NhiÖt liÖt chµo mõng C¸c ThÇy Gi¸o, C« Gi¸o N¨m häc: 2009 - 2010 Ngêi thùc hiÖn: NguyÔn ThÞ Hång §iÖp - Gi¸o viªn Trêng THCS Nghi Xu©n Toán 9 Bài 1 Cho AB, CD là hai dây của (O;R). Kẻ OH AB;OK CD. a) So sánh: HA với HB b) So sánh: HB với AB c) Tính OH 2 + HB 2 và OK 2 + KD 2 theo R. d) So sánh OH 2 + HB 2 với OK 2 + KD 2 A B R O C D K H Bài 2 AB,CD là 2 dây của (O). Dùng d ng cụ đo độ dài các đoạn thẳng AB, CD, khoảng cách từ O tới AB,CD rồi điền vào chỗ trống (.) ABCD ; OHOK To¸n 9 §3 Cho AB và CD là hai dây (khác đường kính) của đường tròn (O; R). Gọi OH, OK theo thứ tự là các khoảng cách từ O đến AB, CD. Chứng minh rằng : 1. Bài toán . A B D K C O R H OH 2 + HB 2 = OK 2 + KD 2 GT KL Cho(0; R). Hai d©y AB, CD ≠ 2R OH AB; OK CD. OH 2 + HB 2 = OK 2 + KD 2 To¸n 9 §3 1. Bài toán . A B D K C O R H (SGK) GT KL Cho(0; R). Hai d©y AB, CD ≠ 2R OH AB; OK CD. OH 2 + HB 2 = OK 2 + KD 2 Toán 9 Đ3 1. Bi toỏn B K . A D C O R H áp dụng địng lí Pi- ta - go ta có: OH 2 + HB 2 = OB 2 = R 2 OK 2 + KD 2 = OD 2 = R 2 OH 2 + HB 2 = OK 2 + KD 2 Cm => (SGK) *Trờng hợp có một dây là đờng kính Chẳng hạn AB là đ!ờng kính -Khi đó ta có: OH = 0; HB = R Mà OK 2 + KD 2 = R 2 =>OH 2 + HB 2 = OK 2 + KD 2 C o R D A B K H *Trờng hợp cả 2 dây AB, CD đều là đ.kính D C B A o R -Khi đó ta có: H và K đều trùng với O; OH = OK = 0; HB = KD = R Suy ra:OH 2 + HB 2 = R 2 => OH 2 + HB 2 = OK 2 + KD 2 * Chú ý: Kết luận của bài toán trên vẫn đúng nếu một dây là đ7ờng kính hoặc hai dây là đ7ờng kính. GT KL Cho(0; R). Hai dây AB, CD 2R OH AB; OK CD. OH 2 + HB 2 = OK 2 + KD 2 H K H K Toán 9 Đ3 1. Bi toỏn K . A D C O R H áp dụng địng lí Pi- ta - go ta có: OH 2 + HB 2 = OB 2 = R 2 OK 2 + KD 2 = OD 2 = R 2 Cm GT KL Cho(0; R). Hai dây AB, CD khác đ!ờng kính OH AB; OK CD. OH 2 + HB 2 = OK 2 + KD 2 => (SGK) * Chú ý: Kết luận của bài toán trên vẫn đúng nếu một dây là đ7ờng kính hoặc hai dây là đ7ờng kính. OH 2 + HB 2 = OK 2 + KD 2 B Toán 9 Đ3 1. Bi toỏn B K . A D C O R H (SGK) OH 2 + HB 2 = OK 2 + KD 2 2. Liờn h gia dõy v khong cỏch t tõm ti dõy ?1 Hãy sử dụng kết quả của bài toán ở mục 1 để chứng minh rằng: a) Nếu AB = CD thì OH = OK. b) Nếu OH = OK thì AB = CD. a) Hng dn OH = OK OH 2 = OK 2 HB 2 = KD 2 HB = KD AB = CD nh lớ đk vuông góc với dây B.toán: OH 2 + HB 2 = OK 2 + KD 2 cm a) Theo đnh lớ đk vuông góc với dây AB = CD => HB = KD => HB 2 = KD 2 Theo B.toán1: OH 2 + HB 2 = OK 2 + KD 2 => OH 2 = OK 2 => OH = OK Toán 9 Đ3 1. Bi toỏn B K . A D C O R H (SGK) OH 2 + HB 2 = OK 2 + KD 2 2. Liờn h gia dõy v khong cỏch t tõm ti dõy ?1 Hãy sử dụng kết quả của bài toán ở mục 1 để chứng minh rằng: a) Nếu AB = CD thì OH = OK. b) Nếu OH = OK thì AB = CD. cm Theo đnh lớ đk vuông góc với dây AB = CD => HB = KD => HB 2 = KD 2 Theo B.toán1: OH 2 + HB 2 = OK 2 + KD 2 => OH 2 = OK 2 => OH = OK a) Trong một đờng tròn: Hai dây bằng nhau thì cách đều tâm Qua câu a) ta thấy có quan hệ gì giữa 2 dây và khoảng cách từ tâm tới 2 dây? Toán 9 Đ3 1. Bi toỏn B K . A D C O R H (SGK) OH 2 + HB 2 = OK 2 + KD 2 2. Liờn h gia dõy v khong cỏch t tõm ti dõy ?1 Hãy sử dụng kết quả của bài toán ở mục 1 để chứng minh rằng: a) Nếu AB = CD thì OH = OK. b) Nếu OH = OK thì AB = CD. cm Theo đnh lớ đk vuông góc với dây AB = CD => HB = KD => HB 2 = KD 2 Theo B.toán: OH 2 + HB 2 = OK 2 + KD 2 => OH 2 = OK 2 => OH = OK a) Trong một đờng tròn: Hai dây bằng nhau thì cách đều tâm Qua câu a) ta thấy có quan hệ gì giữa 2 dây và khoảng cách từ tâm tới 2 dây? [...]... có quan hệ gì giữa 2 dây và khoảng cách từ tâm tới 2 dây? Trong hai dây của một đ tròn: Dây nào lớn hơn thì dây đó gần tâm hơn Toán 9 1 Bi toỏn Đ3 C (SGK) OH2 + HB2 = OK2 + KD2 Chứng minh a) Nếu AB > CD thì HB > KD (đ.kính dây) K O => D R B mà OH2 + HB2 = KD2 + OK2 (kq b.toán) H Suy ra OH2 Vậy A HB2 > KD2 OH < OK2 < OK 2 Liờn h gia dõy v khong cỏch t tõm ti dõy Qua câu a) ta thấy có quan hệ gì giữa... 2 Định lí1: AB = CD OH = OK HãyTrong hai dây của một đ tròn: sử dụng kết quả của bài toán ở mục 1 để hơn thì các đó gần Dây nào lớn so sánh dây độ dài: tâm hơn ?2 a) OH và OK, nếu biết AB > CD b) AB và CD, nếu biết OH < OK dây và khoảng cách từ tâm tới 2 dây? Toán 9 1 Bi toỏn Đ3 C (SGK) OH2 + HB2 = OK2 + KD2 Chứng minh a) Nếu AB > CD thì HB > KD (đ.kính dây) K O A H => D R B 2 Liờn h gia dõy v... (đ.kính dây) Qua câu b) ta thấy có quan hệ gì giữa 2 dây và khoảng cách từ tâm tới 2 dây? Toán 9 1 Bi toỏn Đ3 C (SGK) OH2 + HB2 = OK2 + KD2 Chứng minh a) Nếu AB > CD thì HB > KD (đ.kính dây) K O A H => D R B 2 Liờn h gia dõy v khong cỏch t tõm ti dõy Định lí1: AB = CD OH = OK ?2 HãyTrong hai dây của một đ tròn: sử dụng kết quả của bài toán ở mục 1 để hơn thì các đó gần Dây nào lớn so sánh dây độ dài:... độ dài: tâm hơn a) OH và OK, nếu biết AB > CDđó lớn hơn Dây nào gần tâm hơn thì dây b) AB và CD, nếu biết OH < OK mà HB2 > KD2 OH2 + HB2 = KD2 + OK2 (kq b.toán) Suy ra OH2 Vậy < OH OK2 < OK b) Nếu OH < OK => OH2 < OK2 mà do đó HB2 + OH2 = OK2 + KD2 (kq b.toán) HB2 => HB => AB > KD2 > KD > CD (đ.kính dây) Qua câu b) ta thấy có quan hệ gì giữa 2 dây và khoảng cách từ tâm tới 2 dây? Toán 9 1 Bi toỏn... toỏn Đ3 C (SGK) OH2 + HB2 = OK2 + KD2 Muốn so sáng độ dài 2 dây cung ta làm như thế nào? K O A D R H B 2 Liờn h gia dõy v khong cỏch t tõm ti dõy Định lí1: Muốn so sánh độ dài k/c từ tâm tới 2 dây cung ta làm như thế nào? AB = CD OH = OK Định lí2:Trong hai dây của một đ tròn: ?2 Dây nào lớn hơn thì dây đó gần tâm hơn Dây nào gần tâm hơn thì dây đó lớn hơn AB > CD OH < OK Toán 9 1 Bi toỏn Đ3 C (SGK)... (đ.kính dây) K O A => R H D B 2 Liờn h gia dõy v khong cỏch t tõm ti dõy Định lí1: ?2 AB = CD OH = OK Hãy sử dụng kết quả của bài toán ở mục 1 để so sánh các độ dài: a) OH và OK, nếu biết AB > CD b) AB và CD, nếu biết OH < OK mà HB2 > KD2 OH2 + HB2 = KD2 + OK2 (kq b.toán) Suy ra OH2 Vậy OH < OK2 < OK Qua câu a) ta thấy có quan hệ gì giữa 2 dây và khoảng cách từ tâm tới 2 dây? Trong hai dây của... nhau thì cách đều ?1 Hai dây cách đều tâm thì bằng a) Nếu AB = CD thì OH = OK nhau b) Nếu OH = OK thì AB = CD cm a) Theo đnh lớ đk vuông góc với dây AB = CD => HB = KD => HB2 = KD2 Theo B.toán: OH2 + HB2 = OK2 + KD2 => OH2 = OK2 => OH = OK Qua câu b) ta thấy có quan hệ gì giữa 2 dây và khoảng cách từ tâm tới 2 dây? Toán 9 1 Bi toỏn Đ3 C (SGK) OH2 + HB2 = OK2 + KD2 Muốn biết 2 dây cung có bằng nhau hay... 2 Liờn h gia dõy v khong cỏch t tõm ti dõy Định lí1: Trong một đường tròn a) Hai dây bằng nhau thì cách đều tâm b) Hai dây cách đều tâm thì bằng nhau AB = CD OH = OK Định lí2: Trong hai dây của một đường tròn a) Dây nào lớn hơn thì dây đó gần tâm hơn nào gần tâm hơn thì dây đó lớn b) Dây hơn AB > CD OH < OK Học thuộc và chứng minh lại hai định lí Làm bài tập: 13;14; 15; 16 (SGK T 106) Làm bài tập:... K O A H => D R B 2 Liờn h gia dõy v khong cỏch t tõm ti dõy Định lí1: AB = CD OH = OK ?2 HãyTrong hai dây của một đ tròn: sử dụng kết quả của bài toán ở mục 1 để hơn thì các đó gần Dây nào lớn so sánh dây độ dài: tâm hơn a) OH và OK, nếu biết AB > CDđó lớn hơn Dây nào gần tâm hơn thì dây b) AB và CD, nếu biết OH < OK mà HB2 > KD2 OH2 + HB2 = KD2 + OK2 (kq b.toán) Suy ra OH2 Vậy < OH OK2 < OK b)... thấy có quan hệ gì giữa 2 dây và khoảng cách từ tâm tới 2 dây? Toán 9 1 Bi toỏn Đ3 C (SGK) OH2 + HB2 = OK2 + KD2 b) Ta có: K O A R H D B OH = OK => OH2 = OK2 Theo B.toán: OH2 + HB2 = OK2 + KD2 HB2 = KD2 => HB = KD Theo đnh lớ đk vuông góc với dây 2 Liờn h gia dõy v khong cỏch t => AB = CD tõm ti dõy Hãy Trong một đường tròn: toán ở sử dụng kết quả của bài Haimục bằng chứng minh rằng: tâm dây 1 để nhau . dài: a) OH và OK, nếu biết AB > CD . b) AB và CD, nếu biết OH < OK . Trong hai dây của một đ. tròn: Dây nào lớn hơn thì dây đó gần tâm hơn Qua câu a) ta thấy có quan hệ gì giữa 2 dây và khoảng. dài: a) OH và OK, nếu biết AB > CD . b) AB và CD, nếu biết OH < OK . Trong hai dây của một đ. tròn: Dây nào lớn hơn thì dây đó gần tâm hơn Qua câu a) ta thấy có quan hệ gì giữa 2 dây và khoảng. < OK Chứng minh Qua câu a) ta thấy có quan hệ gì giữa 2 dây và khoảng cách từ tâm tới 2 dây? Trong hai dây của một đ. tròn: Dây nào lớn hơn thì dây đó gần tâm hơn Toán 9 Đ3 1. Bi toỏn B K . A D C O R H (SGK) OH 2