1. Trang chủ
  2. » Khoa Học Tự Nhiên

Bất phương trình mũ - phần 2 - ViettelStudy

6 230 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 145,26 KB

Nội dung

20 Chuyên đề 5: PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG CÓ CHỨA MŨ VÀ LOGARÍT TÓM TẮT GIÁO KHOA I. KIẾN THỨC CƠ BẢN VỀ HÀM SỐ MŨ 1. Các đònh nghóa:  n n thua so a a.a a  (n Z ,n 1,a R)      1 aa a  0 a1 a0  n n 1 a a     (n Z , n 1,a R / 0 )      m n m n aa ( a 0;m,n N )  m n m n m n 11 a a a   2. Các tính chất :  m n m n a .a a    m mn n a a a    m n n m m.n (a ) (a ) a  n n n (a.b) a .b  n n n aa () b b  3. Hàm số mũ: Dạng : x ya ( a > 0 , a  1 )  Tập xác đònh : DR  Tập giá trò : TR   ( x a 0 x R   )  Tính đơn điệu: * a > 1 : x ya đồng biến trên R * 0 < a < 1 : x ya nghòch biến trên R  Đồ thò hàm số mũ : 21 Minh họa: I. KIẾN THỨC CƠ BẢN VỀ HÀM SỐ LÔGARÍT 1. Đònh nghóa: Với a > 0 , a  1 và N > 0 dn M a log N M a N   Điều kiện có nghóa: N a log có nghóa khi         0 1 0 N a a 2. Các tính chất :  a log 1 0  a log a 1  M a log a M  log N a aN  a 1 2 a 1 a 2 log (N .N ) log N log N  1 a a 1 a 2 2 N log ( ) log N log N N   aa log N .log N   Đặc biệt : 2 aa log N 2.log N a>1 y=a x y x 1 0<a<1 y=a x y x 1 f(x)=2^x -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 x y f(x)=(1/2)^x -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 x y y=2 x y= x       2 1 1 x y y x 1 O O 21 3. Công thức đổi cơ số :  a a b log N log b.log N  a b a log N log N log b  * Hệ quả:  a b 1 log b log a  và ka a 1 log N log N k  * Công thức đặc biệt: a b c c b a loglog  4. Hàm số logarít: Dạng a y log x ( a > 0 , a  1 )  Tập xác đònh :  DR  Tập giá trò TR  Tính đơn điệu: * a > 1 : a y log x đồng biến trên  R * 0 < a < 1 : a y log x nghòch biến trên  R  Đồ thò của hàm số lôgarít: Minh họa: 5. CÁC ĐỊNH LÝ CƠ BẢN: 1. Đònh lý 1: Với 0 < a  1 thì : a M = a N  M = N 2. Đònh lý 2: Với 0 < a <1 thì : a M < a N  M > N (nghòch biến) 0<a<1 y=log a x 1 x y O f(x)=ln(x)/ln(1/2) -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 x y y=log 2 x x y x y f(x)=ln(x)/ln(2) -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 x y xy 2 1 log 1 O 1 O a>1 y=log a x 1 y x O 21 3. Đònh lý 3: Với a > 1 thì : a M < a N  M < N (đồng biến ) 4. Đònh lý 4: Với 0 < a  1 và M > 0;N > 0 thì : log a M = log a N  M = N 5. Đònh lý 5: Với 0 < a <1 thì : log a M < log a N  M >N (nghòch biến) 6. Đònh lý 6: Với a > 1 thì : log a M < log a N  M < N (đồng biến) III. CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : a M = a N Ví dụ : Giải các phương trình sau : x 10 x 5 x 10 x 15 16 0,125.8    2. Phương pháp 2: Đặt ẩn phụ chuyển về phương trình đại số Ví dụ : Giải các phương trình sau : 1) 2x 8 x 5 3 4.3 27 0     2) x x x 6.9 13.6 6.4 0   3) xx ( 2 3 ) ( 2 3) 4    4) 322 2 2 2   xxxx 5) 027.21812.48.3  xxxx 6) 07.714.92.2 22  xxx 3. Phương pháp 3: Biến đổi phương trình về dạng tích số A.B = 0 Ví dụ : Giải phương trình sau : 1) 8.3 x + 3.2 x = 24 + 6 x 2) 0422.42 2 22   xxxxx 3) 20515.33.12 1  xxx ( 4. Phương pháp 4: Nhẩm nghiệm và sử dụng tính đơn điệu để chứng minh nghiệm duy nhất (thường là sử dụng công cụ đạo hàm) * Ta thường sử dụng các tính chất sau:  Tính chất 1: Nếu hàm số f tăng ( hoặc giảm ) trong khỏang (a;b) thì phương trình f(x) = C có không quá một nghiệm trong khỏang (a;b). ( do đó nếu tồn tại x 0  (a;b) sao cho f(x 0 ) = C thì đó là nghiệm duy nhất của phương trình f(x) = C) 21  Tính chất 2 : Nếu hàm f tăng trong khỏang (a;b) và hàm g là hàm một hàm giảm trong khỏang (a;b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm trong khỏang (a;b) . ( do đó nếu tồn tại x 0  (a;b) sao cho f(x 0 ) = g(x 0 ) thì đó là nghiệm duy nhất của phương trình f(x) = g(x)) Ví dụ : Giải các phương trình sau : 1) 3 x + 4 x = 5 x 2) 2 x = 1+ x 2 3 3) x 1 ( ) 2x 1 3  IV. CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH LOGARIT THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : aa log M log N Ví dụ : Giải các phương trình sau : 1)  x log (x 6) 3 2) x x 1 log (4 4) x log (2 3) 21 2      3) )3(log)4(log)1(log 2 1 2 2 1 2 2 xxx  ) 2. Phương pháp 2: Đặt ẩn phụ chuyển về phương trình đại số. Ví dụ : Giải các phương trình sau : 1) 3 3 22 4 log x log x 3  2) 051loglog 2 3 2 3  xx 3. Phương pháp 3: Biến đổi phương trình về dạng tích số A.B = 0 Ví dụ : Giải phương trình sau : 2 7 2 7 log x 2.log x 2 log x.log x   4. Phương pháp 4: Nhẩm nghiệm và sử dụng tính đơn điệu để chứng minh nghiệm duy nhất. (thường là sử dụng công cụ đạo hàm) * Ta thường sử dụng các tính chất sau:  Tính chất 1: Nếu hàm số f tăng ( hoặc giảm ) trong khỏang (a;b) thì phương trình f(x) = C có không quá một nghiệm trong khỏang (a;b). ( do đó nếu tồn tại x 0  (a;b) sao cho f(x 0 ) = C thì đó là nghiệm duy nhất của phương trình f(x) = C)  Tính chất 2 : Nếu hàm f tăng trong khỏang (a;b) và hàm g là hàm một hàm giảm trong khỏang (a;b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm trong khỏang (a;b) . ( do đó nếu tồn tại x 0  (a;b) sao cho f(x 0 ) = g(x 0 ) thì đó là nghiệm duy nhất của phương trình f(x) = g(x)) Ví dụ : Giải các phương trình sau : 22 2 22 log (x x 6) x log (x 2) 4      V. CÁC PHƯƠNG PHÁP GIẢI BẤT PHƯƠNG TRÌNH MŨ THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : a M < a N ( ,,   ) Ví dụ : Giải các bất phương trình sau : 1) 2 x x 1 x 2x 1 3 ( ) 3    2) 2 x1 x 2x 1 2 2    2. Phương pháp 2: Đặt ẩn phụ chuyển về bất phương trình đại số. Ví dụ : Giải các phương trình sau : 1) 2x x 2 2 3.(2 ) 32 0     4) 52428 11   xxx 2) x 3 x 2 2 9   5) 11 21212.15   xxx 3) 21 1 xx 11 ( ) 3.( ) 12 33   6) 0449.314.2  xxx VI. CÁC PHƯƠNG PHÁP GIẢI BẤT PHƯƠNG TRÌNH LOGARIT THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : aa log M log N ( ,,   ) Ví dụ : Giải các bất phương trình sau : 1) 2 x log (5x 8x 3) 2   2)  23 3 log log x 3 1 3) 2 3x x log (3 x) 1   4) x x9 log (log (3 9)) 1 5) )12(log12log4)1444(log 2 555  xx 2. Phương pháp 2: Đặt ẩn phụ chuyển về bất phương trình đại số. Ví dụ : Giải các phương trình sau : 1) x x 2 32 log (3 2) 2.log 2 3 0      2) 2 2x x log 64 log 16 3 . 4.5 -3 .5 -3 -2 .5 -2 -1 .5 -1 -0 .5 0.5 1 1.5 2 2.5 3 3.5 x y y=log 2 x x y x y f(x)=ln(x)/ln (2) -4 .5 -4 -3 .5 -3 -2 .5 -2 -1 .5 -1 -0 .5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -3 .5 -3 -2 .5 -2 -1 .5 -1 -0 .5 0.5 1 1.5 2 2.5 3 3.5 x y xy 2 1 log 1 O 1 O . f(x)=(1 /2) ^x -4 .5 -4 -3 .5 -3 -2 .5 -2 -1 .5 -1 -0 .5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -3 .5 -3 -2 .5 -2 -1 .5 -1 -0 .5 0.5 1 1.5 2 2.5 3 3.5 x y y =2 x y= x       2 1 1 x y y x 1 O O 21 3. Công. 2 aa log N 2. log N a>1 y=a x y x 1 0<a<1 y=a x y x 1 f(x) =2^ x -4 .5 -4 -3 .5 -3 -2 .5 -2 -1 .5 -1 -0 .5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -3 .5 -3 -2 .5 -2 -1 .5 -1 -0 .5 0.5 1 1.5 2 2.5 3 3.5 x y

Ngày đăng: 13/08/2015, 18:40

TỪ KHÓA LIÊN QUAN