1. Trang chủ
  2. » Giáo án - Bài giảng

Chuyên đề đầy đủ - mặt phẳng - đường thẳng - mặt cầu

88 276 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 88
Dung lượng 1,4 MB

Nội dung

(DÙNG CHO ÔN THI TN – CĐ – ĐH 2011) 7ƭQKJLD. 22.03.2011 GV : Mai Tiến Linh - Trường THPT Tĩnh Gia 4 2 CHUYÊN ĐỀ: VIẾT PHƯƠNG TRÌNH MẶT PHẲNG A. Kiến thức chung 1. Phương trình mặt phẳng và các trường hợp đặc biệt - PTTQ (phương trình tổng quát) mặt phẳng   P qua 0 0 0 0 ( , , )M x y z và có vtpt (vectơ pháp tuyến) ( , , )n A B C  là: 0 0 0 ( ) : ( ) ( ) ( ) 0P A x x B y y C z z      Hay ( ) : 0P Ax By Cz D    với 0 0 0 ( )D Ax By Cz    - PTMP (phương trình mặt phẳng)   P qua ( ,0,0) ; (0, ,0) ; (0,0, )A a Ox B b Oy C c Oz   có phương trình là: ( ) : 1 x y z P a b c    (Phương trình mặt phẳng theo đoạn chắn) - Đặc biệt: + 2 2 0 ( ) / / 0 0 A P Ox D B C           + 2 2 0 ( ) / / 0 0 B P Oy D A C           + 2 2 0 ( ) / / 0 0 C P Oz D A B           - Phương trình mặt phẳng (Oxy) là 0z  , (Oyz) là 0x  và (Oxz) là 0y  2. Vị trí tương đối của mặt thẳng và mặt phẳng: Cho hai mặt phẳng 1 1 1 1 1 ( ) : 0A x B y C z D      và 2 2 2 2 2 ( ) : 0A x B y C z D      TH 1: 1 1 1 1 1 2 2 2 2 2 ( ) / /( ) A B C D A B C D       TH 2: 1 1 1 1 1 2 2 2 2 2 ( ) ( ) A B C D A B C D        TH 3: 1 2 1 2 1 2 1 2 ( ) ( ) 0A A B B C C        3: Phương trình chùm mặt phẳng: Tập hợp các mặt phẳng ( )  chứa đường thẳng ( ) ( )      được gọi là chùm mặt phẳng xác định bởi mặt phẳng ( )  và mặt phẳng ( )  Nếu 1 1 1 1 ( ) : 0A x B y C z D      và 2 2 2 2 ( ) : 0A x B y C z D      thì phương trình mặt phẳng ( )  là: 1 1 1 1 2 2 2 2 ( ) : ( ) ( ) 0m A x B y C z D n A x B y C z D          (*) với 2 2 0m n  phương trình (*) có thể viết lại: ( ) ( ) 0m n     4. Góc và khoảng cách - Góc của 2 mặt phẳng: 1 1 1 1 1 ( ) : 0A x B y C z D      và 2 2 2 2 2 ( ) : 0A x B y C z D      là: 1 2 1 2 1 2 2 2 2 2 2 2 1 1 1 2 2 2 . A A B B C C cos A B C A B C         - Góc giữa đường thẳng d và mặt phẳng (P) GV : Mai Tiến Linh - Trường THPT Tĩnh Gia 4 3 . sin( ,( )) . u n d P u n      - Khoảng cách từ một điểm   0 0 0 0 ; ;M x y z đến mặt phẳng   : 0P Ax By Cz D      0 0 0 0 2 2 2 , Ax By Cz D d M P A B C          B. Một số dạng bài tập Dạng 1: Viết phương trình mặt phẳng (P) đi qua điểm M o (x o ;y o ;z o ) và thoả mãn điều kiện Loại 1 : Có một vectơ pháp tuyến Phương pháp: - Xác định 0 0 0 0 ( , , )M x y z của mặt phẳng   P - Xác định vtpt ( ; ; )n A B C  + Nếu     / / P Q P Q n n    + Nếu   P d P d n u     - Áp dụng công thức: 0 0 0 ( ) : ( ) ( ) ( ) 0P A x x B y y C z z      Bài tập giải mẫu: Bài 1: (SGK 12 – Ban Cơ Bản T89) Trong không gian với hệ toạ độ Oxyz .Viết phương trình mặt phẳng (P): a. Đi qua điểm   1; 2;4M  và nhận vectơ   2;3;5n   làm vectơ pháp tuyến b. Đi qua điểm   2; 1;2M  và song song với mặt phẳng   : 2 – 3 4 0Q x y z   Giải: a. Cách 1: Mặt phẳng   P đi qua điểm   1; 2;4M  và có vectơ pháp tuyến   2;3;5n   có phương trình là : 2(x – 1) + 3(y + 2) + 5(z – 4 ) = 0 hay   : 2 3 5 –16 0P x y z   Cách 2: Mặt phẳng (P) có vtpt   2;3;5n   luôn có dạng 2 3 5 ’ 0x y z D    vì mặt phẳng (P) đi qua điểm     1; 2;4 2.1 3. 2 5.4 ’ 0 ’ 16M D D          .Vậy mặt phẳng   : 2 3 5 –16 0P x y z   b. Cách 1: Mặt phẳng   P đi qua điểm   2; 1;2M  song song với mặt phẳng   Q nên mặt phẳng   P đi qua điểm   2; 1;2M  và có vtpt   2; 1;3 P Q n n     nên mặt phẳng   P có phương trình: 2(x – 2) – 1(y + 1) + 3(z – 2) = 0 hay   : 2 – 3 –11 0P x y z  Cách 2 : Mặt phẳng (P) có vtpt   2; 1;3 P n    luôn có dạng 2 – 3 ’ 0x y z D   vì mặt phẳng   P đi qua điểm   2; 1;2M   ' 1D   hay   : 2 – 3 –11 0P x y z  Hoặc có thể lí luận vì   P song song với   Q nên   P luôn có dạng 2 – 3 ’ 0x y z D   vì   P qua M    : 2 – 3 –11 0P x y z  GV : Mai Tiến Linh - Trường THPT Tĩnh Gia 4 4 Bài 2: (SGK – Ban Cơ Bản T92) Trong không gian với hệ toạ độ Oxyz cho mặt phẳng    có phương trình: 3x + 5y – z – 2 = 0 và đường thẳng d có phương trình 12 4 : 9 3 1 x t d y t z t            a. Tìm giao điểm M của đường thẳng d và mặt phẳng    b. Viết phương trình mặt phẳng    chứa điểm M và vuông góc với đường thẳng d Giải: a. Toạ độ điểm   M d    là nghiệm của phương trình 3(12 + 4t) + 5(9 + 3t) – (1 + t) – 2 = 0  t = 3 .Vậy   0;0; 2M  b. Cách 1 : Mặt phẳng    đi qua điểm   0;0; 2M  vuông góc với đường thẳng d nên mặt phẳng    đi qua điểm   0;0; 2M  và có vtpt  n  = d u  = (4;3;1) nên mặt phẳng    có phương trình là: 4(x – 0) + 3(y – 0) + 1(z +2) = 0 hay   : 4 3 2 0x y z      Cách 2: Mặt phẳng    có vtpt  n  = (4;3;1) luôn có dạng 4x + 3y + z + D’ = 0 vì mặt phẳng    đi qua điểm   0;0; 2M   D’ = 2 hay   : 4 3 2 0x y z      Chú ý: Có thể phát biểu bài toán dưới dạng như, cho biết tọa độ 3 điểm A, B, C. Viết phương trình mặt phẳng (P) đi qua điểm A và vuông góc với đường thẳng BC thì khi đó P n BC   Nhận xét : - Mặt phẳng    có vtpt   ; ;n a b c  thì    luôn có dạng ax + by + cz + D’ = 0 - Nếu cho    có dạng Ax + By + Cz + D = 0 thì    mà song song với        luôn có dạng Ax + By + Cz + D’ = 0 với ' 0D  - Hai mặt phẳng song song với nhau thì hai vtpt cũng song song (cùng phương) với nhau, mặt phẳng vuông góc với đường thẳng thì vtpt và vtcp cũng song song (cùng phương) với nhau . Điều này lý giải tại sao trong bài 1 câu b lại chọn P n  = Q n  ,thật vậy vì mặt phẳng   P song song với mặt phẳng (Q) nên hai vtpt cũng song song (cùng phương) với nhau hay P n  = k. Q n  , vì k  0 nên chọn k = 1 để P n  = Q n  . Tương tự như thế trong bài 2b ta chọn k = 1 để  n  = d u  , từ đó ta có nhận xét + Hai mặt phẳng song song với nhau thì chúng có cùng vtpt + Nếu mặt phẳng   P chứa hai điểm A và B thì AB  là một vtcp của mặt phẳng   P + Nếu mặt phẳng   P vuông góc với mặt phẳng (Q) thì vtpt của mặt phẳng   P là vtcp của mặt phẳng (Q) và ngược lại + Nếu mặt phẳng   P vuông góc với vecto AB  thì vecto AB  là một vtpt của mặt phẳng   P - Vectơ pháp tuyến cũng có thể cho ở hình thức là vuông góc với giá của vectơ a  nào đó, khi đó ta phải hiểu đây a  là vectơ chỉ phương Bài 3: (SGK – Ban Cơ Bản T92) Trong mặt phẳng với hệ toạ độ Oxyz cho điểm vectơ   6; 2; 3a     và   1;2; 3A   . Viết phương trình mặt phẳng    chứa điểm A và vuông góc với giá của vectơ a Hướng dẫn: Làm tương tự như bài 2b ta được   : 6 – 2 – 3 2 0x y z    GV : Mai Tiến Linh - Trường THPT Tĩnh Gia 4 5 Bài 4: (SGK – Ban Cơ Bản T80) Trong không gian với hệ toạ độ Oxyz .Viết phương trình mặt phẳng đi qua điểm   2;6; 3M  và lần lượt song song với các mặt phẳng toạ độ Giải: Nhận xét : - Các mặt phẳng toạ độ ở đây là Oxy; Oyz; Oxz . Thoạt đầu ta thấy các mặt phẳng này không thấy vtpt , nhưng thực ra chúng có vtpt, các vtpt này được xây dựng nên từ các vectơ đơn vị trên các trục Ox, Oy, Oz lần lượt là i  = (1;0;0) ; j  = (0;1;0) ; k  = (0;0;1), các vectơ này được coi là các vtcp - Bây giờ ta sẽ viết phương trình mặt phẳng   P đi qua M và song song với mặt phẳng 0xy còn các mặt phẳng khác làm tương tự Cách 1: Mặt phẳng   P đi qua   2;6; 3M  và song song với mặt phẳng Oxy  mặt phẳng   P đi qua M và vuông góc Oz nên mặt phẳng (P) đi qua M nhận vectơ P n  = k  làm vtpt có phương trình là : 0(x – 1) + 0(y – 6) + 1(z + 3) = 0 hay   : 3 0P z   Cách 2: Mặt phẳng   P song song với mặt phẳng 0xy  mặt phẳng   P song song với hai trục Ox và Oy  P n   i  và P n   j   P n  = [i  , j  ] = (0;0;1) là vtpt nên   : 3 0P z   Tương tự (P) // Oyz và đi qua điểm M nên   : 2 0P x   (P) // Oxz và đi qua điểm M nên   : 6 0P y   Cách 3: Mặt phẳng   P song song với mặt phẳng Oxy nên mặt phẳng   P luôn có dạng Cx + D = 0 vì mặt phẳng   P đi qua M    C. 3 D 0   vì C  0 nên chọn C = 1  D = 3 . Vậy mặt phẳng   P có phương trình là   : 3 0P z   Chú ý: Bài toán có thể phát biểu là viết phương trình (P) đi qua M // với Ox và Oy    P đi qua M // với mặt phẳng 0xy Loại 2: Có một cặp vectơ chỉ phương ,a b   (với , 0a b     có giá song song hoặc nằm trên mp ( )P ) - Tìm vtpt ,n a b        -   P là mp qua 0 0 0 0 ( , , )M x y z và có VTPT n  - Quay lại loại 1 Bài tập giải mẫu: Bài 5: (SGK – Ban Cơ Bản T80) Trong không gian với hệ toạ độ Oxyz . Viết phương trình mặt phẳng   P đi qua điểm   0; 1;2A  và song song với giá của mỗi vectơ u  = (3;2;1) và v  =   3;0;1 Giải: Cách 1: Mặt phẳng   P đi qua   0; 1;2A  và song song với giá của hai vectơ u  = (3;2;1) ;   3;0;1v     mặt phẳng   P đi qua A và c ó P n   u  ; P n   v  (với u  và v  không cùng phương)  mặt phẳng   P đi qua A và có vtpt       , 2; 6;6 2 1; 3;3 P n u v         mặt phẳng   P có phương trình là : GV : Mai Tiến Linh - Trường THPT Tĩnh Gia 4 6 1(x – 0) – 3(y + 1) +3(z – 2) = 0 hay   : – 3 3 – 9 0P x y z  Cách 2 : Làm tương tự như bài 1b khi biết   2; 6;6 P n    và   0; 1;2A  Bài 6: (SBT – Ban Cơ Bản T99) Trong không gian với hệ toạ độ Oxyz . Viết phương trình mặt phẳng    đi qua điểm   2; 1;2M  , song song với trục Oy và vuông góc với mặt phẳng   : 2 – 3 4 0x y z     Giải: Cách 1: Mặt phẳng    đi qua điểm   2; 1;2M  song song với trục 0y và vuông góc với mặt phẳng     mặt phẳng    đi qua M và có  n   j  ;  n    n  (với j  và  n  không cùng phương)  mặt phẳng    đi qua M và có vtpt  n  = [ j  ,  n  ] = (3;0;-2)  mặt phẳng    có phương trình là : 3(x – 2) + 0(y + 1) – 2(z – 2) = 0 hay   : 3 – 2 – 2 0x z   Cách 2: Làm tương tự như bài 1b khi biết   3;0; 2n     và   2; 1;2M  Cách 3: Giả sử mặt phẳng    có dạng :   2 2 2 0 0Ax By Cz D A B C        mặt phẳng    có vtpt   ; ;n A B C    - Mặt phẳng    đi qua điểm   2; 1;2M    .2 .( 1) .2 0 1A B C D      - Mặt phẳng    song song với trục Oy   . 0 .0 .1 .0 0 2n j A B C          - Mặt phẳng    vuông góc với mặt phẳng        . 0 .2 . 1 .3 0 3n n A B C            Giải hệ (1), (2) và (3)  3, 0, 2, 2.A B C D      Vậy mặt phẳng    có phương trình là : 3 – 2 – 2 0x z  Bài 7: (SBT – Ban Cơ Bản T98) Trong không gian Oxyz.Viết phương trình mặt phẳng    đi qua điểm   3; 1; 5M   đồng thời vuông góc với hai mặt phẳng   : 3 – 2 2 7 0x y z     và   : 5 – 4 3 1 0x y z     Giải: Cách 1: Mặt phẳng    đi qua điểm   3; 1; 5M   đồng thời vuông góc với hai mặt phẳng    và     mặt phẳng    đi qua điểm M và có  n    n  ;  n    n  (với  n  và  n  không cùng phương)  mặt phẳng    đi qua điểm M và có vtpt  n  = [  n  ,  n  ] = (2;1;-2)  mặt phẳng (  ) có phương trình là : 2(x – 3) + 1(y + 1) – 2(z + 5) = 0 hay    : 2 – 2 –15 0x y z  Cách 2: Làm tượng tự như bài 1b khi biết  n  =   2;1; 2 và   3; 1; 5M   Cách 3: Giả sử mặt phẳng    có dạng :   2 2 2 0 0Ax By Cz D A B C        mặt phẳng    có vtpt   ; ;n A B C    - Mặt phẳng    đi qua điểm   3; 1; 5M       .3 .( 1) . 5 0 1A B C D       - Mặt phẳng    vuông góc với mặt phẳng        . 0 .3 . 2 .2 0 2n n A B C            - Mặt phẳng    vuông góc với mặt phẳng        . 0 .5 . 4 .3 0 3n n A B C            GV : Mai Tiến Linh - Trường THPT Tĩnh Gia 4 Giáo viên: Nguyễn Thành Long Gmail: Loinguyen1310@gmail.com DĐ: 01694 013 498 7 Từ (1) và (2) ta được 3 21 , 6 2 2 C B A D B A     thế vào (3) ta được 2 A B  chọn 1, 2 2, 15 B A C D        Vậy phương trình mặt phẳng    là 2 – 2 –15 0 x y z   Bài 8: (ĐH – B 2006) Trong không gian với hệ toạ độ Oxyz, cho điểm A(0;1;2) và hai đường thẳng 1 1 1 : , ' : 1 2 2 1 1 2 x t x y z d d y t z t                  Viết phương trình mặt phẳng    đi qua A đồng thời song song với d và d’ Giải: Cách 1: Vì     1 2 0;1; 1 ; 1; 1;2 B d C d     và     1 2 , , / /B C d d     Vecto chỉ phương của 1 2 d và d lần lượt là     1 2 2;1; 1 1; 2;1 u và u       vecto pháp tuyến của    là   1 2 , 1; 3; 5 n u u             Vì    đi qua     0;1;2 : 3 5 13 0 A x y z       Đs:   : 3 5 13 0 x y z      Cách 2: Giả sử mặt phẳng    có dạng :   2 2 2 0 0 Ax By Cz D A B C         mặt phẳng    có vtpt   ; ; n A B C    - Mặt phẳng    đi qua điểm M   .0 .1 .2 0 1 A B C D     - Mặt phẳng    song song với đường thẳng d     . 0 .2 .1 . 1 0 2 d n u A B C           - Mặt phẳng    song song với đường thẳng d ’     ' . 0 .1 . 2 .1 0 3 d n u A B C           Từ (1) và (2) ta được 2 , 4 3 C A B D A B      thế vào (3) ta được 3 A B  chọn 1, 3 5, 13 A B C D       Vậy phương trình mặt phẳng    là 3 5 13 0 x y z     Nhận xét: Nếu điểm A d  (hoặc ' A d  ) thì bài toán trở thành viết phương trình mặt phẳng    chứa d (hoặc ' d ) và song song với ' d (hoặc d ) Bài tập tự giải: Bài 1: a. Trong không gian với hệ toạ độ Oxyz cho 3 điểm       3;4;1 , 2;3;4 , 1;0;2 . M N E Viết phương trình mặt phẳng    đi qua điểm E và vuông góc với MN. (Đề thi tốt nghiệp BTTHPT lần 2 năm 2007) b. Viết phương trình mặt phẳng    đi qua   1; 2;1 K  và vuông góc với đường thẳng 1 : 1 2 1 3 x t d y t z t              . (Đề thi tốt nghiệp THPT lần 2 năm 2007) GV : Mai Tiến Linh - Trường THPT Tĩnh Gia 4 8 Đs: a.   : 3 5 0x y z      b.   : 2 3 8 0x y z      Bài 2: Trong không gian với hệ toạ độ Oxyz cho điểm   1; 1;0M   và mặt phẳng   P có phương trình: 2 4 0.x y z    Viết phương trình mặt phẳng    đi qua M và song song với   P Đs:   : 2 2 0x y z      (Đề thi tốt nghiệp THPT hệ phân ban năm 2007) Bài 3: Viết phương trình mặt phẳng    đi qua điểm   2;3;1M  và vuông góc với hai mặt phẳng     : 2 2 5 0 và : 3 2 3 0P x y z Q x y z        (Sách bài tập nâng cao hình học 12) Đs:   : 3 4 19 0x y z      Bài 4: Viết phương trình mặt phẳng    đi qua điểm   2;1; 1M  và qua giao tuyến của hai mặt phẳng: 4 0 và 3 1 0.x y z x y z        (Sách bài tập nâng cao hình học 12) Đs:   :15 7 7 16 0x y z      Dạng 2 : Viết phương trình mặt phẳng (P) đi qua điểm M 1 (x 1 ;y 1 ;z 1 ) và M 2 (x 2 ;y 2 ;z 2 ) đồng thời thoả mãn điều kiện a. Vuông góc với mặt phẳng b. Song song với đường thẳng d (hoặc trục Ox, Oy, Oz) c. Có khoảng cách từ điểm M tới là h d. Tạo với một góc   Q một góc  Bài tập giải mẫu: Bài 1: (SGK – Ban Cơ Bản T80) Trong không gian với hệ toạ độ Oxyz .Viết phương trình mặt phẳng    đi qua hai điểm     1;0;1 , 5;2;3M N và vuông góc với mặt phẳng   : 2 – – 7 0x y z    Giải: Cách 1 : Mặt phẳng    đi qua hai điểm M(1;0;1); N(5;2;3) và vuông góc với mặt phẳng (  )  mặt phẳng    đi qua điểm M và  n   MN ;  n    n  (với MN và  n  không cùng phương)  mặt phẳng    đi qua điểm M và có vtpt  n  = [ MN ,  n  ] =   4;0; 8 = 4   1;0; 2  mặt phẳng    có phương trình là : 1(x – 1) + 0(y – 0) – 2(z – 1) = 0 hay    : x – 2z + 1 = 0 Cách 2: Giả sử mặt phẳng    có dạng :   2 2 2 0 0Ax By Cz D A B C        mặt phẳng    có vtpt   ; ;n A B C    - Mặt phẳng    đi qua   1;0;1M   .1 .0 .1 0 1A B C D     - Mặt phẳng    đi qua   5; 2;3N   .5 .2 .3 0 2A B C D     - Mặt phẳng    vuông góc với mặt phẳng        . 0 .2 . 1 .1 0 3n n A B C            Từ (1) và (2) ta được – 2 – ,C A B D A B   thể vào (3) ta được –2 0B  chọn 1, 0 2, 1A B C D     GV : Mai Tiến Linh - Trường THPT Tĩnh Gia 4 9 Vậy phương trình mặt phẳng    là – 2 1 0x z   Bài 2: Trong không gian với hệ toạ độ Oxyz .Viết phương trình mặt phẳng (P) đi qua hai điểm   4; 1;1M  ;   3;1; 1N  và cùng phương (song song) với trục Ox Giải: Cách 1 : Mặt phẳng (P) đi qua điểm   4; 1;1M  ;   3;1; 1N  và cùng phương với trục Ox mặt phẳng (P) đi qua điểm M và P n MN   ; P n   i  (với và i  không cùng phương)  mặt phẳng (P) đi qua điểm M và nhận vtpt P n  = [ , i  ] =   0; 2; 2  =   2 0;1;1  mặt phẳng (P) có phương trình là : 0(x – 4) + 1( y + 1) + 1(z – 1) = 0 hay (P): y + z = 0 Cách 2: Làm tương tự bài 1 (cách 2) điều kiện ở đây là P n   i  Bài 3: (SBT – Ban Nâng Cao T126) Trong mặt phẳng Oxyz .Viết phương trình mặt phẳng (Q) đi qua hai điểm     3;0;0 , 0;0;1A C và tạo với mặt phẳng Oxy một góc = 60 o Giải: Cách 1: Mặt phẳng (Q) đi qua A, C và tạo với mặt phẳng Oxy một góc bằng 60 o nên mặt phẳng (Q) cắt mặt phẳng Oxy tại điểm B(0;b;0) Oy khác gốc toạ độ O  b  0  mặt phẳng (Q) là mặt phẳng theo đoạn chắn có phương trinh là : 1 13  z b yx hay (Q): bx + 3y + 3bz – 3b = 0  mặt phẳng (Q) có vtpt Q n  = (b;3;3b) Mặt phẳng 0xy có vtpt k  = (0;0;1) .Theo giả thiết ,ta có |cos ( Q n  , k  )| = cos60 o  2 1 99 3 2   bb b  26 3 26 9 996 22  bbbbb Vậy có hai mặt phẳng thoả mãn là : (Q 1 ) : x – 26 y + 3z – 3 = 0 (Q 2 ) : x + 26 y + 3z – 3 = 0 Cách 2: vì A Ox và C  Oz Gọi AB là giao tuyến của mặt phẳng (Q) và mặt phẳng 0xy .Từ O hạ OI  AB . Theo định lý ba đường vuông góc ta có AB  CI   0 60OIC  Trong  vuông OIC ta có OI = OC.tan  OIC = 1.tan60 o = 3 3 Trong  vuông OAB ta có 222 111 OBOAOI   232 1 3 1 3 3 1 OB           OB = 26 3  B 1 (0; 26 ;0)  Oy hoặc B 2 (0; 26 ;0)  Oy .Vậy có hai mặt phẳng (Q) thoả mãn là 1 13 26 3  zyx hay (Q) : x  26 y + 3z – 3 = 0 GV : Mai Tiến Linh - Trường THPT Tĩnh Gia 4 10 Bài 4: Trong không gian với hệ toạ độ Oxyz . Viết phương trình mặt phẳng    đi qua hai điểm     2;1;3 , 1; 2;1M N  và song song với đường thẳng d có phương trình là: 1 : 2 3 2 x t d y t z t             Giải: Cách 1: Mặt phẳng    đi qua hai điểm     2;1;3 , 1; 2;1M N  và song song với đường thẳng d  mặt phẳng    đi qua điểm M và n MN     ;  n   d u  (với MN  và d u  không cùng phương)  mặt phẳng    đi qua điểm M và có vtpt  n  = [ MN  , d u  ] =   10; 4;1  mặt phẳng    có phương trình là : 10(x – 2) – 4(y – 1) + 1(z – 3) = 0 hay    : 10 4 19 0x y z    Cách 2: Giả sử mặt phẳng    có dạng :   2 2 2 0 0Ax By Cz D A B C        mặt phẳng    có vtpt   ; ;n A B C    - Mặt phẳng    đi qua   2;1;3M   .2 .1 .3 0 1A B C D     - Mặt phẳng    đi qua   1; 2;1N      .1 . 2 .1 0 2A B C D      - Mặt phẳng    song song với đường thẳng d     . 0 .1 .2 . 2 0 3 d n u A B C           Từ (1) và (2) ta được 1 3 1 7 , 2 2 2 2 C A B D A B      thế vào (3) ta được 2 5A B  chọn 1 19 5, 2 , 2 2 A B C D       Vậy phương trình mặt phẳng    là 1 19 5 2 0 10 4 19 0 2 2 x y z x y z         Bài 5: Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(-1;1;0), B(0;0;-2) và C(1;1;1). Hãy viết phương trình mặt phẳng (P) qua hai điểm A và B, đồng thời khoảng cách từ C tới mặt phẳng (P) bằng 3 . Giải: Giả sử mặt phẳng   P có dạng :   2 2 2 0 0Ax By Cz D A B C        mặt phẳng   P có vtpt   ; ; P n A B C  - Mặt phẳng   P đi qua   1;1;0A      . 1 .1 .0 0 1A B C D      - Mặt phẳng   P đi qua   0;0; 2B      .0 .0 . 2 0 2A B C D      Từ (1) và (2) ta được   1 , 2 C A B D A B    Nên mặt phẳng   P có phương trình là     1 0 2 Ax By A B z A B      Theo giả thiết           2 2 2 2 2 1 7 2 ; 3 3 5 2 7 0 1 5 1 2 A B A B A B A A d I P A AB B B B A B A B                           GV : Mai Tiến Linh - Trường THPT Tĩnh Gia 4 [...]... (thường có hai mặt phẳng thỏa mãn) Chú ý: Điều kiện cho trước là   - Song song với mặt phẳng  Q  cho trước  nP  nQ   - Vuông góc với đường thẳng d cho trước  nP  ud    - Song song với hai đường thẳng d 1 và d2 cho trước  nP   u1 , u2     - Vuông góc với hai mặt phẳng  Q  và  R  cho trước  nP   n1 , n2     - Song song với đường thẳng d và vuông góc với mặt phẳng  Q  cho...    2 VTPT của mặt phẳng   là: n  u  MN 3 Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có 1 VTPT Chú ý: Thực chất đây là bài toán viết phương trình mặt phẳng đi qua ba điểm phân biệt cho trước Loại 4: Viết phương trình mặt phẳng   chứa đường thẳng  và tạo với mặt phẳng    (hoặc đường thẳng d ) một góc  Loại 5: Viết phương trình mặt phẳng   chứa đường thẳng  và cách... bằng 2 và vắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 3 2 Viết phương trình mặt phẳng (Q) chứa đường thẳng d và tạo với mặt phẳng (P) một góc nhỏ nhất PT Giải: G V :M ai Ti ến Li nh -T rư ờn g TH  x  t  1 Đường thẳng  có phương trình tham số là:  :  y  1  2t ; t  R z  2  t  Gọi tâm mặt cầu là I Giả sử I (t; 1  2t; 2  t )   Vì tâm mặt cầu cách mặt phẳng (P) một... vtpt nQ   4;3; 12  Mặt cầu (S)  (x – 1)2 + (y – 2)2 + (z – 3)2 = 16  mặt cầu (S) có tâm I(1;2;3) và có bán kinh R = 4 Mặt phẳng (P) song song với mặt phẳng (Q)  mặt phẳng (P) luôn có dạng 4x + 3y – 12z + D’ = 0 Mặt phẳng (P) tiếp xúc với mặt cầu (S)  d  I ,  P    R 4.1  3.2  12.3  D '  D '  26  4  D ' 26  52   16  9  144  D '  78 Vậy có hai mặt phẳng thỏa mãn đầu bài là... phương trình mặt phẳng (  ) song song với trục Oz, vuông góc với mặt phẳng (P): x + y + z = 0 và tiếp xúc với mặt cầu (S): x2 + y2 + z2 – 2x + 2y – 4z – 3 = 0 Giải:  Mặt phẳng (P) có vtpt n P = (1;1;1) Mặt cầu (S)  (x – 1)2 + (y + 1)2 + (z – 2)2 = 9  mặt cầu (S) có tâm I 1; 1; 2  và có bán kính R = 3 Tĩ nh G ia 4  rư ờn g TH PT Mặt phẳng (  ) song song với trục Oz và vuông góc với mặt phẳng (P)... Trong không gian với hệ toạ độ O xyz cho mặt cầu (S): x2 + y2 + z2 – 6x – 2y + 4z + 5 = 0 và điểm M(4;3;0) Viết phương trình mặt phẳng (P) tiếp xúc với mặt cầu (S) và đi qua điểm M Giải: Vì M(4;3;0)  (S) nên mặt phẳng (P) đi qua M và tiếp xúc với mặt cầu (S) là mặt phẳng đi qua M và   nhận IM  1; 2; 2  làm vtpt với I  3;1; 2  là tâm của mặt cầu (S)  mặt phẳng (P) có phương trình là: 1(x – 4)... 1;1 và D  0;3;1 Viết phương trình mặt phẳng (P) đi qua A, B sao cho  ( ) : khoảng cách từ C đến mặt phẳng (P) bằng khoảng cách từ D đến mặt phẳng (P) Giải: Cách 1: Giả sử mặt phẳng  P  có dạng : ax  by  cz  d  0  a 2  b 2  c 2  0    mặt phẳng  P  có vtpt nP   A; B; C  11 - Mặt phẳng  P  đi qua A 1; 2;1  a.1  b.2  c.1  d  0 1 - Mặt phẳng  P  đi qua B  2;1;3   a... cho hai đường thẳng x  1  t x  2 y  z  4  0  1 :  2 :  y  2  t x  2 y  2z  4  0  z  1  2t  Viết phương trình mặt phẳng  P  chứa đường thẳng 1 và song song với đường thẳng  2 G V :M ai Ti ến Giải: Cách 1:   Chọn M  0; 2;0    1 và  1 có vtcp u1 = (2;3;4),  2 có vtcp u 2 = (1;1;2) Mặt phẳng (P) chứa đường thẳng  1 và song song với đường thẳng  2     mặt phẳng (P)... một mặt phẳng (  ) b Viết phương trình mặt phẳng (  ) Giải:   a Chọn M1(1 ;-2 ;5)  d 1 và d 1 có vtcp n = (2 ;-3 ;4) ,chọn M2(7;2;1)  d2 và d2 có vtcp u 2 = (3;2 ;-2 ) Tính     n = [ u1 , u 2 ] = (-2 ;16;13) và M 1M 2 = (6;4 ;-4 )   Xét n M 1M 2 = (-2 ).6 + 16.4 +13. (-4 ) = 0    d1 và d 2 cùng nằm trên mặt phẳng (  ) ,mặt khác ta có u1  u2  d 1 và d2 cắt nhau b Cách 1:   Mặt phẳng. .. 2y + 26z – 113 = 0 và d :   2 3 2 Giải:  Đường thẳng d có vtcp ud   2; 3; 2  Mặt cầu (S)  (x – 5)2 + (y + 1)2 + (z + 13)2 = 308  mặt cầu (S) có tâm I  5; 1; 13 và bán kính R  308   Mặt phẳng (P) vuông góc với đường thẳng d nên có vtpt nP  ud   2; 3; 2   mặt phẳng (P) luôn có dạng 2x – 3y + 2z + D’ = 0 Mặt phẳng (P) tiếp xúc với mặt cầu (S)  d  I ,  P    R 2.(5)  3.( 1) .  3: Phương trình chùm mặt phẳng: Tập hợp các mặt phẳng ( )  chứa đường thẳng ( ) ( )      được gọi là chùm mặt phẳng xác định bởi mặt phẳng ( )  và mặt phẳng ( )  Nếu 1 1 1. Viết phương trình mặt phẳng    chứa đường thẳng  và tạo với mặt phẳng    (hoặc đường thẳng d ) một góc  Loại 5: Viết phương trình mặt phẳng    chứa đường thẳng  và cách một. Hai mặt phẳng song song với nhau thì chúng có cùng vtpt + Nếu mặt phẳng   P chứa hai điểm A và B thì AB  là một vtcp của mặt phẳng   P + Nếu mặt phẳng   P vuông góc với mặt phẳng

Ngày đăng: 29/05/2015, 05:00

TỪ KHÓA LIÊN QUAN

w