:fL E (Vi i, 31 E V: (L,Z)VII ,vi = (z,/)vl v' \:fz E Vi.,
Lffy z=Tw EVI ta co O=(L,Tw)VII,v1 =(w,/), \:fWEV.
Do V tru rn~t trong H lien ta co (w,/) = 0, \:fw E H.
V~y 1= O Theo (*) ta co
(L,Z)VII,v1 = (Z,l)VI,V =0, \:fzEVI.
V~y L trit$tlieu tren vi.
Chu thich 2.1 Tli b6 d~ 2.2, ta cling dung ky hit$u tich vo huang
(.,.) de chi c~p tich d6i ng~u giii'a V, Vi.
B6 d~ 2.4 Phep nhung V C. H ill compact.
Chung minh xern [5].
(
2
)
1/ 2
Chu thich 2.2 Tli b6 d~ 2.2 suy ra r~ng v2(1)+II/ II va
(2.9)
~llvll~ ::;11/112+v2(1)::;41Ivll~, \:fvEV
Trang 6Th~y v~y, bfft d~ng thuc thu nhfft cua (2.9) co duQcla do
Ilvll~=11/112 +llvl12 ~II/f +II/f +V2(1)
~ 2(11 vf +vZ (1) ).
Bfft d~ng thuc con l~i cua (2.9) duQc suy ra tli
II/f +v2(1)~II/f +31Ivll~~41Ivll~
Ta chu yrang
(2.10) lirn Fr vCr) = 0, Vv E V.
r~O+
(xern [1] trang 128 )
Mi;it khac, do HI (&,1) C CO([&,1]), 0 < &< 1 va
(2.11) F&llvIIHI(8,1)~llvllv' VVEV.
Ta suy ra rang
(2.12) vi [8,1]E CO([&,1]), V &, 0 < &< 1.
Tli (2.10), (2.12) suy ra
(2.13) FrvECO([O,I]), VVEV.
11.2 KHONG GIAN HAM LP(O,T;X), 1~ p ~ 00
Cho X la khong gian Banach th\fc d6i vdi chuffn11.llx
Ta ky hi~u LP(O,T;X), 1~ p ~ 00, la khong gian cac lOp tudng
T
dudng chua ham u : (O,T) »X do duQc, sao cho ~Iu(t) II~ dt <00
o
vdi 1~ p <00
hay ~M>O:llu(t)llx ~M, a.e tE(O,T) vdi p=oo.
Ta dinh nghla chuffn trong LP(O,T;X), 1~ P ~ 00 nhusau:
Trang 7T
J
1I P
IluIILP(O,r;X) ~ }IU(t)II;dt vdi bp<oo,
vaIIuII L'XJ (O ToX } = ess supIIu(t) Ilx
, , O<I<T
=inf{M>O:llu(t)llx ~M,a.e tE(O,T)} voi p=oo.
Khi do ta co cac b6 d~ sau day ma chung minh cua chung co th€
Hm thffy trong J.L.Lions [2].
B6 d~ 2.5 LP(O,T;X) III kh6ng gian Banach.
~+~= 1, 1< P < 00, (LP(O,T;X))I = L/ (O,T;XI) III d6i ngt1u
cila LP (O,T;X).
Ran nila, ne'u X phdn xg, tht LP(O,T;X) Gangphdn xg,.
I
B6 d~ 2.7 (L] (O,T;X)) = rfJ (O,T;XI).
Ran nila, cac kh6ng gian L\O,T;X), Loo(O,T;XI) kh6ng phdn xg,.
Chu thich 2.3 N€u X = LP (0) thl LP(O,T;X) = LP (0 x (O,T)).
Phan b6 co gia tri vectd.
Dinh nghia 2.1 Cho X la mQt khong gian Banach thlfc MQt anh
X(;ltuye'n tinh lien t\lC tit D«O,T)) vao X du<jcgQi la mQt phan b6
co gia tri trong X T~p cac phan b6 co gia tri trong X ky hi~u la
DI (O,T;X) = L(D(O,T);X) = {f: D(O,T) ~ X /f tuye'n tinh va
lien t\lC}.
Chu thich 2.4 Ta ky hi~u D(O,T) thay cho D((O,T)) ho~c
C:«O,T)) d€ chi khong gian cac ham s6thlfC kha vi vo h(;lnco
gia compact trong (O,T).
Trang 8Djnh nghia 2.2 Cho f E D/ (O,T;X) Ta dinh nghla d(;loham
df theo nghla phan b6 cua f bdi c6ng thlic
dt
(2.14)
\ ~,rp) =- \1,~), Vrp eD(O,T).
Cae tinh eha't.
1/ Cho v E LP(O,T;X) Ta lam tu'ong ling vdi no bdi anh X(;l
~ :D(O,T) ~ X nhu'sau:
(2.15)
T
(~,cp)= fv(t)cp(t)dt, VcpED(O,T).
0
Ta co th~ nghi<$ml(;lir~ng ~ E D/ (O,T;X) Th~t v~y
i) Anh X(;l~ : D(O,T) ~ X hi~n nhien la tuy~n tinh
ii) Ta nghi<$ml(;lianh X(;l~ : D(O,T) ~ X lien We
Gia sa {cpj} c D(O,T) saG cho lim CPj= 0 trong D(O,T)ta co J-++OO
(
T
)
p
(
)
/
~ }I vet) II ~ dt ~9'j(t) IP dt
Do do limII(Tv,cpj)II =o V~y~ E D/ (O,T;X).
j.-++oo ~ O.
2/ Anh X(;lv H Tv la mOt don anh, tuy~n tinh tu LP(O,T;X) VaG
D/ (O,T;X), do do ta co th~ d6ng nha't Tv= v
Khi do ta co k~t qua san t!:)f.LI<H.TlfN~HEN
Bo de 2.8 (J.L.Lions [2])
000.333
Trang 9LP (O,T;X) C DI (O,T;X) V(Jiphep nhung lien t1:lc.
D~o ham trong LP(O,T;X).
Do b6 d~ 2.8, vdi f E LP(O,T;X) ta co th~ coi f va do do df la
dt cac phffn til'cua DI (O,T;X) Ta co cac ke't qua sau.
B6 d~ 2.9 (J.L.Lions)
Neu f,fl EL1(O,T;X) thi f bang hdu het vdi mi}t ham lien t1:lCtu [O,T] vao X.
Chung minh b6 d~ 2.9 g6m nhi~u badc.
I
Bude 1 D~t H(t) = IfI(s)ds Khi do H :[O,T]~ X lien t\lc VI
0
fl ELI (O,T;X).
T /
f l h h- h"
radc et ta cling Illin rang - =- = t eo ng la p an
bO'.Th~t v~y, ta co
T
-,qJ = - H,- = - IH(t)-(t)dt
1
1
)
=- IfI(s)ds ~(t)dt =- IfI(s)ds I~(t)dt
(2.17)
T
= IfI (S)qJ(S) ds = (fl,qJ).
0
V~y dH = df = fl trong DI (O,T;X).
dt dt
Bude 2 Ta chung minh f =H + C thee nghla phan bO'
(C la hang )
Th~t v~y, gia sil' v=H - f ta co / =0 thee nghla phan be) (do
badc 1 ) Ta se chung minh rang v = C thee nghla phan bO'.
Ta co vi = 0 tadng dadng vdi
Trang 10T
JV(S)q:/ (s)ds = 0, '\IepE D(O,T)
0
Cho epE D(O,T), ta co thS vi€t ep duoi d~ng ep=Aepo + Ij//, trong
do Ij/ E D(O,T), CPothoa Jepo(s)ds = 1, A = Jep(t)dt.
T
Th~t v~y, ta co J(ep(t)-Aepo(t))dt=O, nen nguyen ham cua
0
ep(t) - Arpo (t) tri<%ttieu t~i t= 0 se thuQcD(O,T)
t
ChQn Ij/(t)= J(ep(s)-Aepo(s))ds.
0
Trong (2.18) thay ep/ bdi Ij// ta thu dU<;1c
Jv(s) Ij// (s) ds = Jv(s)[ ep(s) - Aepo(s)] ds = 0,
hay
'\IepE D(O,T)
(2.19)
= Jep(s)ds Jv(t)epo(t)dt ,
'\IepE D(O,T).
D~t C=Jv(t)epo(t)dt ta suy ra tu (2.19) ding
0
T
J(v(s) - C) ep(s)ds= 0, '\IepE D(O,T).
0
V~y vet) = C = canst trong D/ (O,T;X).
Btioc 3.Ta sa dl;lngtinh cha't sail:
T Ne'u wELl (O,T;X) va JW(t)ep(t)dt = 0, '\IepE D(O,T) thi
0
DiSu nay co dU<;1cla do anh x~ W~ Tw tu LI(O,T;X) vao D/ (O,T;X) la don anh (tinh cha't 2/ d tren ) Ta suy ra ding
=
Trang 11Tn cac bu'oc 1, 2, 3 d tren b6 d€ 2.9 dff du'Qc chung minh.
Tu'dng tlj ta co b6 d€ sau:
B6 d~ 2.10 Ne'u f,f/ E LP(O,T;X) thi f biing hdu he't wJi mQt
ham lien tl;lcta [O,T] vao X.
A? ;;; ;;; , ?
11.3 BO DE VE TINH COMPACT CUA J.L.LIONS
Cho 3 khong gian Banach X 0' Xl, X voi X a eX C Xl sao cho
(2.20)
(2.21)
Xo,XI la phan X£;l,
Phep nhung Xa~ X la compact
Voi 0 < T < +00, 1:::;; Pi :::;; +00, i = 0,1 Ta d~t
(2.22) W(O,T) = {v E LPo(O,T;Xo): / E LPI (O,T;XI)}
Ta trang bi cho W(O,T) bdi chufin
(2.23)
II vllw(o,T) =IIv IILPo(O,T;Xo) +II / IILPI (O,T;Xl)
Khi do W(O,T) la mQtkhong gian Banach
Hi€n nhien W(O,T) c LPo(O,T;X).
Ta cling co ke't qua sau dtiy lien quail de'n phep nhung compact
86 d~ 2.11 (B6 di vi tinh compact cila J.L.Lions).
Vcri giG thie't (2.20), (2.21) va ne'u 1< Pi < 00, i = 0, 1 thi phep nhung W(O,T) ~ LPo(O,T;X) la compact.
Chung minh C6 th€ Hm tha'y trong J.L Lions [2], trang 57
11.4.BO DE VE SV HQI TV YEU TRONG L q(Q)
B6 d~ 2.12
Cho Q la tcJp md, bi ch(in cila RN va Gm,G E Lq (Q), 1< q < +00, sao cho
Gm C, trong do C la hiing so'dQc lcJpvcri m va
Trang 12Gm ~ G a.e (r,t) trong Q.
Khi do G m ~ G trong L q(Q) ye'u.
~ ~
11.5 BO DE GRONWALL
B6 d~ cu6i cung nay lien quail d€n ffiQt ba"t phuong trlnh tich
phan, no ra"t cfin thi€t cho vi~c danh gia tien nghi~ffi trong cae
chuang sau.
B6 d~ 3.13 (Bd d~ Gronwall ).
Gid siCI: [O,T]~ R la ham khd tich, khong am tren [O,T]va
t
thoa ba't ddng thac I(t):::; C1+ C2 fl(s)ds vdi hdu he't t E [O,T]
0
trong do Cj, C2 la cae hl1ng so' khong am.
Khi do l(t):::; CjeC2t vdi hdu he't t E [O,T].
Ta cling dung cae ky hi~u
u(t), ul (t) = ut(t), ur(t) = Vu(t), urr(t), lfin luQt d~ chI u(r,t),