Các chuyên đề bồi dưỡng học sinh giỏi môn Toán lớp 12

108 522 0
Các chuyên đề bồi dưỡng học sinh giỏi môn Toán lớp 12

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Các chuyên đề bồi dưỡng học sinh giỏi môn Toán lớp 12Các chuyên đề bồi dưỡng học sinh giỏi môn Toán lớp 12Các chuyên đề bồi dưỡng học sinh giỏi môn Toán lớp 12Các chuyên đề bồi dưỡng học sinh giỏi môn Toán lớp 12Các chuyên đề bồi dưỡng học sinh giỏi môn Toán lớp 12Các chuyên đề bồi dưỡng học sinh giỏi môn Toán lớp 12

Phần thứ : Các Chuyên Đề PHNG TRèNH HM Nguyễn Hồng Ngải Tổ trưởng tổ Tốn THPT Chun Thái Bình Một chuyên đề quan trọng việc bồi dưỡng học sinh giỏi dự thi học sinh giỏi tốn quốc gia, khu vực quốc tế, phương trình hàm, bất phương trình hàm Có nhiều tài liệu viết chuyên đề Qua số năm bồi dưỡng học sinh giỏi dự thi học sinh giỏi tốn quốc gia qua số kì tập huấn hè Đại học khoa học tự nhiên – Đại học quốc gia Hà Nội, rút số kinh nghiệm dạy chuyên đề trao đổi với đồng nghiệp Phần I: NHẮC LẠI NHỮNG KHÁI NIÊM CƠ BẢN Nguyên lý Archimede Hệ quả: ∀x ∈ ⇒ ∃!k ∈ : k ≤ x < k + Số k gọi phần nguyên x, kí hiệu [x] Vậy : [ x ] ≤ x < [ x ] + Tính trù mật Tập hợp A ⊂ x 0, ∃a ∈ A : β + ε > a β = infA ⇔ ⎨ Hàm sơ cấp Hàm số sơ cấp hàm lũy thừa, hàm số mũ, hàm số logarit, hàm số lượng giác, hàm số lượng giác ngược Hàm số sơ cấp hàm tạo thành hữu hạn phép toán số học ( +, - , x, : ), phép toán lấy hàm hợp hàm số sơ cấp Hàm cộng tính, nhân tính tập hợp Hàm số f(x) gọi cộng tính tập xác định D với x, y ∈ D x + y ∈ D f(x + y) = f(x) + f(y) Hàm số f(x) gọi nhân tính tập xác định D với x, y ∈ D x y ∈ D f(x y) = f(x) f(y) Nếu với x, y ∈ D mà x+y ∈ D , x – y ∈ D f( x – y) = f(x) – f(y) f(x) gọi hàm cộng tính D Hàm f(x) = ( hàm nhân tính Hàm đơn điệu • Hàm số f(x) gọi tăng (a, b) : Với x1 , x2 ∈ (a, b), x1 ≤ x2 ⇒ f ( x1 ) ≤ f ( x2 ) • Hàm số f(x) gọi giảm (a, b) : Với x1 , x2 ∈ (a, b), x1 ≤ x2 ⇒ f ( x1 ) ≥ f ( x2 ) Phần II CÁC PHƯƠNG PHÁP THƯỜNG DÙNG Phương pháp 1: Hệ số bất định Tạp chí tốn học nhà trường, số – 2004 trang 62 – 66 (bản tiếng Nga) Nguyên tắc chung: Dựa vào điều kiện toán, xác định dạng f(x), thường f(x) = ax + b f(x) = ax2+ bx + c Đồng hệ số để tìm f(x) Chứng minh hệ số khác f(x) không thỏa mãn điều kiện toán Phương pháp dồn biến → cho: Bài 1: Tìm f: ( x − y ) f ( x + y ) − ( x + y ) f ( x − y ) = xy.( x − y ), ∀x, y ∈ Giải: u+v ⎧ x= ⎧u = x + y ⎪ ⎪ Đặt ⇒⎨ ⎨ ⎩v = x − y ⎪y = u − v ⎪ ⎩ WWW.MATHVN.COM Page of 108 www.MATHVN.com ⇒ vf (u ) − uf (v) = (u − v )uv f (u ) f (v) ⇒ −u = − v , ∀u, v ≠ u v Cho v = ta có: f (u ) f (1) − u2 = − , ∀u ≠ u ⇒ f (u ) = u + au, ∀u ≠ (a = f(1) – 1) Cho x = y = ta có 2f(0) = f(0) = Kết luận f ( x) = x3 + ax, ∀x ∈ ⎛ x −1 ⎞ Bài 2: f ( x − 1) − f ⎜ ⎟ = − x, ∀x ≠ ⎝ 1− 2x ⎠ Giải : x −1 y 1− y = y −1 ⇒ x = ⇒ x −1 = Đặt : − 2x y −1 y −1 ⎛ 1− y ⎞ −1 , ∀y ≠ ⇒ f⎜ ⎟ − f ( y − 1) = y −1 ⎝ y −1 ⎠ −1 ⎛ x −1 ⎞ , ∀x ≠ ⇒ f⎜ ⎟ − f ( x − 1) = 2x −1 ⎝ 1− 2x ⎠ ⎧ ⎛ x −1 ⎞ ⎪ f ( x − 1) − f ⎜ − x ⎟ = − x, ∀x ≠ ⎪ ⎝ ⎠ ⇒⎨ ⎪⇒ f ⎛ x − ⎞ − f ( x − 1) = −1 , ∀x ≠ ⎜ ⎟ ⎪ 2x −1 ⎝ 1− 2x ⎠ ⎩ ⇒ −8 f ( x − 1) = − x + 1− 2x 1⎛ ⎞ ⇒ f ( x − 1) = ⎜ −1 + x + ⎟ , ∀x ≠ 8⎝ 2x −1 ⎠ 1⎛ ⎞ ⇒ f ( x) = ⎜1 + x + ⎟ , ∀x ≠ 8⎝ 2x + ⎠ Ví dụ 1: Đa thức f(x) xác định với ∀x ∈ thỏa mãn điều kiện: f ( x) + f (1 − x) = x , ∀x ∈ (1) Tìm f(x) Giải: Ta nhận thấy vế trái biểu thức dấu f bậc : x, – x vế phải bậc hai x2 Vậy f(x) phải có dạng: f(x) = ax2 + bx + c Khi (1) trở thành: 2(ax2 + bx + c) + a(1 – x)2 + b(1 – x) + c = x2 ∀x ∈ đó: 3ax2 + (b – 2a)x + a + b + 3c = x2, ∀x ∈ Đồng hệ số, ta thu được: ⎧ a= ⎪ ⎧3a = ⎪ ⎪ ⎪ ⇔ ⎨b = ⎨b − 2a = ⎪a + b + 3c = ⎪ ⎩ ⎪ ⎪c = − Page of 108 ⎩ WWW.MATHVN.COM www.MATHVN.com f ( x) = ( x + x − 1) Thử lại ta thấy hiển nhiên f(x) thỏa mãn điều kiện toán Cơng việc cịn lại ta phải chứng minh hàm số khác f(x) không thỏa mãn điều kiện tốn Thật giả sử cịn hàm số g(x) khác f(x) thỏa mãn điều kiện tốn Do f(x) khơng trùng với g(x) nên ∃x0 ∈ : g ( x0 ) ≠ f ( x0 ) Do g(x) thỏa mãn điều kiện toán nên: g ( x) + g (1 − x) = x , ∀x ∈ Thay x x0 ta được: g ( x0 ) + g (1 − x0 ) = x0 Vậy Thay x –x0 ta g (1 − x0 ) + g ( x0 ) = (1 − x0 ) Từ hai hệ thức ta được: g ( x0 ) = ( x0 + x0 − 1) = f ( x0 ) Điều mâu thuẫn với g ( x0 ) ≠ f ( x0 ) Vậy phương trình có nghiệm f ( x) = ( x + x − 1) Ví dụ 2: Hàm số y = f(x) xác định , liên tục với ∀x ∈ thỏa mãn điều kiện: f(f(x)) = f(x) + x , ∀x ∈ Hãy tìm hai hàm số (Bài đăng tạp chí KVANT số năm 1986, M 995 – tiếng Nga) Giải Ta viết phương trình cho dạng f(f(x)) – f(x) = x (1) Vế phải phương trình hàm số tuyến tính ta nên giả sử hàm số cần tìm có dạng : f(x) = ax + b Khi (1) trở thành: a( ax + b) + b – (ax + b) = x , ∀x ∈ hay (a2 –a )x + ab = x, ∀x ∈ đồng hệ số ta được: ⎧ ⎧ ⎧a − a = ⎪a = + ⎪a = − ⇔⎨ ⎨ ∨⎨ ⎩ab = ⎪b = ⎪b = ⎩ ⎩ Ta tìm hai hàm số cần tìm là: 1± f ( x) = x Hiển nhiên thỏa mãn điều kiện tốn Ví dụ 3: Hàm số f : → thỏa mãn đồng thời điều kiện sau: a ) f ( f (n)) = n, ∀n ∈ (1) b) f ( f (n + 2) + 2) = n, ∀n ∈ (2) c) f (0) = (3) Tìm giá trị f(1995), f(-2007) (olympic Ucraina 1995) Giải: Cũng nhận xét lý luận ví dụ trước, ta đưa đến f(n) phải có dạng: f(n) = an +b Khi điều kiện (1) trở thành: a n + ab + b = n, ∀n ∈ Đồng hệ số, ta được: ⎧a = ⎧a = ⎧a = −1 ⇔⎨ ∨⎨ ⎨ ⎩b = ⎩b = ⎩ab + b = WWW.MATHVN.COM Page of 108 www.MATHVN.com ⎧a = Với ⎨ ta f(n) = n ⎩b = Trường hợp loại khơng thỏa mãn (2) ⎧a = −1 Với ⎨ ta f(n) = -n + b ⎩b = Từ điều kiện (3) cho n = ta b = Vậy f(n) = -n + Hiển nhiên hàm số thỏa mãn điều kiện toán Ta phải chứng minh f(n) = -n +1 hàm thỏa mãn điều kiện toán Thật giả sử tồn hàm g(n) khác f(n) thỏa mãn điều kiện toán Từ (3) suy f(0) = g(0) = Từ (3) suy f(1) = g(1) = Sử dụng điều kiện (1) (2) ta nhận được: g(g(n)) = g(g(n+2)+2) ∀n ∈ g(g(g(n))) = g(g(g(n+2)+2)) ∀n ∈ Hay g(n) = g(n+2)+2 ∀n ∈ Giả sử n0 số tự nhiên bé làm cho f (n0 ) ≠ g (n0 ) Do f(n) thỏa mãn (4) nên ta có: g (n0 − 2) = g (n0 ) + = f (n0 ) + = f (n0 − 2) ⇔ g (n0 − 2) = f (n0 − 2) Mâu thuẫn với điều kiện n0 số tự nhiên bé thỏa mãn (5) Vậy f(n) = g(n) , ∀n ∈ Chứng minh tương tự ta f(n) = g(n) với n nguyên âm Vậy f(n) = – n nghiệm Từ tính f(1995), f(-2007) Các tập tương tự: Bài 1: Tìm tất hàm số f : → thỏa mãn điều kiện: f ( x + y ) + f ( x − y ) − f ( x) f (1 + y ) = xy (3 y − x ), ∀x, y ∈ Đáp số f(x) = x3 Bài 2: Hàm số f : → thỏa mãn điều kiện f(f(n)) + f(n) = 2n + 3, ∀n ∈ Tìm f(2005) Đáp số : 2006 Bài 3: Tìm tất hàm f : → cho: f ( f (n)) + ( f (n)) = n + 3n + 3, ∀n ∈ Đáp số : f(n) = n + Bài 4: Tìm hàm f : → : ⎛ x −1 ⎞ ⎛ 1− x ⎞ ⎧ ⎫ 3f ⎜ , ∀x ∉ ⎨0, − ,1, ⎬ ⎟−5 f ⎜ ⎟= ⎝ 3x + ⎠ ⎝ x − ⎠ x −1 ⎩ ⎭ 28 x + Đáp số : f ( x) = 5x Bài 5: Tìm tất đa thức P(x) ∈ [ x ] cho: P(x + y) = P(x) + P(y) + 3xy(x + y), ∀x, y ∈ Đáp số : P(x) = x3 + cx Phương pháp xét giá trị Bài 1: Tìm f : → thỏa mãn: 1 f ( xy ) + f ( yz ) − f ( x ) f ( yz ) ≥ , ∀x, y, z ∈ 2 WWW.MATHVN.COM Page of 108 www.MATHVN.com Giải: Cho x= y = z = 0: 1 f (0) + f (0) − f (0) ≥ 2 ⇔ ( f (0) − ) ≤ ⇔ f (0) = Cho y = z = 0: 1 1 + − f ( x) ≥ , ∀x ∈ 4 ⇔ f ( x) ≤ , ∀x ∈ Cho x= y = z = 1 1 f (0) + f (1) − f (1) ≥ 2 ⇔ ( f (1) − ) ≤ ⇔ f (1) = Cho y = z = 1 1 f ( x) + f ( x) − f ( x ) ≥ 2 ⇔ f ( x) ≥ , ∀x ∈ (1) (2) Từ ( 1) (2) ta có f(x) = Bài 2: Tìm f : (0,1) → thỏa mãn: f(xyz) = xf(x) + yf(y) +zf(z) ∀x, y , z ∈ (0,1) Giải : Chọn x = y = z: f(x3) = 3xf(x) Thay x, y, z x2 f(x6) = x2 f(x2) Mặt khác f(x6) = f(x x2 x3) = xf(x) + x2 f(x2) + x3 f(x3) 2 Hay x f(x ) = xf(x) + x2 f(x2) + 3x4 f(x) x2 f(x2) = xf(x) + 3x4 f(x) 3x3 + ⇒ f ( x2 ) = f ( x), ∀x ∈ Thay x x3 ta : 3x9 + ⇒ f (x ) = f ( x ), ∀x ∈ 3x9 + ⇒ 3x2 f ( x2 ) = xf ( x), ∀x ∈ 3x3 + 3x9 + ⇒ 3x2 f ( x) = xf ( x), ∀x ∈ 2 ⇒ f ( x) = 0, ∀x ≠ Vậy f(x) = với x Phương pháp 2: Sử dụng tính chất nghiệm đa thức (Bài giảng Tiến sỹ Nguyễn Vũ Lương – ĐHKHTN – ĐHQG Hà Nội) Ví dụ 1: Tìm P(x) với hệ số thực, thỏa mãn đẳng thức: ( x3 + 3x + x + 2) P( x − 1) = ( x3 − 3x + 3x − 2) P( x), ∀x (1) WWW.MATHVN.COM Page of 108 www.MATHVN.com Giải: (1) ⇔ ( x + 2)( x + x + 1) P( x − 1) = ( x − 2)( x − x + 1) P( x), ∀x Chọn : x = −2 ⇒ P ( −2) = x = −1 ⇒ P (−1) = x = ⇒ P (0) = x = ⇒ P (1) = Vậy P(x) = x(x – 1)(x + 1)(x + 2)G(x) Thay P(x) vào (1) ta được: ( x + 2)( x + x + 1)( x − 1)( x − 2) x ( x + 1)G ( x − 1) = ( x − 2)( x − x + 1) x( x − 1)( x + 1)( x + 2)G ( x), ∀x 2 ⇒ ( x + x + 1) G ( x − 1) = ( x − x + 1)G ( x), ∀x G ( x − 1) G ( x) = , ∀x x − x +1 x + x +1 G ( x − 1) G ( x) ⇔ = , ∀x ( x − 1) + ( x − 1) + x + x + ⇔ G ( x) (x ≠ 0, ± 1, -2) x + x +1 ⇒ R ( x ) = R ( x − 1) (x ≠ 0, ± 1, -2) Đặt R( x) = ⇒ R( x) = C Vậy P( x) = C ( x + x + 1) x( x − 1)( x + 1)( x + 2) Thử lại thấy P(x) thỏa mãn điều kiện toán Chú ý : Nếu ta xét P(x) = (x3 + 1)(x – 1) Thì P(x + 1) = (x3 + 3x2 + 3x + 2)x Do (x3 + 3x2 + 3x + 2)xP(x) = (x2 – 1)(x2 – x + 1)P(x + 1) Từ ta có tốn sau Ví dụ 2: Tìm đa thức P(x) với hệ số thực, thỏa mãn đẳng thức: (x3 + 3x2 + 3x + 2)xP(x) = (x2 – 1)(x2 – x + 1)P(x + 1) với x Giải ví dụ hồn tồn khơng có khác so với ví dụ Tương tự ta xét: P(x) = (x2 + 1)(x2 – 3x + 2) Ta có tốn sau: Ví dụ 3: Tìm đa thức P(x) với hệ số thực thỏa mãn đẳng thức: (4 x + x + 2)(4 x − x) P( x) = ( x + 1)( x − 3x + 2) P (2 x + 1), ∀x ∈ Các bạn theo phương pháp mà tự sáng tác đề toán cho riêng Phương pháp 3: Sử dụng phương pháp sai phân để giải phương trình hàm Trước hết ta nhắc lại khái niệm dãy số Dãy số hàm đối số tự nhiên: x: → n x(n) Vì n ∈ {0,1, 2,3, } ⇒ ( xn ) = { xo , x1 , x2 , } Định nghĩa sai phân Xét hàm x(n) = xn Sai phân cấp hàm xn Sai phân câp hàm xn WWW.MATHVN.COM xn = xn +1 − xn Page of 108 xn = xn +1 − xn = xn + − xn +1 + xn www.MATHVN.com Sai phân câp k hàm xn k k xn = ∑ (−1)i Cki xn + k −i i =0 Các tính chất sai phân Sai phân cấp biểu thị qua giá trị hàm số Sai phân có tính tuyến tính: k k Δ (af + bg ) = aΔ f + bΔ k g Nếu xn đa thức bậc m thì: Là đa thức bậc m – k m> k Δ k xn Là số Là m= k m Sn Lời giải: Đặt Pn = {( a1 , a2 , , an ) ∈ Sn a1 = 1} Qn = {( a1 , a2 , , an ) ∈ S n a1 ≠ 1} Dễ có: Pn ∩ Qn = ∅, Pn ∪ Qn = Sn + Xét ánh xạ f: Pn → Qn ( a1 , a2 , , an ) ( a2 , a1 , , an ) Vì f song ánh nên: Pn = Qn = + Xét ánh xạ g: Pn → Sn −1 ( a1 , a2 , , an ) Sn ( a2 − 1, a3 − 1, , an − 1) Vì g song ánh nên: Pn = S n −1 Vậy: S n = S n −1 ∀n ≥ Mà S = 2; S1 = ⇒ S n = 2n −1 + Xét ánh xạ h: Tn → Tn-1 ∪ Tn-2 ⎧( a2 − 1, a3 − 1, , an − 1) ∈ Tn −1khia1 = ⎪ ( a1 , a2 , , an ) ⎨ ⎪( a3 − 2, a4 − 2, , an − ) ∈ Tn − khia1 = ⎩ Vì h song ánh nên Tn = Tn −1 + Tn − n +1 n +1 ⎛ 1− ⎞ ⎞ ⎛ ⎛ 1+ ⎞ ⎜⎜ ⎟ mà T2 = 2; T1 = ⇒ Tn = ⎟ −⎜ ⎜ ⎟ ⎟ ⎟ ⎜⎜ ⎟ ⎠ ⎝ ⎠ ⎠ ⎝⎝ n +1 n +1 ⎛ ⎛ 1− ⎞ ⎞ ⎜⎛ 1+ ⎞ ⎜ ⎟ −⎜ ⎟ ⎟ ⎜⎝ ⎠ ⎝ ⎠ ⎟ Tn ⎝ ⎠ > ⇔ n ≤ > ⇔ Vậy: n −1 Sn Bài 3: (IMO 1987) Gọi Pn(k) số hoán vị tập A = {1, 2, , n} (n ∈N*) có k điểm cố định (0 ≤ k ≤ n) n Chứng minh rằng: ∑ k.P (k ) = n ! n k =0 Lời giải: Đặt: M ={(f, i)⎢f hoán vị A giữ nguyên k phần tử, i ∈A cho f(i) = i} Ta có: M = k Pn (k ) Với 1≤ i ≤ n: đặt Ni tập tất hoán vị giữ nguyên k -1 phần tử tập hợp B = A\ {i} N i = Pn −1 (k − 1) n + Xét ánh xạ g: M → ∪ N i i =1 WWW.MATHVN.COM Page 99 of 108 99 www.MATHVN.com ( f , i) f ( f (m) = f (m)∀m = 1, , n; m ≠ i ) Vì g song ánh nên M = n n ∪ Ni = ∑ Ni ⇒ k.Pn (k ) = n.Pn−1 (k − 1) i =1 i =1 n n n n −1 k =1 k =1 k =0 j =0 ⇒ ∑ k Pn (k ) = n.∑ Pn −1 (k − 1) ⇒ ∑ k Pn (k ) = n.∑ Pn −1 ( j ) = n.(n − 1)! = n ! Bài 4: (VMO 2002) Cho tập S gồm tất số nguyên ∈ [1;n](n ∈ N*) T tập tất tập khác rỗng S Với A ∈ T, kí hiệu m(A) trung bình cộng tất phần tử thuộc A Tính: ∑ m( X ) X ∈T m= T Lời giải: + Xét song ánh f: T → T X f ( X ) = {n + − x x ∈ X } Vì f song ánh nên ⎧m( X ) + m( f ( X )) = n + 1, ∀X ∈ T ⎪ ⇒ ∑ [ m( X ) + m( f ( X )) ] = T (n + 1) ⇒ ∑ m( X ) = T (n + 1) ⎨ m( X ) = ∑ ∑ m( f ( X )) X ∈T X ∈T ⎪ X ∈T X ∈T ⎩ Vậy : m = ∑ m( X ) X ∈T T = n +1 Bài 5: (VMO 1996) Cho n, k, m ∈N* thoả mãn điều kiện 1< k ≤ n, m > Hỏi có chỉnh hợp chập k: ( a1 , a2 , , ak ) n số nguyên dương mà chỉnh hợp thoả mãn hai điều kiện sau: i ∃ i, j ∈{1, 2, ,k} cho i < j > aj ii ∃ i ∈{1, 2, ,k} cho – i không chia hết cho m Lời giải: Đặt A = {tập chỉnh hợp chập k (1,2, ,n)} A* = {tập chỉnh hợp thoả mãn giả thiết} B = { ( a1 , a2 , , ak ) ∈A ⎢a1 < a2 < < ak – i m ∀i = 1,2, ,k} Dễ thấy A* = A\B + Xét ánh xạ f: B → B’ ( a1 , a2 , , ak ) ( a1 − + m, a2 − + 2m, , ak − k + km ) Khi f song ánh từ B đến B’ với B’ = ( b1 , b2 , , bk ) b1 < b2 < < bk , bi ∈ {1, 2, , n − k + km} , bi m∀i = 1, , k { } Do B = B ' = C⎡kn − k ⎤ ⎢ m ⎥+k ⎣ ⎦ k Vậy A * = A − B = An − C⎡kn − k ⎤ ⎢ m ⎥+k ⎣ ⎦ *Một số luyện tập: Bài 6: Tìm tất số nguyên ( a1 , a2 , , an ) ( n>1) cho Page 100 of 108 WWW.MATHVN.COM 100 www.MATHVN.com ⎧ ≤ 1, ∀i = 1, 2, , n ⎪ ⎨ ⎪ − +1 ≤ 1, ∀i = 1, 2, , n − ⎩ Bài 7: Chứng minh ∀n ∈N* ta có: n i a C2nn = ∑ ( Cn ) i =0 n b ∑ C k k =0 c m ∑C k =0 k n+k k n C ⎡ n−k ⎤ ⎢ ⎥ ⎣ ⎦ n−k m−k n = C2 n +1 n k + ∑ Cm + k 2n − k = 2m + n +1 k =0 Bài 8: (IMO 1996) Cho bảng ô vng nxn (n >1) Hỏi có cách đánh dấu ô vuông bảng cho hình vng 2x2 có vng đánh dấu Bài 9: (VMO 2003) Với n ∈N*, n ≥ 2, gọi Sn số hoán vị ( a1 , a2 , , an ) n số nguyên dương cho ≤ − i ≤ 2∀i = 1, 2, , n Chứng minh rằng: 1, 75Sn −1 < Sn < 2Sn −1 , ∀n > Bài 10: Giả sử Fk tập tất ( A1 , A2 , , Ak ) Ai , i =1,2, ,k tập tập hợp {1,2, ,n} TÍnh: S n = ∑ ( A1 , A2 , , Ak )∈Fk k ∪A i i =1 Bài 11: Trong xâu nhị phân có độ dài n, gọi an số xâu không chứa ba số liên tiếp 0,1,0 bn số xâu không chứa số liên tiếp 0,0,1,1 1,1,0,0 Chứng minh rằng: bn+1 = 2an Bài 12: Cho n ∈N, n>1 2n điểm nằm cách đường trịn cho trước Hỏi có tất n đoạn thẳng mà thoả mãn đồng thời: a Mỗi đoạn thẳng thuộc có đầu mút 2n điểm cho b Tất đoạn thẳng thuộc đơi khơng có điểm chung PhÐp vÞ tù – quay WWW.MATHVN.COM 101 Page 101 of 108 www.MATHVN.com Hä v tên giáo viên : Trờng THPT Chuyªn : Trong bμi viÕt nμy, trình by kiến thức v cần thiết phép vị tự quay v việc áp dụng phép vị tự quay vo giải toán hình học phẳng I Các kiến thức v cần thiết: Định nghĩa: Phép vị tự quay l tích giao hoán phép vị tự v mét phÐp quay cã cïng t©m NhËn xÐt: α α + Thứ tự thực phép biến hình không quan trọng, Q O VO = VO Q O k k −k + TØ sè cña phÐp vÞ tù – quay cã thĨ coi lμ mét sè dơng Q O VO = VO 180 k Cách xác định ảnh điểm qua phép vÞ tù – quay: ϕ O k Cho phÐp quay Q O vμ phÐp vÞ tù VO (víi k > 0) α ⎧OA1 = OA ⎪ A1 ⇔ ⎨ (1) OA;OA1 = α ⎪ ⎩ α ( Ta cã: Q O : A k O V : A1 ) A1 A ⎧OA' = kOA1 ⎪ A' ⇔ ⎨ (2) OA1 ;OA' = ⎪ ⎩ ( ) A' ⎧ OA ' =k ⎪ (3) Tõ (1) vμ (2) cho ta: ⎨ OA ⎪ OA;OA ' = α ⎩ ( ) Nh VO Q O l phép đồng dạng thuận Z(O; ; k) biến A thnh A xác định (3) Khi O đợc gọi l k tâm; α gäi lμ gãc quay; k lμ tØ sè cña phép vị tự - quay Tính chất: Định lí: Z(O; α; k): A A';B ⎧A' B ' = kAB ⎪ B ' th× ⎨ ⎪ AB;A' B ' = ( ) Hệ quả: 1) Phép vị tự - quay biến đờng thẳng thnh đờng thẳng v góc hai đờng thẳng góc đồng dạng 2) Phép vị tự - quay biến đòng tròn thnh đờng tròn, tâm biến thnh tâm v tỉ số hai bán kình tỉ số ®ång d¹ng Page 102 of 108 WWW.MATHVN.COM 102 www.MATHVN.com Cách xác định tâm phép vị tự quay: Cho phÐp vÞ tù - quay Z(O; α; k) H·y xác định tâm O biết: Trờng hợp 1: Một cặp điểm tơng ứng (A; A); v k OA' =k ⎪ Ta cã: ⎨ OA ⎪ OA;OA' = α ⎩ ( ) (1) (2) (1) ⇔ O thuéc đờng tròn Apôlônius () đờng kính CD (C, D chia AA’ theo tØ sè k) (2) ⇔ O thuéc cung (C) chứa góc định hớng (mod 2) nhận AA lm dây Vậy O l giao điểm () v (C) O α A C D A' B' Tr−êng hỵp 2: Hai cặp điểm tơng ứng (A; A) v (B; B) O ⎧A' B ' = kAB ⎪ Ta cã: ⎨ Từ ta biết đợc k v v quay vỊ tr−êng hỵp AB;A' B ' = α ⎪ ⎩ A ( ) C¸ch kh¸c: Gäi I lμ giao ®iĨm cđa AB vμ A’B’ α α A' α I ⎧( OA;OA ' ) = ( IA;IA ' ) = α (1) ⎪ (2) ⎪( OB;OB ' ) = ( IB;IB ' ) = α ⎩ Ta cã: ⎨ B (1) O thuộc đờng tròn (IAA) (2) O thuộc đờng tròn (IBB) Vậy O l giao điểm hai đờng tròn ngoại tiếp IAA v IBB Một kết quan trọng: Định lí: Mọi phép vị tự - quay mặt phẳng có điểm bất động O v O l tâm phép vị tự - quay Từ tính chất ny, cho phép ta chứng minh đờng tròn ngoại tiếp ABC, A cố định B, C di động nhng l cặp điểm tơng ứng mét phÐp vÞ tù - quay cã gãc quay α (không đổi) v tỉ số k (không đổi) qua điểm cố định l tâm O phép vị tự quay II ứng dụng phép vị tự quay vo việc giải toán hình học Mét sè vÝ dô: VÝ dô 1: Cho hai đờng tròn (O) v (O) cắt A v B Một cát tuyến di động MAN (M (O); N (O)) Tìm quỹ tích trực tâm H ΔBMN? H−íng dÉn gi¶i: WWW.MATHVN.COM Page 103 of 108 103 www.MATHVN.com + Dễ chứng minh đợc BMN đồng dạng với BOO (1) v hớng hay BMN tự đồng dạng v giữ nguyên hớng Kẻ trực tâm H BMN v đặt k = ( ) BH v BM;BH = α BM k phÐp vÞ tù – quay: Z (B, α, k) = VB Q α : M B A M + Do BMN tự đồng dạng nên k, không đổi v N O' H (2) B O Tập hợp điểm H l đờng tròn (O) l ảnh đờng tròn (O) qua phép vị tự - quay O'' Z (B, α, k) nãi trªn H + Tõ (1) ta cã O” lμ trùc t©m ΔBOO’ vμ tõ (2) ta cã B ∈ (O) vμ B lμ điểm bất động nên B (O) v bán kính đờng tròn ảnh OB Vậy tập hợp điểm H l đờng tròn (O; OB) Ví dụ 2: (Đề thi chọn đội tuyển HSG tỉnh Hng Yên năm 2007 2008) Trên hai đờng thẳng a v b cắt điểm C có hai động tử chuyển động thẳng với vận tốc khác nhau: A a víi vËn tèc v1, B trªn b víi vËn tốc v2, v1 v2, chúng không gặp C a) Chứng minh thời điểm no, đờng tròn ngoại tiếp ABC qua điểm cố định O no khác C b) Tìm quỹ đạo chuyển động động tử M vị trí trung điểm đoạn AB Hớng dẫn giải: b a) Giả sử A0, B0 l vị trí xuất phát ứng với thời điểm t0 A1, B1 l vị trí động tử thời ®iÓm t1 > t0 Khi ®ã A0 C A1 a B B1 v (t − t ) v1 = = = k (0 < k kh«ng ®æi) A A1 v1 (t − t ) v B1 Gäi O lμ giao ®iĨm thø hai đờng tròn O B0 (A0B0C) v (A1B1C) Dễ dng chứng minh đợc: OA0A1 đồng dạng với OB0B1 Tõ ®ã suy ra: ⎧A1OB1 = A OB = α ⎪ ⎨ OB1 OB B B1 v ⎪ OA = OA = A A = v 0 1 ⎩ ( ) ( ) ⎧ OA ;OB = CA ;CB = α (1) 1 1 ⎪ ⇒ ⎨ OB v (2) ⎪ = OA1 v1 ⎩ (1) chøng tá O thuộc cung chứa góc định hớng (mod 2) dựng A1B1 cố định (3) (2) chứng tỏ O thuộc đờng tròn Apôlônius đờng kính CD cố định (C, D chia đoạn A1B1 theo tỉ số không đổi v2 ) (4) v1 WWW.MATHVN.COM Page 104 of 108 104 www.MATHVN.com Tõ (3) vμ (4) suy O lμ ®iĨm cè ®Þnh b) KÝ hiƯu A0 = A ( t = 0); B0 = B (khi t = 0); M0 l trung điểm đoạn A0B0 v1 ; v lμ hai vÐc t¬ vËn tèc cđa A vμ B Quỹ tích M l đờng thẳng M0m qua M0 vμ cã vÐc t¬ chØ ph−¬ng lμ v = ( ) ( v1 + v 2 ) (suy tõ 2M M = v1 + v t ) NhËn xÐt: 1) NÕu kh«ng dïng gãc định hớng phải xét hai trờng hợp 2) O l tâm phép vị tự - quay tỉ sè k = ( ) v2 ; gãc quay CA1 ;CB1 = α biÕn a thμnh b, v1 ®ã A1 biến thnh B1 Vì a, b cố định, k, không đổi nên O cố định 3) Để chứng minh đờng tròn (ABC) qua điểm cố ®Þnh, ®ã A, B lμ hai ®éng tư chun động, ta cố định hoá hai vị trí no A, B v xét hai vị trí A1; B1 cđa hai ®éng tư ®ã Sau ®ã chøng minh giao ®iĨm cđa (ABC) vμ (A1B1C) lμ hai giao điểm cố định cách tính chất ®Ỉc tr−ng (1) vμ (2) cđa nã mμ ta cã thể dựng đợc Ví dụ 3: (Đề dự tuyển IMO năm 1999) Các điểm A, B, C chia đờng tròn Ω ngo¹i tiÕp ΔABC thμnh ba cung Gäi X lμ điểm thay đổi cung tròn AB v O1; O2 tơng ứng l tâm đờng tròn nội tiếp tam giác CAX v CBX Chứng minh đờng tròn ngoại tiếp XO1O2 cắt điểm cố định H−íng dÉn gi¶i: + Gäi T = (XO1O2) ∩ (ABC) M = XO1 ∩ (ABC); N = XO2 ∩ (ABC) + Trªn (ABO) ta cã: XNT = XMT Trªn (XO1O2) ta cã: XO1T = XO T ⇒ TO1N = TO2 N TO1N đồng dạng với TO2M C TN O1N AN = = = k (không đổi) (1) TM O2 M BM N M (dễ chứng minh đợc NAO1 v MO2B cân N, M) ( ) ( ) ( ) + DÔ thÊy TN;TM = TO1 ;TO = XN;XM = (mod ) A (không đổi) (2) O1 X O2 B T Tõ (1) suy T thuộc đờng tròn Apôlônius đờng kính E, F (E, F chia MN theo tØ sè k) (3) Tõ (2) suy T thuéc cung chøa gãc α (mod 2π) dựng đoạn MN cố định (4) WWW.MATHVN.COM 105 Page 105 of 108 www.MATHVN.com Tõ (3) vμ (4) vμ cung (α) ®i qua ®iĨm n»m vμ điểm nằm ngoi đờng tròn Apôlônius nên chúng cắt điểm cố định T (khác C) đpcm Nhận xét: T l tâm phép vị tự - quay gãc α, tØ sè k biÕn M thμnh N Dùng phÝa ngoμi mét ΔABC ba tam gi¸c bÊt k× BCM; CAN; vμ ABP cho VÝ dơ 4: MBC = CAN = 450 ; BCM = NCA = 30 ; ABP = PAB = 150 Chứng minh MNP vuông cân đỉnh P A Hớng dẫn giải: P1 + Xét tích hai phép vị tù - quay Z2 Z1 ®ã Z1 = Z(B, víi k1 = π π , k1) vμ Z2 = Z(A, , k2) 4 N P C B BC AC = = (vì CAN đồng dạng với CBM) BM AN k M ⎧ BC ⎪ BM = k1 + Ta có BMC cố định, MBC = nªn ⎨ ⎪ BM;BC = π ⎪ ⎩ ( ®ã Z1 = Z(B, π , k1): M ) P1 (BPP1 đồng dạng với BMC) C vμ P ⎧ AN ⎪ AC = k π + Lại có CAN cố định, CAN = nên ⎨ ⎪ AC;AN = π ⎪ ⎩ ( ®ã Z2 = Z(A, π , k2): C suy Z = Z2 Z1: M N vμ P1 ) P N Tích hai phép đồng dạng có tỉ số đồng dạng k = k2.k1 = v α1 + α2 = π nªn Z lμ phÐp dêi hình có điểm cố định P π P Cơ thĨ lμ Q : M ⎧ PM = PN ⎪ N nªn ta cã ⎨ π Vậy PMN l tam giác vuông cân đỉnh P ⎪ PM; PN = ⎩ ( ) VÝ dô 5: Dùng mét tø gi¸c (låi) néi tiÕp ABCD biÕt độ di cạnh: d, a, b, c, d l độ di cho trớc AB = a; BC = b; CD = c; DA = H−íng dÉn giải Page 106 of 108 Phân tích: Giả sử tứ giác ABCD đà dựng đợc WWW.MATHVN.COM 106 www.MATHVN.com ABCD nội tiÕp vμ chØ A + C = 180 (hc B + D = 180 ) KÐo di cạnh BC phía Cực để xuất D DCx = BAD vμ d kỊ bï víi DCB A c Trên tia Cx (tia đối tia CB) lấy điểm a E cho DCE đồng dạng víi ΔDAB b Bμi to¸n dùng tø gi¸c ABCD quay C B dựng DCE E Giả sử DCE đồng dạng với DAB, hai tam giác ny chung đỉnh D Bởi DCE đợc suy từ DAB phép vÞ tù - quay Z(D, ϕ = (DA;DC) , k = c ) d c ; (DA;DC) = ADC = d Bởi vậy, đặt k = Xét phép vÞ tù - quay Z(D; δ; k) Ta cã Z: D D; A C vμ B E cho E [BE] Khi DCE đồng dạng với DAB v DCE = DAB v B, C, E thẳng hng theo thứ tự đó, đồng thời ta đợc BDE = ADC = δ Bμi to¸n trë thμnh dùng DBE có yếu tố đà biết: BC = b; CE = ca ac + bd , ®ã BE = ; CD = c; d d DE c = DB d Ta cần dựng điểm D l điểm giao điểm đờng (C; c) v đờng tròn Apôlônius ( ) có đờng kính IJ m I, J chia v chia ngoi đoạn BE theo tØ sè k = c §Ønh A đợc dựng sau d Biện luận: Bi toán có nghiệm hình nghiệm hình nμo tuú vμo ( γ1 ) vμ ( γ ) có cắt hay không Một số bi tập tự luyện Bi 1: (Đề thi HSG QG năm 1999 2000) Trên mặt phẳng cho trớc hai đờng tròn (O1; r1) v (O2; r2) Trên đờng tròn (O1; r1) lấy điểm M1 v đờng tròn (O2; r2) lấy điểm M2 cho đờng thẳng O1M1 cắt O2M2 điểm Q Cho M1 chuyển động (O1; r1), M2 chuyển động (O2; r2) theo chiỊu kim ®ång hå vμ cïng víi vËn tèc gãc nh 1) Tìm quỹ tích trung điểm đoạn thẳng M1M2 2) Chøng minh r»ng giao ®iĨm thø hai cđa hai đờng tròn ngoại tiếp M1QM2 v O1QO2 l điểm cố định Bi 2: (Đề thi chọn đội tuyển HSG tỉnh Hng Yên năm 2004 2005) Cho đờng tròn (O), dựng đờng tròn () m O nằm đờng tròn () Một tam giác ABC cân Page 107 of 108 A di động nhng giữ nguyên dạng v hớng A di động (); B, C di động (O) Các đờng thẳng AB; AC cắt (ω) t¹i I, J WWW.MATHVN.COM 107 www.MATHVN.com 1) Chøng minh I v J l điểm cố định 2) Tìm quỹ tích hình chiếu vuông góc M, N I, J BC Có nhận xét quỹ tích Bi 3: Dựng tứ giác lồi ABCD biÕt tỉng ®é lín hai gãc ®èi diƯn A + C = v độ di cạnh AB = a; BC = b; CD = c; DA = d Bi 4: Cho đờng tròn (O1; R1) v (O2; R2) cắt A v B Hai động tử M1 v M2 xuất phát từ A lần lợt chuyển động tròn (O1) v (O2) theo hớng, sau vòng trở lại A lúc 1) Chứng minh mặt phẳng có điểm P cách M1 v M2 thời điểm (đề thi IPQ, London 1979) 2) Tìm quỹ tÝch träng t©m G, trùc t©m H cđa ΔAM1M2 Bμi 5: (Bi toán Napoléon) Lấy cạnh ABC lm đáy, dựng phía ngoi ABC ba tam giác BCA; CAB v ABC Chứng minh tâm A0; B0; C0 ba tam giác vừa dựng l đỉnh tam giá Page 108 of 108 WWW.MATHVN.COM 108 www.MATHVN.com

Ngày đăng: 26/08/2015, 20:40

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan