Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 54 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
54
Dung lượng
707 KB
Nội dung
TNG ễN TP KIN THC TON THI VO LP 10 I-Các kiến thức cơ bản cần nhớ 2 2 3 . . ( , 0) ( 0; 0) 1 . 0; ( ) ; ( ) A B A B A B A A A B B B A B A B A A B B B A A A A A A = = > = = = = A xxác định khi A 0 -Điều kiện phân thức xác định là mẫu khác 0 - Khử mẫu của biểu thức lấy căn và trục căn thức ở mẫu - Cỏc hằng đẳng thức đáng nhớ II-Một số chú ý khi giải toán về biểu thức 1) Tìm ĐKXĐ chú ý : Trong căn 0 ,Mẫu 0 , biểu thức chia 0 2)Rút gọn biểu thức -Đối với các biểu thức chỉ là một căn thức th ờng tìm cách đa thừa số ra ngoài dấu căn .Cụ thể là : + Số thì phân tích thành tích các số chính ph ơng 1 C h ỉ c ó s ự n ỗ l ự c c ủ a c h í n h b ạ n m ớ i đ e m l ạ i t h à n h c ô n g TNG ễN TP KIN THC TON THI VO LP 10 +Phần biến thì phân tích thành tích của các luỹ thừa với số mũ chẵn -Nếu biểu thức chỉ chứa phép cộng và trừ các căn thức ta tìm cách biến đổi về các căn đồng dạng - Nếu biểu thức là tổng , hiệu các phân thức mà mẫu chứa căn thì ta nên trục căn thức ở mẫu trớc,có thể không phải quy đồng mẫu nữa. -Nếu biểu thức chứa các phân thức cha rút gọn thì ta nên rút gọn phân thức trớc -Nếu biểu thức có mẫu đối nhau ta nên đổi dấu trớc khi -Ngoài ra cần thực hiện đúng thứ tự các phép tính ,chú ý dùng ngoặc ,dấu - , cách viết căn Chú ý : Một số bài toán nh : Chứng minh đẳng thức , chứng minh biểu thức không phụ thuộc vào biến cũng quy về Rút gọn biểu thức 3) Tính giá trị của biểu thức -Cần rút gọn biểu thức trớc.Nếu biểu thức có chứa dấu giá trị tuyệt đối thì nên thay giá trị của biến vào rồi mới rút gọn tiếp -Nếu giá trị của biến còn phức tạp thì nghĩ đến việc rút gọn tr ớc khi thay vào tính 4) Tìm biến để biểu thức thoả mãn 1 điều kiện nào đó -Cần rút gọn biểu thức trớc -Sau khi tìm đợc giá trị của biến phải đối chiếu với ĐKXĐ III-Các dạng bài tập Dạn g 1: Bài tập rút gọn biểu thức chứa căn đơ n giản 1) 2 2 2 2 149 76 457 384 6) 9 4 5 9 80 + 7) 243754832 + 2 TNG ễN TP KIN THC TON THI VO LP 10 2) 34 1 23 1 12 1 + + + + + 3) 1 33 1 48 2 75 5 1 2 3 11 + 4) 0a Với + a49a16a9 5) a a b ab b b a + + 8) 246223 + 9) 222.222.84 ++++ 8 2 2 2 3 2 2 10) 3 2 2 1 2 + + + 11) 6 11 6 11 + Dạn g 2 : Bài tập rút gọn bi ể u thức hữu tỉ 1. 2 2 2x 2x x A x 3x x 4x 3 x 1 = + + + 2. 2 x 2 4x B x 2 x 2 4 x = + + 3. 2 1 x 1 2x x(1 x) C 3 x 3 x 9 x + = + 4. 2 2 2 5 4 3x D 3 2x 6x x 9 = + 5. 2 2 2 3x 2 6 3x 2 E x 2x 1 x 1 x 2x 1 + = + + + 6. 2 3 5 10 15 K x 1 x (x 1) x 1 = + + + Dạn g 3 : Bài tập tổng hợp Bài 1 Cho biểu thức A = 2 1 1 1 1 x x x x x x x + + + ữ ữ + + : 2 1x a. Tìm điều kiện xác định. b. Chứng minh A = 1 2 ++ xx c. Tính giá trị của A tại x = 8 - 28 d. Tìm max A. Bài2 Cho biểu thức P = n4 4n4 2n 1n 2n 3n + + + ( với n 0 ; n 4 ) a. Rút gọn P b. Tính giá trị của P với n = 9 Bài3 Cho biểu thức M = 2 ( ) 4a b ab a b b a a b ab + + ( a , b > 0) 3 TNG ễN TP KIN THC TON THI VO LP 10 a. Rút gọn biểu thức M. b. Tìm a , b để M = 2 2006 Bài 4: Cho biểu thức : M = + + xx x xx x x x x 2 1 11 : 1 a) Rút gọn M. b) Tính giá trị của M khi x = 7 + 4 3 c) Tìm x sao cho M =1/2 Bài 5: Cho biểu thức : P = + 2 2 : 2 3 2 4 x x x x xxx x a) Rút gọn P. b) Tính giá trị của P khi x = 53 8 + Bài 6 Cho biểu thức : B = ++ + + 1 2 1: 1 1 1 12 xx x xxx x a) Rút gọn B. b) Tìm x để : 2.B < 1 c) Với giá trị nào của x thì B. x = 4/5 Bài 7: Cho biểu thức : M = + + + 1 1 3 1 : 3 1 9 72 xxx x x xx a) Rút gọn M. b) Tìm các số nguyên của x để M là số nguyên. c) Tìm x sao cho : M > 1 Bài 8: Cho biểu thức : A = 1 : + + + + + 1 1 1 1 1 22 xxx x xx xx a) Rút gọn A. b) Tính giá trị của A nếu x = 7 - 4 3 c) Tìm giá trị nhỏ nhất của A . Bài 9: Cho biểu thức : P = + + + + 1 2 11 1 : 1 1 1 1 x x x xx x x x a) Rút gọn P. b) Tính giá trị của P khi x = 2 347 4 TNG ễN TP KIN THC TON THI VO LP 10 c) Tìm x sao cho P = 1/2 Bài 10: Cho biểu thức : A = 3 2 1 1 . 1 1 1 x x x x x x x x x + + ữ ữ ữ ữ + + + a) Rút gọn A. b) Tính giá trị của A nếu x = 2 32 Bài 11: Cho biểu thức : A = + + + 1 1: 1 1 1 2 x x xxxxx x a) Rút gọn A. b) Tìm x để A < 0 Bài 12: Cho biểu thức : B = + +++ + 1 2 2: 1 2 1 1 x xx xxxxx a) Rút gọn B. b) Tính giá trị của B khi x = 6 + 2 5 c) Tìm x nguyên để B nguyên. Bài 13: Cho biểu thức : A = + + + + xxxx x 2 1 6 5 3 2 a) Rút gọn A. b) Tính giá trị của A nếu x = 32 2 + c) Tìm x nguyên để A nguyên Bài 14: Cho biểu thức : M = + + + x x x x xx x 3 12 2 3 65 92 a) Rút gọn M. b) Tìm x để M < 1 c) Tìm các số tự nhiên x để M nguyên. Bài 15: Cho biểu thức : A = + + 2 3 1: 3 1 32 4 x x x x xx xx a) Rút gọn A. b) Tìm x để A > 1 Bài 16: Cho biểu thức : P = 3 2 3 : 2 2 4 4 2 2 xx xx x x x x x x + + a) Rút gọn P. 5 TNG ễN TP KIN THC TON THI VO LP 10 b) Tìm các số nguyên của x để P chia hết cho 4. Bài 17: Cho biểu thức : M = + + + + xx x x x x x x x 141 : 1 13 1 a) Rút gọn M. b) Tìm các số tự nhiên x để M là số nguyên c) Tìm x thoả mãn M < 0 Bài 18: Cho biểu thức : P = + + ++ + x x xxx x x x 1 52 1 3 : 1 1 12 3 a) Rút gọn P. b) Tính giá trị của P khi x = 53 8 c) Tìm x nguyên để P là số tự nhiên d) Tìm x để P < -1 Bài 19: Cho biểu thức : B = + + + + xx x x x x x xx x 2 2 2 3 : 4 23 2 3 2 a) Rút gọn B. b) Tính giá trị của B khi x = 9 - 4 5 c) Tìm x sao cho B.( x 1 ) = 3 x Bài 20: Cho biểu thức : M = + + + + + + + + 1 11 1 :1 11 1 xy xxy xy x xy xxy xy x a) Rút gọn M b) Tính giá trị của M khi x = 2 - 3 và y = 31 13 + Bài 21: Cho biểu thức : B = +++ + + 632 6 632 32 yxxy xy yxxy yx a) Rút gọn B. b) Cho B= ).10( 10 10 + y y y Chứng minh : 10 9 = y x Bi 22 : Cho biu thc : + + + + + + = 1 2: 3 2 2 3 65 2 x x x x x x xx x P a) Rút gọn P. 6 TNG ễN TP KIN THC TON THI VO LP 10 b) Tìm x để 2 51 P B i 23 : Cho biểu thức : ( ) 1 122 1 2 + + ++ = x x x xx xx xx P a) Rút gọn P. b) Tìm giá trị nhỏ nhất của P. c) Tìm x để biểu thức P x Q 2 = nhận giá trị là số nguyên Bi 24: Cho biu thc : 2 2 2 1 1 1 1 1 + + = x xx x x x P a) Rút gọn P b) Tìm x để 2> x P Bi 25: Cho biu thc : + + = 2 2 : 2 45 2 1 x x x x xx x x P a) Rút gọn P b)*Tìm m để có x thoả mãn : 12 += mxxmxP Bài26: Cho biểu thức A = 2 2 2 x1 2 1x x1 1 x1 1 + + 1. Tìm điều kiện của x để biểu thức A có nghĩa. 2. Rút gọn biểu thức A. 3. Giải phơng trình theo x khi A = - 2. Phần thứhai A>kiếnthức cần nhớ -Hàm số bậc nhất : y = ax + b đồng biến khi a > 0 . Khi đó Đths tạo với rrục hoành ox một góc nhọn .Nghịch biến thì ngợc lại. -ĐK hai đờng thẳng song song là : ' ' a a b b = 7 K h á t v ọ n g v ơ n l ê n p h í a t r ớ c l à m ụ c đ í c h c ủ a c u ộ c s ố n g TNG ễN TP KIN THC TON THI VO LP 10 -ĐK hai đờng thẳng cắt nhau là : a a -ĐK hai đờng thẳng vuông góc là tích a.a = -1 -Đt hs y=ax( a 0) đi qua gốc toạ độ -Đths y=ax+b (a 0,b 0)không đi qua gốc toạ độ.Nó tạo với ox,oy 1 tam giác B> Bài tập Bài 1 : Cho hàm số y = (m + 5)x+ 2m 10 a) Với giá trị nào của m thì y là hàm số bậc nhất b) Với giá trị nào của m thì hàm số đồng biến. c) Tìm m để đồ thị hàm số điqua điểm A(2; 3) d) Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9. e) Tìm m để đồ thị đi qua điểm 10 trên trục hoành . f) Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1 g) Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m. h) Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất Bài 2 : Cho đờng thẳng y=2mx +3-m-x (d) . Xác định m để: a) Đờng thẳng d qua gốc toạ độ b) Đờng thẳng d song song với đờng thẳng 2y- x =5 c) Đờng thẳng d tạo với Ox một góc nhọn d) Đờng thẳng d tạo với Ox một góc tù e) Đờng thẳng d cắt Ox tại điểm có hoành độ 2 f) Đờng thẳng d cắt đồ thị Hs y= 2x 3 tại một điểm có hoành độ là 2 g) Đờng thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4 h) Đờng thẳng d đi qua giao điểm của hai đ ờng thảng 2x -3y=-8 và y= -x+1 Bài 3 : Cho hàm số y=( 2m-3).x+m-5 a) Vẽ đồ thị với m=6 8 TNG ễN TP KIN THC TON THI VO LP 10 b) Chứng minh họ đờng thẳng luôn đi qua điểm cố định khi m thay đổi c) Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân d) Tìm m để đồ thị hàm số tạo với trục hoành một góc 45 o e) Tìm m để đồ thị hàm số tạo với trục hoành một góc 135 o f) Tìm m để đồ thị hàm số tạo với trục hoành một góc 30 o , 60 o g) Tìm m để đồ thị hàm số cắt đờng thẳng y = 3x-4 tại một điểm trên 0y h) Tìm m để đồ thị hàm số cắt đờng thẳng y = -x-3 tại một điểm trên 0x Bài4 (Đề thi vào lớp 10 tỉnh Hải Dơng năm 2000,2001) Cho hàm số y = (m -2)x + m + 3 a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến . b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3. c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x 1 và y = (m - 2)x + m + 3 đồng quy. d)Tìm m để đồ thị hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 2 Bài 5 (Đề thi vào lớp 10 tỉnh Hải Dơng năm 2004) Trong hệ trục toạ độ Oxy, cho hàm số y = 2x + m (*) 1)Tìm m để đồ thị hàm số (*) đi qua điểm a)A(-1 ; 3) ; b) B( 2 ; -5 2 ) ; c) C(2 ; -1) 2) Xác định m để đồ thị hàm số (*) cắt đồ thị hàm số y = 3x 2 trong góc phần t thứ IV Bài 6 :Cho (d 1 ) y=4mx- ( m+5) ; (d 2 ) y=( 3m 2 +1).x + m 2 -4 a) Tìm m để đồ thị (d 1 )đi qua M(2;3) b) Cmkhi m thay đổi thì (d 1 )luôn đi qua một điểm A cố định, (d 2 ) đi qua B cố định. c) Tính khoảng cách AB d)Tìm m để d 1 song song với d 2 9 TNG ễN TP KIN THC TON THI VO LP 10 e)Tìm m để d 1 cắt d 2 . Tìm giao điểm khi m=2 Bài 7 Cho hàm số y =f(x) =3x 4 a)Tìm toạ độ giao điểm của đths với hai trục toạ độ b) Tính f(2) ; f(-1/2); f( 7 24 ) c) Các điểm sau có thuộc đths không? A(1;-1) ;B(-1;1) ;C(2;10) ;D(-2;-10) d)Tìm m để đths đi qua điểm E(m;m 2 -4) e)Tìm x để hàm số nhận các giá trị : 5 ; -3 g)Tính diện tích , chu vi tam giác mà đths tạo với hai trục toạ độ. h)Tìm điểm thuộc đths có hoành độ là 7 k) Tìm điểm thuộc đths có tung độ là -4 l) Tìm điểm thuộc đths có hoành độ và tung độ bằng nhau Phần thứ ba A>kiếnthức cần nhớ 1)Các phơng pháp giải HPT a) Phơng pháp thế : Thờng dùng giải HPT đã có 1 phơng trình 1 ẩn , có hệ số của ẩn bằng 1 và hệ chứa tham số b) Phơng pháp cộng : Phải biến đổi tơng đơng HPT về đúng dạng sau đó xét hệ số của cùng 1 ẩn trong 2 phơng trình :- Nếu đối nhau thì cộng .Nếu bằng nhau thì trừ .Nếu khác thì nhân . Nếu kết quả phức tạp thì đi vòng. c) Phơng pháp đặt ẩn phụ : Dùng để đa HPT phức tạp về HPT bậc nhất hai ẩn 2)Một số dạng toán quy về giải HPT: - Viết phơng trình đờng thẳng ( Xác định hàm số bậc nhất) 10 Ước mơ chính là bánh lái của con tầu, để ớc mơ thành công bạn cần có nghị lực [...]... cao A.Các dạng bài tập và ph ơng pháp giải Dạng 1: Điều kiện PHB2 có nghiệm ,vô nghiệm Có thể xảy ra 6 trờng hợp -Muốn chứng minh PTB2 luôn có nghiệm , có 2 nghiệm pb , vô nghiệm ta chứng minh Luôn không âm ,luôn dơng , luôn âm -Muốn tìm điều kiện để PTB2 có nghiệm ,vô nghiệm ta giải bất ph ơng trình Dạng 2 ; Tính giá trị 1 biểu thức của 2 nghiệm 16 TNG ễN TP KIN THC TON THI VO LP 10 Phơng pháp giải... : g g ; c g.c ; ; c.c.c g.c.g ; c.g.c IX-Khi giải bài tập tính toán cần ghi nhớ 1.Công thức tính chu vi và diện tích các hình 2.Diện tích tam giác đều và tam giác cân có một góc bằng 120 0 3.Hệ thức lợng trong tam giác vuông ( cả định lý Pi- ta go) và tỉ số lợng giác của góc nhọn X-Khi giải bài toán quỹ tích 35 TNG ễN TP KIN THC TON THI VO LP 10 (Thờng cho dới dạng Khi một điểm chuyển động thì điểm... : Tính tổng và tích 2 nghiệm theo Viét B ớc 2 : Rút tham số từ tổng thay vào tích hoặc ng ợc lại Chú ý : Nếu bậc của tham số ở tổng và tích đều là 2 trở lên ta phải khử bậc cao trớc bẳng cách nh phơng pháp cộng trong giải HPT Dạng 4 ; Tìm tham số biết 1 hệ thức liên hệ giữa 2 nghiệm B ớc1 : Tìm ĐK có nghiệm Tính tổng và tích 2 nghiệm theo Viét B ớc 2 : Biến đổi tơng đơng hệ thức về dạng toàn Tổng ,Tích... các nghiệm bằng 17 c) Lập hệ thức độc lập giữa các nghiệm không phụ thuộc vào m d) Giải phơng trình trong tr ờng hợp tổng bình ph ơng các nghiệm đạt giá trị nhỏ nhất Bài 4 : Cho phơng trình: x 2 - 2mx + 2m 1 = 0 a) Giải phơng trình với m= 4 b) Tìm m để tổng bình phơng các nghiệm bằng 10 c) lập hệ thức độc lập giữa các nghiệm không phụ thuộc vào m d) Tìm m sao cho : 2(x 1 2 +x 2 2 )- 8x 1 x 2 = 65 Bài... minh hệ thức , tỉ lệ thức C1/ Gắn vào 2 tam giác đồng dạng C2/ Nếu có đờng thẳng song song thờng dùng định lý Ta Lét C3/Nếu có góc vuông thờng dùng hệ thức lợng trong tam giác vuông C4/ Nếu có phân giác thờng dùng tính chất đờng phân giác Chú ý: Nếu không chứng minh đ ợc trực tiếp thì dùng tính chất bắc cầu VII-Chứng minh một đờng thẳng là tiếp tuyến của đờng tròn C1/ Chứng minh đờng thẳng vuông góc... đẳng thức liên hệ giữa x và y không phụ thuộc vào m; b) Tìm giá trị của m thoả mãn 2x 2 - 7y = 1 11 TNG ễN TP KIN THC TON THI VO LP 10 c) Tìm các giá trị của m để biểu thức A = 2 x 3y nhận giá trị x+y nguyên mx y = 1 4)Cho hệ phơng trình x + my = 2 a.Giải hệ phơng trình theo tham số m b.Gọi nghiệm của hệ phơng trình là (x,y) Tìm các giá trị của m để x +y = 1 c.Tìm đẳng thức liên hệ giữa x và y không... kiến 1 giờ 30 phút Tính năng suất dự kiến Bài 18: Một máy bơm muốn bơm đầy nớc vào một bể chứa trong thời gian đã định thì mỗi giờ phải bơm đợc 10 m3 Sau khi bơm đợc 1/3 thể tích bể chứa , ngời công nhân vận hành cho máy hoạt động với công suất lớn hơn 5m 3 mỗi giờ so với ban đầu Do vậy , so với qui định bể chứa đợc bơm đầy trớc 48 phút Tính thể tích bể chứa Bài 19: Một xí nghiệp giao cho một công... 2 n = 1 x1 x 2 = 3 = 3m n 5 cần tìm Với bài toán này ta đã chỉ ra đ ợc một phơng trình luôn có hai nghiệm phân biệt, nên để cho hai ph ơng trình tơng đơng thì phơng trình còn lại cũng phải có hai nghiệm giống hai nghiệm của ph ơng trình trên áp dụng định lý Vi-ét về tổng tích hai nghiệm ta sẽ tìm đ ợc m, n 19 TNG ễN TP KIN THC TON THI VO LP 10 B bài tập Bài 1 :Cho phơng trình mx 2 +(2m-1)x+(m-2)=0...TNG ễN TP KIN THC TON THI VO LP 10 - Ba điểm thẳng hàng - Giao điểm của hai đờng thẳng(Toạ độ giao điểm của hai đờng thẳng là nghiệm của HPT) - Ba đờng thẳng đồng quy - Xác định hệ số của đa thức , phơng trình 3)Giải phơng trình bậc nhất 1 ẩn B> Các dạng bài tập I-Dạng 1: Giải HPT không chứa tham số ( Chủ yếu là dùng phơng pháp cộng và đặt ẩn phụ ) Bài tập rất nhiều trong SGK,SBT hoặc có... phơng trình có hai nghiệm trái dấu c) Chứng minh rằng biểu thức H = x 1 (1 - x 2 ) + x 2 (1 - x 1 ) không phụ thuộc vào m d) Tìm giá trị của biểu thức x 1 - x 2 ; x 1 2 - x 2 2 ; x 1 3 - x 2 3 Bài 25 : a) Định m để phơng trình mx 2 - (12 - 5m)x - 4(1 + m) = 0 có tổng bình ph ơng các nghiệm là 13 b) Định m để pt mx 2 + (2m - 1)x + (m - 2) = 0 có tổng bình ph ơng các nghiệm là 2005 Bài 26 : Cho phơng trình . nh : Chứng minh đẳng thức , chứng minh biểu thức không phụ thuộc vào biến cũng quy về Rút gọn biểu thức 3) Tính giá trị của biểu thức -Cần rút gọn biểu thức trớc.Nếu biểu thức có chứa dấu giá. đồng dạng - Nếu biểu thức là tổng , hiệu các phân thức mà mẫu chứa căn thì ta nên trục căn thức ở mẫu trớc,có thể không phải quy đồng mẫu nữa. -Nếu biểu thức chứa các phân thức cha rút gọn thì. 0 -Điều kiện phân thức xác định là mẫu khác 0 - Khử mẫu của biểu thức lấy căn và trục căn thức ở mẫu - Cỏc hằng đẳng thức đáng nhớ II-Một số chú ý khi giải toán về biểu thức 1) Tìm ĐKXĐ