Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 16 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
16
Dung lượng
438,04 KB
Nội dung
Xuctu.com - Chun đề hình giải tích khơng gian Phương pháp tọa đọ không gian Bài hệ tọa độ không gian Bi Trong Oxyz, cho điểm A(1;0;0), B(0;1;0), C(0;0;1), D(-2;1;-1) a) Tìm tọa độ độ dài vectơ sau: AB, BC, CD, CD, u AB 3CD DA b) Gọi M, N, P, Q trung điểm AB, BC, CD, DA Tìm tọa độ M, N, P, Q c)Chứng minh A, B, C đỉnh tam giác Tìm tọa độ trọng G tâm ∆ABC d) Tìm tọa độ điểm E cho tứ giác ABCE hình bình hành Tính diện tích hình bình hành ABCE e) Chứng minh điểm A, B, C, D khơng đồng phẳng Tính thể tích tứ diện ABCD f) Tính tính độ dài đường cao hạ từ đỉnh tương ứng tứ diện ABCD g) Tìm cơsin góc tạo cạnh đối diện tứ diện h) Tìm tọa độ điểm B’ đối xứng với B qua điểm D i) Tìm tọa độ điểm K nằm trục Oz để ∆ADK vuông K Bài tập Cho điểm A(2; 5; 3), B(3; 7; 4) C(x; y; 6) Tìm x, y để A, B, C thẳng hàng Bài tập Trong không gian Oxyz, cho điểm A 3;1;0 , B 1;2;1 , C 2; 1;3 a) Tìm tọa độ hình chiếu điểm A, B, C trục tọa độ, mặt tọa độ b) Tìm tọa độ điểm đối xứng với A (B, C) qua mp tọa độ c) Tìm tọa độ điểm đối xứng với A (B, C) qua trục tọa độ d) Tìm tọa độ điểm đối xứng với A (B, C) qua gốc tọa độ e) Tìm tọa độ điểm A’ đối xứng với A qua C Bài tập Trong kg Oxyz, cho điểm A 1;2;1 , B 5;3;4 , C 8; 3;2 a) CMr: ∆ABC vng B b) Tính diện tích ∆ABC c) Tính bán kính đường trịn ngoại tiếp ∆ABC d) Tính bán kính đường trịn nội tiếp ∆ABC Bài tập Trong kg Oxyz, cho điểm A 1;0;0 , B 0;0;1 , C 2;1;1 Tính góc ∆ABC Bài tập Trong kg Oxyz, cho điểm A 1; 1;1 , B 1;3;1 , C 4;3;1 , D 4; 1;1 a) Chứng minh bốn điểm A, B, C, D đỉnh hình chữ nhật b) Tính độ dài đường chéo, xác định toạ độ tâm hình chữ nhật c) Tính cơsin góc hai vectơ AC BD Bài tập Trong kg Oxyz, cho hình hộp ABCD.A’B’C’D’, biết A 1;1;2 , B 1;0;1 , D 1;1;0 , A ' 2; 1; 2 a) Tìm tọa độ đỉnh cịn lại hình hộp b) Tính diện tích tồn phần hình hộp c) Tính thể tích V hình hộp d) Tính độ dài đườngcao hình hộp kẻ từ A’ Trong kg Oxyz, cho hình hộp ABCD.A’B’C’D’, biết A x1; y1;z1 ,C x3; y3;z3 , , , , , , , B' x2; y2;z2 , D ' x ; y4 ; z4 Tìm tọa độ đỉnh cịn lại hình hộp Nguyễn Quốc Tuấn (Trung tâm giáo viên Huế: 0905671232) Trang Xuctu.com - Chun đề hình giải tích khơng gian Bài tập Trong kg Oxyz, cho điểm A 5;3; 1 , B 2;3; 4 , C 1;2;0 , D 3;1; 2 a)CMR: a1/ điểm A, B, C, D không đồng phẳng Tứ diện ABCD có cạnh đối diện vng góc Hình chóp D.ABC hình chóp b) Tìm tọa độ chân đường cao H hình chóp D.ABC Bài tập Trong kg Oxyz, cho điểm A 1;0;0 , B 0;1;0 , C 0;0;1 , D 2;1; 2 a)CMr điểm A, B, C, D đỉnh tứ diện b) Tìm góc tạo cặp cạnh đối tứ diện c)Tính thể tích tứ diện (Theo cơng thức) d) Tính độ dài đường cao tứ diện kẻ từ A e)Tìm MOz cho điểm M, A, B, C đồng phẳng f) Tìm NOy cho ∆NAD vng N g) Tìm POxy cho P cách điểm A, B, C Bµi phương trình mặt phẳng Bi Trong kg Oxyz, cho M(1;3;1) a) Viết pt mặt phẳng () qua M có VTPT n 2; 1;1 b) Viết pt mặt phẳng () qua M véc-tơ pháp tuyến mặt phẳng () vng góc với véc-tơ u1 1;0; 2 u2 1; 3;4 Bài tập Trong Oxyz, cho A(3;2;1), B(1;0;2), C(1;3;1) a) Viết pt mặt phẳng (ABC) b) Viết pt mặt trung trực đoạn AB c) Viết pt mp qua A vng góc với BC d) Viết pt mp qua B vng góc với Oz e) Gọi A1, A2, A3 hình chiếu A trục Ox, Oy,Oz Viết pt mặt phẳng (P) qua A1, A2, A3 Bài tập Trong kg Oxyz, cho điểm A 3;1;0 , B 1;2;1 , C 2; 1;3 a) CMr: A, B, C đỉnh tam giác b) Tìm D cho ABCD hành hình bình c) Tìm M cho AM BA 3CM d) Viết pt mặt phẳng qua M vng góc với đường thẳng BC Bài tập Trong kg Oxyz, cho A(0; 2; 0) mặt phẳng (): x 3y z a) Viết pt mp () qua A song song với mặt phẳng () b) Viết pt mp g qua OA vng góc với mặt phẳng () Bài tập Trong kg Oxyz, cho A(1;1;2), B(0;1;3) mặt phẳng (): 3x y z Viết pt mặt phẳng () qua A, B vng góc với mặt phẳng () Bài tập Trong Oxyz, cho A(2;3;0) Viết pt mặt phẳng () qua A, song song Oy vng góc với mặt phẳng (): x y z Nguyễn Quốc Tuấn (Trung tâm giáo viên Huế: 0905671232) Trang Xuctu.com - Chun đề hình giải tích khơng gian Bài tập Trong Oxyz, cho A(1; -1;-2), B(3; 1; 1) (): x – 2y + 3z -5 = Viết pt mặt phẳng (β) qua A, B (β) () Bài tập Trong Oxyz, cho (): 3x y z , (): x y z Lập pt mặt phẳng () qua giao tuyến (), () qua A(2;1;1) Bài tập Trong Oxyz, cho (): x y z , (): 3x y z Lập pt mặt phẳng () qua giao tuyến (), () đồng thời vng góc với mặt phẳng (): x 3y z Bài tập 10 Lập pt mp qua gốc tọa độ vng góc với mp:(): x y z , (): x y 12 z Bài tập 11 Trong Oxyz, cho A(1; -1; 1), B(-2; 1; 3), C(4; -5; -2) D(-1; 1; -2) a Viết phương trình mặt phẳng qua A vng góc với BC b Viết phương trình mặt phẳng (ABC) c Viết phương trình mặt phẳng (β) qua B song song với (): 3x – 2y + z +7 = d Viết phương trình mặt phẳng (P) qua AC song song với BD e Tính S∆ABC f Chứng minh điểm A, B, C, D khơng đồng phẳng g Tính VABCD h Tính chiều cao DH tứ diện ABCD Bài tập 12 Trong không gian Oxyz, cho bốn điểm A (1; -1; 1), B (-2; 1; 3), C (4; -5; -2) D (1; 1; -2) a Viết phương trình mặt cầu tâm A qua B b Viết phương trình mặt phẳng (ABC) Suy ABCD tứ diện c Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD Xác định tâm bán kính d Tính thể tích khối tứ diện ABCD e Viết phương trình mặt phẳng qua AB song song với CD f Tính góc AB CD Bài tập 13 Trong không gian Oxyz, cho điểm A(1; -1; -2), B(3; 1; 1) mặt phẳng a : x 2y 2z a Viết phương trình mặt phẳng b song song với mặt phẳng a cách a khoảng b Viết phương trình mặt phẳng g qua điểm A, B vng góc với mặt phẳng a c Viết phương trình mặt cầu đường kính AB Bài tập 14 Viết phương trình mặt cầu qua điểm A(1; 2; -4), B(1; -3; 1), C(2; 2; 3) có tâm nằm mặt phẳng (Oxy) Bài tập 15 Viết phương trình mặt cầu qua điểm A(3; -1; 2), B(1; 1; -2) có tâm thuộc trục Oz Bài tập 16 Viết phương trình mặt cầu qua điểm A(1; 1; 1), B(1; 2; 1), C(1; 1; 2), D(2; 2; 1) a : 3x 2y 6z 14 Bài tập 17 Cho mặt mặt phẳng mặt cầu S : x y z x y z 22 Chứng minh a cắt (S) theo đường tròn (C) Xác định tâm bán kính (C) Nguyễn Quốc Tuấn (Trung tâm giáo viên Huế: 0905671232) Trang Xuctu.com - Chuyên đề hình giải tích khơng gian Bài tập 18 Trong không gian Oxyz, cho bốn điểm A (3; 0; 1), B (2; 1; -1), C (0; -7; 0) D (2; 1; 3) a Viết phương trình mặt phẳng qua A vng góc với CD b CMr bốn điểm A, B, C, D không đồng phẳng c Viết phương trình mặt phẳng chứa trục Ox song song với CD d Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD Xác định tâm bán kính e Tính thể tích khối tứ diện ABCD f Tính góc vectơ AC BD g Tìm tập hợp điểm M không gian cho MA MB MC MD Bài tập 19 Trong không gian Oxyz, cho điểm A (5; 0; 4), B (5; 1; 3) mặt phẳng a : x 2y 3z a Viết phương trình mặt phẳng b qua điểm A song song với mặt phẳng a b Viết phương trình mặt phẳng g qua điểm A, B vng góc với mặt phẳng a c Viết phương trình mặt cầu tâm A tiếp xúc với a d Tìm giao điểm A, B, C a với trục Ox, Oy, Oz Tính thể tích khối tứ diện OABC Bµi phương trình đường thẳng Bi Lp pt tham số đường thẳng (đt) trường hợp sau: a) qua điểm A(2;3;5) B(1;2;3) b) qua điểm A(1;1;3) ssong với BC, biết B(1;2;0), C(1;1;2) c) qua điểm A(1;0;2) vuông với mp(): x y z x t d) Tìm ptct biết có phương trình tham số là: y t z 2 x y2 z3 1 Bài tập Cho điểm A(-1; 6; 6), B(3; -6; -2) C(x; y; 6) Tìm điểm M thuộc mp(Oxy) cho MA + MB nhỏ e) Tìm phương trình tham số biết có ptct là: Bài tập Lập pt mp qua điểm A, đt , biết A(4;2;3), : Bài tập x t x 5 y 2 z 3 Cho d : y 11 2t d ' : z 16 t x 1 y z CMr: d cắt d’.Viết ptmp chứa d d’ Bài tập x 2t x 2t ' Cho d : y t d ' : y 3 t ' CMr: d)/d’ Viết ptmp chứa d d’ z t z t ' Nguyễn Quốc Tuấn (Trung tâm giáo viên Huế: 0905671232) Trang Xuctu.com - Chuyên đề hình giải tích khơng gian x t ' x t Bài tập Cho d : y 2t d ' : y 2 t ' z t ' z 3t a CMr: d d’ chéo b Lập pt mp qua O song song với d d’ Bài tập x 4t 3 Lập pt mp() chứa đt : y 7t vng góc với mp(P): x y z z 2t x y z 3 a) Viết pt mp () qua A chứa d b) Viết pt đt d’ qua A, vng góc d, cắt d x 1 y 1 z Bài tập Cho d: , (P): x y z Viết ptct đt qua A(1;1;2), // (P) d x 1 x 1 y z cắt d2: y t Bài tập 10 Viết ptđt qua A(0;1;1), d1: 1 z t x t2 x t1 Bài tập 11 Viết ptct đt qua M(1;5;0) cắt đt d1: y t1 d2: y 3t2 z 3t z 1 2t Bài tập Cho A(3;2;1) đt d: x 12 4t Bài tập 12 Cho đường thẳng d: y 3t mp(P): 3x 5y z z t a) Tìm toạ độ giao điểm d (P) b) Viết ptmp (P’) qua M(1; 2; -1) vng góc với d Tính khoảng cách từ M đến d c) Viết pt hình chiếu d’ d lên mp(P) d) Tính góc d (P) e) Cho điểm B(1; 0; -1), tìm tọa độ điểm B’ cho (P) mp trung trực đoạn thẳng BB’ f) Viết ptđt nằm (P) vng góc cắt d x t x 5 y 2 z 6 Bài tập 13 Cho d: y 11 2t t : z 16 t a) Tìm VTCP d Nguyễn Quốc Tuấn (Trung tâm giáo viên Huế: 0905671232) Trang Xuctu.com - Chun đề hình giải tích khơng gian b) CM d nằm mp Viết pt mp Tìm giao điểm I d Bài tập 14 Cho đt d1: x 1 y 1 z 2 d2: x y 1 z 1 a) Hãy xét vị trí tương đối d1, d2 b) Tìm tọa độ giao điểm I d1, d2 c) Lập phương trình tổng quát mp chứa d1, d2 Bài tập 15 Cho đường thẳng d1: x 1 y z x 2 y3 z d2: Tìm ptct 5 2 1 đường vng góc chung đt d1, d2 Tìm tọa độ giao điểm H, K d với d1, d2 x 3u x Bài tập 16 Cho đt chéo có pt m: y 4 2t , n: y 2u z 2 z t a) Tình khoảng cách đt m, n b) Viết pt đường vng góc chung đt m, n x 2t ' x t y t d’: y Bài tập 17 Cho đt d: z t ' z 2t a) Cm d, d’ chéo Tính khoảng cách đt chéo b) Lập pt đường vng góc chung d, d’ Tìm tọa độ giao điểm đương vng góc chung với d, d’ c) Viết phương trình tổng quát mp cách d d’ x y z 1 x 7 y3 z 9 x 1 y z Bài tập 18 Cho đt d1: ; d2: ; d3: 1 1 2 1 Lập pt đt d cắt d1, d2 ssong với d3 Bài tập 19 Hãy viết phương trình đường thẳng qua điểm M(0,1,1) vng góc với đường x 1 x 1 y z cắt đường thẳng y t thẳng 1 z t Bài tập 20 Trong kg Oxyz, cho đường thẳng d d’ có pt d : x 1 y 1 z 1 x 2t d ' : y t mặt cầu (S) có phương trình: x2 + y2 + z2- 2x - 4y + 2z - = z 3t a) Chứng minh d d’ chéo b) Viết phương trình mặt phẳng qua điểm M(1;2;3) vng góc với đường thẳng d c) Lập phương trình đường vng góc chung d d’ Tìm toạ độ chân đường vng góc chung Nguyễn Quốc Tuấn (Trung tâm giáo viên Huế: 0905671232) Trang Xuctu.com - Chuyên đề hình giải tích khơng gian d) Tính khoảng cách từ điểm M(1,2,3) đến đường thẳng d’ e) Viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) điểm N(-1,0,1) Bài tập 21 Trong hệ trục toạ độ Oxyz, cho đường thẳng d1 : x7 y3 z 9 1 , x y 1 z 1 Hãy lập phương trình đường thẳng vng góc chung d1 d2 3 7 Lập phương trình mặt phẳng tiếp xúc với mặt cầu: x2 + y2 + z2 - 10x + 2y + 26z - 113 = song x y 1 z x y z 13 song với đường thẳng d1 : , d2 : 3 2 Bài tập 22 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng () , (' ) có x t x 2 t phương trình : y 1 2t , ' : y t z z 2t d2 : a) Chứng minh rằng: () , (' ) chéo b) Tính khoảng cách () , (' ) c) Viết phương trình đường vng góc chung () , ( ' ) Bài tập 23 Thiết lập phương trình mặt phẳng (P) qua đường thẳng d: x 13 y z 1 tiếp xúc với mặt cầu (S): x2 + y2 + z2 - 2x - 4y - 6z -67 = Bài tập 24 Trong không gian Oxyz, cho mặt cầu (S): x2+y2+z2-2x-6y-4z=0 Xác định tâm bán kính mặt cầu Gọi A, B,C giao điểm (khác O) (S) với trục Ox, Oy, Oz Tính khoảng cách từ tâm mặt cầu (S) đến mặt phẳng (ABC) Bài tập 25 Trong không gian Oxyz, cho mặt phẳng P : x y z m 3m m tham sè 2 mặt cầu S : x 1 y 1 z 1 Tìm m để (P) tiếp xúc với (S) Với m vừa tìm được, xác định tọa độ tiếp điểm (P) (S) x x 2t ' Bài tập 26 Trong không gian cho Oxyz, cho đường thẳng: d1 : y 2t , d : y t ' z t z 2t ' a)Chứng minh d1 khơng cắt d2 d1 vng góc d2 b) Viết phương trình mặt phẳng ( ) chứa d1, ( ) vng góc d2, mặt phẳng ( ) chứa d2 ( ) vng góc d1 c)Tìm giao điểm d2 ( ) , d1 ( ) Suy phương trình mặt cầu có bán kính nhỏ tiếp xúc với d1, d2 Bài tập 27 Cho mặt phẳng ( ) : 6x+3y+2z-6=0 a) Tìm toạ độ hình chiếu điểm A(1,1,2) lên mặt phẳng ( ) b) Tìm toạ độ điểm đối xứng A’ A qua ( ) Nguyễn Quốc Tuấn (Trung tâm giáo viên Huế: 0905671232) Trang Xuctu.com - Chun đề hình giải tích khơng gian Bài tập 28 Cho mặt cầu (S): x2 + y2 + z2 - 6x + 4y - 2z - 86 = mặt phẳng ( ) : 2x - 2y - z + = a) Định tâm bán kính mặt cầu b) Viết phương trình đường thẳng (d) qua tâm mặt cầu vng góc với ( ) c) Chứng tỏ ( ) cắt mặt cầu (S) Xác định tâm bán kính đường trịn giao tuyến Bài tập 29 Trong không gian Oxyz, cho mặt cầu (S) qua gốc toạ độ O điểm A(2,0,0), B(0,-1,0), C(0,0,3) a Xác dịnh tâm bán kính mặt cầu (S) b Lập phương trình mặt phẳng ( ) qua A, B, C c Lập phương trình đường trịn giao tuyến (S) ( ) Tính bán kính đường trịn Bài tập 30 Cho đường thẳng (d ) : x 12 y z mặt phẳng ( ) : 3x+5y-z-2=0 a) Chứng minh (d) cắt ( ) Tìm giao điểm chúng b) Viết phương trình mặt phẳng ( ) qua M(1;2;1) ( ) d c) Viết phương trình hình chiếu vng góc (d) lên mặt phẳng ( ) Bài tập 31 Trong 2 : không gian Oxyz, cho hai đường thẳng x t 1 : y t z t x 1 y z 2 a.Viết phương trình đường thẳng vng góc với mặt phẳng Oxy cắt hai đường thẳng , 2 b.Viết phương trình mặt phẳng song song với đường thẳng , cách , Bài tập 32 Trong không gian Oxyz, cho điểm A(1;2;-1) mặt phẳng ( ) : 3x - 2y + 5z + = a Chứng tỏ A nằm ( ) b Viết phương trình đường thẳng (d) qua A d ( ) c Tính sin góc tạo OA ( ) Bài tập 33 Trong không gian Oxyz, cho A(-2;0;1), B(0;10;3), C(2;0;-1), D(5;3;-1) a Viết phương trình mặt phẳng (ABC) b Viết phương trình đường thẳng qua D vng góc với mặt phẳng (ABC) c Viết phương trình mặt cầu tâm D tiếp xúc với mặt phẳng (ABC) Bài tập 34 Trong không gian Oxyz, cho điểm A, B, C, D có toạ độ xác định hệ thức: A(2;4;-1), OB i j k , C=(2,4,3), OD i j k a Chứng minh AB AC , AC AD , AD AB Tính thể tích khối tứ diện ABCD b Viết phương trình tham số đường vng góc chung hai đường thẳng AB CD Tính góc đường thẳng mặt phẳng (ABD) c Viết phương trình mặt cầu (S) qua điểm A, B, C, D Viết phương trình tiếp diện ( ) mặt cầu (S) song song với mặt phẳng (ABD) Bài tập 35 Trong mặt phẳng tọa độ Oxyz, cho điểm: A(0;1;0), B(2;3;1), Nguyễn Quốc Tuấn (Trung tâm giáo viên Huế: 0905671232) Trang Xuctu.com - Chuyên đề hình giải tích khơng gian C(-2;2;2), D(1;-1;2) a Chứng minh A, B, C, D đỉnh tứ diện Tính thể tích tứ diện b Viết phương trình mặt phẳng (P) qua điểm B, C, D Tìm tọa độ điểm M mặt phẳng (P) cho OM + AM nhỏ c Gọi (S) mặt cầu tâm A tiếp xúc mp (P) Tìm tọa độ tiếp điểm mặt cầu (S) mp (P) BÀI TẬP TỔNG HỢP Bài tập Cho hình lập phương ABCD.A1B1C1D1 có cạnh a a) Tính theo a khoảng cách hai đường thẳng A1B B1D b) Gọi M, N, P trung điểm cạnh BB1, CD1, A1 D1 Tính góc hai đường thẳng MP C1N Bài tập Cho hình tứ diện ABCD có cạnh AD vng góc với mặt phẳng (ABC); AC = AD = cm ; AB = cm; BC = cm Tính khoảng cách từ điểm A tới mặt phẳng (BCD) Bài tập Cho hình lập phương ABCD.A1B1C1D1 có cạnh a a) Tính theo a khoảng cách hai đường thẳng A1 B B1D b) Gọi M, N, P trung điểm cạnh BB1, CD1, A1D1 Tính góc hai đường thẳng MP C1N Bài tập Trong không gian với hệ tọa độ Oxyz , cho đường thẳng x2 y z 3 2x y z (d) : 2 mặt phẳng (P) : a) Chứng minh (d) cắt (P) A Tìm tọa độ điểm A b) Viết phương trình đường thẳng ( ) qua A , nằm (P) vng góc với (d) Bài tập Trong không gian với hệ tọa độ Oxyz , cho điểm M(1;0;5) hai mặt phẳng (P) : x y 3z (Q) : x y z a) Tính khoảng cách từ M đến mặt phẳng (Q) b) Viết phương trình mặt phẳng ( R ) qua giao tuyến (d) (P) (Q) đồng thời vng góc với mặt phẳng (T) : x y Bài tập Trong không gian với hệ toạ độ Đềcác vuông góc Oxyz, cho mặt phẳng 2m 1x 1 m y m (P): 2x y + = đường thẳng dm: mx 2m 1z 4m Xác định m để đường thẳng dm song song với mặt phẳng (P) Bài tập Trong không gian với hệ trục toạ độ Đềcác vuông góc Oxyz, cho hai mặt phẳng (P): x y + z + = (Q): 2x + y + 2z + = Viết phương trình mặt cầu có tâm thuộc mặt phẳng (P) tiếp xúc với mặt phẳng (Q) M(1; - 1; -1) x y 1 z Bài tập Trong không gian với hệ tọa độ Oxyz , cho đường thẳng (d ) : 1 mặt phẳng (P) : x y z a Tìm tọa độ giao điểm đường thẳng (d) mặt phẳng (P) b Tính góc đường thẳng (d) mặt phẳng (P) c Viết phương trình đường thẳng ( ) hình chiếu đường thẳng (d) lên mặt phẳng (P) Nguyễn Quốc Tuấn (Trung tâm giáo viên Huế: 0905671232) Trang Xuctu.com - Chuyên đề hình giải tích khơng gian Bài tập Trong khơng gian với hệ tọa độ Oxyz , cho hai đường thẳng (1 ) : x 1 y z 2 1 , x 2t ( ) : y 5 3t z a Chứng minh đường thẳng (1 ) đường thẳng ( ) chéo b Viết phương trình mặt phẳng ( P ) chứa đường thẳng (1 ) song song với đường thẳng ( ) Bài tập 10 Trong khơng gian với hệ toạ độ Đềcác Oxyz cho hình hộp chữ nhật ABCD.A'B'C'D' có A trùng với gốc hệ toạ độ, B(a; 0; 0), D(0; a; 0), A'(0; 0; b) (a > 0, b > 0) Gọi M trung điểm cạnh CC' a) Tính thể tích khối tứ diện BDA'M theo a b a b) Xác định tỷ số để hai mặt phẳng (A'BD) (MBD) vng góc với b Bài tập 11 Trong khơng gian với hệ toạ độ Đềcác Oxyz cho hai điểm A(2; 0; 0) B(0; 0; 8) điểm C cho AC 0;6;0 Tính khoảng cách từ trung điểm I BC đến đường thẳng OA Bài tập 12 Trong không gian với hệ toạ độ Đềcác vuông góc Oxyz cho đường thẳng: x 3ky z dk: kx y z Tìm k để đường thẳng dk vng góc với mặt phẳng (P): x - y - 2z + = Bài tập 13 Trong không gian với hệ toạ độ Đềcác Oxyz cho hình chóp S.ABCD có đáy ABCD hình thoi, AC cắt BD gốc toạ độ O Biết A(2; 0; 0) B(0; 1; 0) S(0; 0; 2 ) Gọi M trung điểm cạnh SC a) Tính góc khoảng cách hai đường thẳng SA BM b) Giả sử mặt phẳng (ABM) cắt SD N Tính thể tích hình chóp S.ABMN Bài tập 14 Trong không gian với hệ toạ độ Đềcác Oxyz cho điểm A(-4; -2; 4) đường thẳng d: x 3 2t (t R) Viết phương trình đường thẳng qua điểm A, cắt vng góc với y t z 1 4t đường thẳng d Bài tập 15 Trong không gian với hệ toạ độ Đềcác Oxyz cho hình lăng trụ đứng ABC.A1B1C1 Biết A(a; 0; 0); B(-a; 0; 0); C(0; 1; 0); B1(-a; 0; b) a > 0, b > a) Tính khoảng cách hai đường thẳng B1C AC1 theo a, b b) Cho a, b thay đổi thoả mãn a + b = Tìm a, b để khoảng cách đường thẳng B1C AC1 lớn x 1 y z Bài tập 16 Trong không gian với hệ toạ độ Oxyz cho đường thẳng d: mặt 1 phẳng (P): 2x + y - 2z + = Nguyễn Quốc Tuấn (Trung tâm giáo viên Huế: 0905671232) Trang 10 Xuctu.com - Chun đề hình giải tích khơng gian a) Tìm toạ độ điểm I thuộc d cho khoảng cách từ I đến mặt phẳng (P) b) Tìm toạ độ giao điểm A đường thẳng d mặt phẳng (P) Viết phương trình tham số đường thẳng nằm mặt phẳng (P), biết qua A vng góc với d Bài tập 17 Trong khơng gian với hệ toạ độ Oxyz cho hình lăng trụ đứng ABC.A1 B1C1 với A(0; 3; 0) B(4; 0; 0) C(0; 3; 0) B1(4; 0; 4) a) Tìm toạ độ đỉnh A1, C1 Viết phương trình mặt cầu có tâm A tiếp xúc với mặt phẳng (BCC1B1) b) Gọi M trung điểm A1 B1 Viết phương trình mặt phẳng P) qua hai điểm A, M song song với BC1 mặt phẳng (P) cắt đường thẳng A1 C1 điểm N Tính độ dài đoạn MN Bài tập 18 Trong không gian với hệ toạ độ Oxyz cho hai đường thẳng: x y z x 1 y z 1 d1: d2: 1 x y 12 a) Chứng minh rằng: d1 d2 song song với Viết phương trình mặt phẳng (P) chứa hai đường thẳng d1 d2 b) Mặt phẳng toạ độ Oxz cắt hai đường thẳng d1, d2 điểm A, B Tính diện tích OAB (O gốc toạ độ) Bài tập 19 Trong khơng gian với hệ toạ độ Oxyz Cho hình lập phương ABCD.A’B’C’D’ với A(0; 0; 0) B(1; 0; 0) D(0; 1; 0) A’(0; 0; 1) Gọi M N trung điểm AB CD a) Tính khoảng cách hai đường thẳng A’C MN b) Viết phương trình mặt phẳng chứa A’C tạo với mặt phẳng Oxy góc biết cos = Bài tập 20 Trong không gian với hệ toạ độ Oxyz, cho điểm A(1; 2; 3) hai đường thẳng x2 y 2 z 3 x 1 y 1 z 1 d1: d2: 1 1 a) Tìm toạ độ điểm A’ đối xứng với điểm A qua đường thẳng d1 b) Viết phương trình đường thẳng qua A vng góc với d1 cắt d2 Bài tập 21 Trong không gian với hệ toạ độ Oxyz cho hai đường thẳng x 1 2t x y 1 z d2: y t d1: 1 z a) Chứng minh rằng: d1 d2 chéo b) Viết phương trình đường thẳng d vng góc với mặt phẳng (P): 7x + y - 4z = cắt hai đường thẳng d1, d2 Bài tập 22 Trong không gian với hệ toạ độ Oxyz cho mặt cầu (S): x2 + y2 + z2 - 2x + 4y + 2z - = mặt phẳng (P): 2x - y + 2z - 14 = a) Viết phương trình mặt phẳng (Q) chứa trục Ox cắt (S) theo đường trịn có bán kính b) Tìm toạ độ điểm M thuộc mặt cầu (S) cho khoảng cách từ M đến mặt phẳng (P) lớn Nguyễn Quốc Tuấn (Trung tâm giáo viên Huế: 0905671232) Trang 11 Xuctu.com - Chuyên đề hình giải tích khơng gian Bài tập 23 Trong không gian với hệ toạ độ Oxyz cho hai điểm A(1; 4; B(-1 2; 4) đường x 1 y z thẳng : 1 a) Viết phương trình đường thẳng d qua trọng tâm G tam giác OAB vng góc với mặt phẳng (OAB) b) Tìm toạ độ điểm M thuộc đường thẳng cho MA2 + MB2 nhỏ Bài tập 24 Trong không gian với hệ toạ độ Đềcác Oxyz cho đường thẳng 2 x y z d: mặt cầu (S): x2 + y2 + z2 + 4x - 6y + m = x y 2z Tìm m để đường thẳng d cắt mặt cầu (S) hai điểm M, N cho khoảng cách hai điểm Bài tập 25 Trong không gian với hệ toạ độ Đềcác Oxyz cho tứ diện ABCD với A(2; 3; 2), B(6; 1; -2), C(-1; -4; 3), D(1; 6; -5) Tính góc hai đường thẳng AB CD Tìm toạ độ điểm M thuộc đường thẳng CD cho ABM có chu vi nhỏ Bài tập 26 Trong không gian với hệ toạ độ Đềcác Oxyz cho tứ diện OABC với A(0; 0; a ), B(0; 0; 0), C(0; a ; 0) (a > 0) Gọi M trung điểm BC Tính khoảng cách hai đường thẳng AB OM Bài tập 27 Trong không gian với hệ toạ độ Đềcác Oxyz cho hai điểm I(0; 0; 1), K(3; 0; 0) Viết phương trình mặt phẳng qua hai điểm I, K tạo với với mặt phẳng xOy góc 300 Bài tập 28 Trong không gian với hệ toạ độ Đềcác Oxyz cho hai đường thẳng (1) (2) có x 8y 23 x 2z phương trình: 1: 2: y 4z 10 y 2z a) Chứng minh (1) (2) chéo b) Viết phương trình đường thẳng () song song với trục Oz cắt đường thẳng (1) (2) Bài tập 29 Cho hình lập phương ABCD.A'B'C'D' với cạnh a Giả sử M, N trung điểm BC, DD' Tính khoảng cách hai đường thẳng BD MN theo a Bài tập 30 Trong không gian với hệ toạ độ Đềcác Oxyz cho tứ diện OABC có O gốc tọa độ, A Ox, B Oy, C Oz mặt phẳng (ABC) có phương trình: 6x + 3y + 2z - = a) Tính thể tích khối tứ diện OABC b) Xác định toạ độ tâm tính bán kính mặt cầu ngoại tiếp khối tứ diện OABC Bài tập 31 Trong x y z x y z kh«ng gian Oxyz cho Nguyễn Quốc Tuấn (Trung tâm giáo viên Hu: 0905671232) đường thẳng: Trang 12 1: Xuctu.com - Chun đề hình giải tích khơng gian x t vµ 2: y t z t a) ViÕt phương trình mặt phẳng (P) chứa đường thẳng song song với đường thẳng b) Cho điểm M(2; 1; 4) Tìm toạ độ điểm H thuộc đường thẳng cho đoạn thẳng MH có độ dài nhỏ nhÊt Bài tập 32 Trong kh«ng gian víi hƯ trơc toạ độ Đềcác vuông góc Oxyz, cho hai mặt phẳng (P): x y + z + = vµ (Q): 2x + y + 2z + = Viết phương trình mặt cầu có tâm thuộc mặt phẳng (P) tiếp xúc với mặt phẳng (Q) M(1; 1; 1) Bài tập 33 Trong kh«ng gian với hệ toạ độ Đềcác Oxyz cho hai điểm A(2; 0; 0) B(0; 0; 8) điểm C cho AC 0;6;0 Tính khoảng cách từ trung điểm I BC đến đường thẳng OA Bi 34 Trong không gian với hệ toạ độ Đềcác Oxyz cho hình chóp S.ABCD có đáy ABCD hình thoi, AC cắt BD gốc toạ độ O Biết A(2; 0; 0) B(0; 1; 0) S(0; 0; 2 ) Gäi M trung điểm cạnh SC a) Tính góc khoảng cách hai đường thẳng SA BM b) Giả sử mặt phẳng (ABM) cắt SD N TÝnh thĨ tÝch h×nh chãp S.ABMN Bài tập 35 Trong không gian với hệ toạ độ Đềcác Oxyz cho hình lăng trụ đứng ABC.A1B1C1 Biết A(a; 0; 0); B(ưa; 0; 0); C(0; 1; 0); B1(a; 0; b) a > 0, b > a) Tính khoảng cách hai đường thẳng B1C AC1 theo a, b b) Cho a, b thay đổi thoả mÃn a + b = Tìm a, b để khoảng cách đường thẳng B1C AC1 lớn Bi 36 Trong không gian với hệ toạ độ Oxyz cho đường th¼ng d: x 1 y z mặt phẳng (P): 2x + y 2z + = 1 a) T×m toạ độ điểm I thuộc d cho khoảng cách từ I đến mặt phẳng (P) Nguyn Quc Tuấn (Trung tâm giáo viên Huế: 0905671232) Trang 13 Xuctu.com - Chun đề hình giải tích khơng gian b) Tìm toạ độ giao điểm A đường thẳng d mặt phẳng (P) Viết phương trình tham số đường thẳng nằm mặt phẳng (P), biết qua A vuông góc với d Bi 37 Trong không gian với hệ toạ độ Oxyz cho hình lăng trụ đứng ABC.A1B1C1 với A(0; ư3; 0) B(4; 0; 0) C(0; 3; 0) B1(4; 0; 4) a) T×m toạ độ đỉnh A1, C1 Viết phương trình mặt cầu có tâm A tiếp xúc với mặt phẳng (BCC1B1) b) Gọi M trung điểm A1B1 Viết phương trình mặt phẳng P) qua hai điểm A, M song song với BC1 mặt phẳng (P) cắt đường thẳng A1C1 điểm N Tính độ dài đoạn MN Bi 38 Trong không gian với hệ toạ độ Oxyz cho hai đường thẳng: x y z x 1 y z 1 vµ d2: d1: 1 x y 12 Chøng minh r»ng: d1 vµ d2 song song víi Viết phương trình mặt phẳng (P) chứa hai đường thẳng d1 d2 mặt phẳng toạ độ Oxz cắt hai đường thẳng d1, d2 ®iĨm A, B TÝnh diƯn tÝch OAB (O lµ gèc toạ độ) Bi 39 Trong không gian với hệ toạ độ Oxyz cho điểm A(0; 1; 2) hai ®êng th¼ng : x t x y 1 z 1 d1: d2: y 1 2t 1 z t a) Viết phương trình mặt phẳng (P) qua A, đồng thời song song với d1 d2 b) Tìm toạ độ điểm M d1, N d2 cho ba điểm A, M, N thẳng hàng Bi 40 Cho hình chóp S.ABCD có đáy ABCD hình chữ nhật với AB = a, AD = a , SA = a SA vuông góc với mặt phẳng (ABCD) Gọi M N trung điểm AD SC; I giao điểm BM AC Chứng minh rằng: mặt phẳng (SAC) vuông góc với mặt phẳng (SMB) Tính thể tÝch cđa khèi tø diƯn ANIB Bài tập 41 Trong không gian với hệ toạ độ Oxyz cho mặt cầu (S): x2 + y2 + z2 2x + 4y + 2z = mặt phẳng (P): 2x y + 2z 14 = a) Viết phương trình mặt phẳng (Q) chứa trục Ox cắt (S) theo đường tròn có bán kính b) Tìm toạ độ điểm M thuộc mặt cầu (S) cho khoảng cách từ M đến mặt phẳng (P) lín nhÊt Nguyễn Quốc Tuấn (Trung tâm giáo viên Huế: 0905671232) Trang 14 Xuctu.com - Chuyên đề hình giải tích khơng gian Bài tập 42 Trong kh«ng gian Oxyz x y z x y z x t vµ 2: y t z t cho đường thẳng: 1: a) Viết phương trình mặt phẳng (P) chứa đường thẳng song song với đường thẳng b) Cho điểm M(2; 1; 4) Tìm toạ độ điểm H thuộc đường thẳng cho đoạn thẳng MH có độ dài nhỏ Bi 43 Trong không gian với hệ toạ độ Đềcác vuông góc Oxyz, cho mặt phẳng (P): 2x y + = đường thẳng dm: 2m 1x 1 m y m mx 2 m 1z 4m Xác định m để đường thẳng dm song song với mặt phẳng (P) Bài tập 43 Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD có đỉnh A(1;2;1), B(2;1;3), C(2;-1;1) D(0;3;1) Viết phương trình mặt phẳng (P) qua A, B cho khoảng cách từ C đến (P) khoảng cách từ D đến (P) Bài tập 44 Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P): x – 2y + 2z – = hai điểm A(-3;0;1), B(1;-1;3) Trong đường thẳng qua A song song với (P), viết phương trình đường thẳng mà khoảng cách từ B đến đường thẳng nhỏ Bài tập 45 Trong không gian với hệ tọa độ Oxyz, cho điểm A (2; 1; 0), B(1;2;2), C(1;1;0) mặt phẳng (P): x + y + z – 20 = Xác định tọa độ điểm D thuộc đường thẳng AB cho đường thẳng CD song song với mặt phẳng (P) Bài tập 46 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng : x2 y2 z mặt 1 1 phẳng (P): x + 2y – 3z + = Viết phương trình đường thẳng d nằm (P) cho d cắt vng góc với đường thẳng Bài tập 47 Trong không gian với hệ tọa độ Oxyz, cho mp(P : x 2 y z 4 0 mặt cầu (S): x y z 2 x 4 y 6 z 11 0 Chứng minh mặt phẳng P cắt (S) theo đường tròn Xác định toạ độ tâm tính bán kính đường trịn Bài tập 48 Trong khơng gian với hệ tọa độ Oxyz, cho mp( P : x 2 y z 1 0 hai đường thẳng x 1 x z x 1 y z 1 : Xác định M thuộc 1 cho khoảng cách từ M 1 : 2 1 đến 1 khoảng cách từ M đến mp(P) Bài tập 49 Trong không gian với hệ tọa độ Oxyz, cho điểm A ; ; 3 đường thẳng x 1 y z d: 2 Nguyễn Quốc Tuấn (Trung tâm giáo viên Huế: 0905671232) Trang 15 Xuctu.com - Chuyên đề hình giải tích khơng gian a) Tìm tọa độ hình chiếu vng góc điểm A đường thẳng d b) Viết phương trình mặt phẳng (α) chứa d cho khoảng cách từ A đến (α) lớn Bài tập 50 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A ;1; , B ; ;1 , C 2 ; ;1 a) Viết phương trình mặt phẳng qua ba điểm A, B, C b) Tìm tọa độ điểm M thuộc mặt phẳng 2x 2y z cho MA MB MC Bài tập 51 Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(3; 3; 0), B(3; ; 3), C(0 ; 3; 3), D(3; 3; 3) Viết phương trình mặt cầu qua bốn điểm A, B, C, D Tìm tọa độ tâm đường trịn ngoại tiếp tam giác ABC Hết Nguyễn Quốc Tuấn (Trung tâm giáo viên Huế: 0905671232) Trang 16 ... (1) (2) Bài tập 29 Cho hình lập phương ABCD.A''B''C''D'' với cạnh a Giả sử M, N trung điểm BC, DD'' Tính khoảng cách hai đường thẳng BD MN theo a Bài tập 30 Trong không gian với hệ toạ độ Đềcác Oxyz... tích khơng gian a) Tìm tọa độ hình chiếu vng góc điểm A đường thẳng d b) Viết phương trình mặt phẳng (α) chứa d cho khoảng cách từ A đến (α) lớn Bài tập 50 Trong không gian với hệ tọa độ Oxyz,... 27 Trong không gian với hệ toạ độ Đềcác Oxyz cho hai điểm I(0; 0; 1), K(3; 0; 0) Viết phương trình mặt phẳng qua hai điểm I, K tạo với với mặt phẳng xOy góc 300 Bài tập 28 Trong không gian với