1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi học kì II môn toán 9 Việt Yên năm học 2014 - 2015(có đáp án)

5 770 6

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 247,5 KB

Nội dung

PHÒNG GIÁO DỤC & ĐÀO TẠO VIỆT YÊN ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KỲ II NĂM HỌC: 2014-2015 MÔN THI: TOÁN 9 Thời gian làm bài:90 phút Câu 1. (3,0 điểm) 1. Giải hệ phương trình 2 3 3 2 x y x y − =   + =  2. Giải phương trình 4 2 5 6 0x x+ − = 3. Cho hàm số y= f(x) = (a – 1)x + 2 (với a là tham số, a ≠ 1) Tìm a biết f(3) = 5. Câu 2. (2,0 điểm) Cho phương trình 2 x - 4x + m +1 = 0 (1) (với m là tham số) 1. Giải phương trình (1) khi m = – 6 2. Tìm m để phương trình (1) có hai nghiệm phân biệt 1 2 ,x x thỏa mãn ( ) 2 1 2 4x x− = Câu 3. (1,5 điểm) Một người đi xe máy từ A đến B cách nhau 120 km với vận tốc dự định trước. Khi đi được 2 3 quãng đường, người đó dừng lại nghỉ 12 phút. Để đảm bảo đến B đúng thời gian dự định, người đó đã tăng vận tốc thêm 10km/h trên quãng đường còn lại. Tính vận tốc dự định của người đi xe máy đó. Câu 4. (3,0 điểm) Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao BD và CE của tam giác. Chứng minh: 1. Tứ giác BCDE nội tiếp một đường tròn. 2. AB. ED = AD. BC 3. AO ⊥ ED. Câu 5. (0,5 điểm) Gọi 1 2 ,x x là hai nghiệm của phương trình: 2015 2 x – (20a – 11)x – 2015 = 0 Tìm giá tri nhỏ nhất của biểu thức ( ) 2 2 1 2 1 2 1 2 3 1 1 2 2 2 x x S x x x x   − = − + + −  ÷   . Hết HƯỚNG DẪN CHẤM HỌC KỲ II PHÒNG GIÁO DỤC & ĐÀO TẠO VIỆT YÊN NĂM HỌC: 2014-2015 MÔN THI: TOÁN 9 Thời gian làm bài: 45 phút Hướng dẫn giải Điểm Câu1 3 điểm 1 (1điểm) Ta có 2 3 5 5 1 1 3 2 3 2 3.1 2 1 x y x x x x y x y y y − = = = =     ⇔ ⇔ ⇔     + = + = + = = −     0,75 Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y) = ( 1; -1) 0,25 2 (1điểm) Phương trình 4 2 5 6 0x x+ − = . Đặt 2 ( 0)x t t= ≥ Khi đó phương trình đã cho có dạng: 2 5 6 0t t+ − = Ta có a + b + c = 1 + 5 – 6 = 0 nên phương trình có hai nghiệm: 1 1t = ( thỏa mãn điều kiện 0t ≥ ) 2 6t = − ( không thỏa mãn điều kiện 0t ≥ ) 0,5 Với t = t 1 =1, ta có 2 1 1x x= ⇔ =± 0,25 Vậy phương trình đã cho có tập nghiệm là: { } 1;1S = − 0,25 3 (1điểm) Hàm số y= f(x) = (a – 1)x + 2 ( với a là tham số, a ≠ 1) Ta f(3) = 5 ⇔ (a – 1).3 + 2 =5 ⇔ 3a – 3 + 2 =5 ⇔ 3a =6 ⇔ a = 2 (thỏa mãn điều kiện a ≠ 1) 0,75 Vậy khi f(3) = 5 thì a = 2 0,25 Câu 2. 2 điểm 1 (1điểm) Phương trình 2 x - 4x + m +1 = 0 (1) Thay m = – 6 vào phương trình (1) ta được phương trình: 2 x - 4x – 5 = 0 0,25 Ta có a - b + c = 1 + 4 – 5 = 0 nên phương trình có hai nghiệm: 1 2 1; x 5x =− = 0,5 Vậy khi m = - 6 thì phương trình (1) có hai nghiệm 1 2 1; x 5x =− = 0,25 2 (1điểm) Ta có ( ) 2 ' 2 1.(m 1) 4 m 1 3 m∆ = − − + = − − = − Phương trình (1) có hai nghiệm phân biệt 1 2 ,x x khi và chỉ khi ' 0 3 0 3m m∆ > ⇔ − > ⇔ < Khi dó theo hệ thức Vi-ét ta có: 1 2 1 2 4 . 1 x x x x m + =   = +  (2) 0,25 Theo đề bài ta có: 2 2 2 1 2 1 1 2 2 1 2 ( ) 4 2 4 4x x x x x x x x− = ⇔ + + − = ( ) 2 1 2 1 2 4 4 (3)x x x x⇔ + − = 0,25 Thay (2) vào (3) ta được : 2 4 4( 1) 4m− + = 16 4 4 4 4 8 2m m m⇔ − − = ⇔ − = − ⇔ = (thỏa mãn điều kiện 3m < ) 0,25 Vậy khi m = 2 thì phương trình (1) có hai nghiệm 1 2 ,x x thỏa mãn ( ) 2 1 2 4x x− = 0,25 Câu 3. 1,5 điểm Gọi vận tốc dự định của người đi xe máy là : x (km/h) (ĐK : x > 0) Thì thời gian dự định đi hết quãng đường AB là : 120 x (h) 0,25 2 3 quãng đường AB dài là : 2 .120 80 3 = (km) Thời gian đi hết 2 3 quãng đường AB là : 80 x (h) 0,25 Quãng đường còn lại người đó phải đi là : 120 80 40− = (km) Vận tốc người đó đi trên quãng đường còn lại là : x + 10 (km/h) Thời gian đi hết quãng đường còn lại là : 40 10x + (h), đổi 12 phút = 1 5 h 0,25 Lập phương trình : 120 80 1 40 5 10x x x = + + + (*) Giải phương trình (*) tìm được 1 40x = (thỏa mãn điều kiện x > 0) 2 x 50=− (không thỏa mãn điều kiện x > 0) 0,5 Vậy vận tốc dự định của người đi xe máy là 40 (km/h) 0,25 Câu 4. 3,0 điểm Hình vẽ : 1 1 2 1 N M O E D C B A 1 Xét tứ giác BCDE có : · 0 90BEC = ( vì CE ⊥ AB tại E , gt) 0,25 · 0 90BDC = ( vì BD ⊥ AC tại D, gt) 0,25 ⇒ E và D cùng nằm trên đường tròn đường kính BC. 0,25 Vậy tứ giác BCDE nội tiếp một đường tròn (đpcm) 0,25 2 (1điểm) Ta có tứ giác BCDE nội tiếp đường tròn (chứng minh câu a) ⇒ · · AED ACB= (vì cùng bù với · BED ) 0,25 Xét AED ∆ và ACB∆ có: · BAC chung, · · AED ACB= (chứng minh trên) Do đó AED ∆ ACB∆ (g.g) 0,5 . . AD A ED CB B ED AD BC AB = ⇒ =⇒ (đpcm) 0,25 3 (1điểm) Gọi M là giao điểm thứ hai của CE với đường tròn (O) N là giao điểm thứ hai của BD với đường tròn (O) +) Xét đường tròn (O) có: ¶ µ 2 M B= ( hai góc nội tiếp cùng chắn » NC ) (1) Lại có tứ giác BCDE nội tiếp đường tròn (chứng minh câu a) µ µ 1 2 E B⇒ = ( hai góc nội tiếp cùng chắn » DC ) (2) Từ (1) và (2) ¶ µ 1 M E⇒ = , mà hai góc này nằm ở vi trí đồng vị nên / /MN ED 0,5 +) Lại có tứ giác BCDE nội tiếp đường tròn (chứng minh câu a) µ µ 1 1 C B⇒ = ( hai góc nội tiếp cùng chắn » DE ) ¼ » AM AN⇒ = (hê quả góc nội tiếp) ,mà AO là môt phần của đường kính ⇒ AO ⊥ MN mà / /MN ED (chứng minh trên) nên AO ⊥ ED (đpcm) 0,5 Câu 5. 0,5 điểm Ta có ( ) ( ) 2 2 2 20 11 4.2015.( 2015) 20 11 4.2015 0a a∆ = − − − = − + > với mọi a nên phương trình đã cho có hai nghiệm phân biệt 1 2 ,x x Theo hệ thức Vi-ét ta có: 1 2 1 2 20 11 2015 . 1 a x x x x −  + =    =−  (*) Ta có ( ) 2 2 1 2 1 2 1 2 3 1 1 2 2 2 x x S x x x x   − = − + + −  ÷   ( ) ( ) ( ) 2 2 1 2 1 2 2 1 1 2 1 2 2 3 2 2 2 x x x x x x x x x x − + −  = − +     ( ) ( ) ( ) 2 2 1 2 2 1 1 2 2 3 2 2 2 x x x x x x − − + −  = − +   −   (vì 1 2 . 1x x =− ) ( ) ( ) 2 2 1 2 2 1 3 9 2. 2 4 x x x x= − + − ( ) 2 1 2 6 x x= − ( ) 2 1 2 1 2 6 4x x x x   = + −   0,25 Thay (*) vào S ta được: 2 2 20 11 20 11 6 4 6 24 24 2015 2015 a a S   − −     = + = + ≥    ÷  ÷       với mọi a Dấu “ = ’’ xảy ra khi và chỉ khi 20a – 11 = 0 11 20 11 20 a a⇔ = ⇔ = Vậy Min S=24 khi và chỉ khi 11 20 a = 0,25 . PHÒNG GIÁO DỤC & ĐÀO TẠO VIỆT YÊN ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KỲ II NĂM HỌC: 201 4- 2015 MÔN THI: TOÁN 9 Thời gian làm bài :90 phút Câu 1. (3,0 điểm) 1. Giải hệ phương trình. x x x x   − = − + + −  ÷   . Hết HƯỚNG DẪN CHẤM HỌC KỲ II PHÒNG GIÁO DỤC & ĐÀO TẠO VIỆT YÊN NĂM HỌC: 201 4- 2015 MÔN THI: TOÁN 9 Thời gian làm bài: 45 phút Hướng dẫn giải Điểm Câu1 3. 0,25 Câu 2. 2 điểm 1 (1điểm) Phương trình 2 x - 4x + m +1 = 0 (1) Thay m = – 6 vào phương trình (1) ta được phương trình: 2 x - 4x – 5 = 0 0,25 Ta có a - b + c = 1 + 4 – 5 = 0 nên phương trình

Ngày đăng: 26/07/2015, 14:45

TỪ KHÓA LIÊN QUAN

w