Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 39 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
39
Dung lượng
611,36 KB
Nội dung
Nguyễn Phú Khánh -ðà Lạt Các vấn đề liên quan Hàm số lớp 12 Giá trị lớn nhất và nhỏ nhất Nguy ễ n Ph ú Kh ánh – ð à L ạt 77 TĨM TẮT LÝ THUYẾT • Hàm số ( ) f x xác định và có liên tục trên đoạn ; a b thì ( ) ' f x xác định trên khoảng ( ) ; a b . • Hàm số ( ) f x xác định và có liên tục trên nửa đoạn ) ( ; ; a b hay a b thì ( ) ' f x xác định trên khoảng ( ) ; a b . • Hàm số có thể khơng đạt giá trị lớn nhất hoặc nhỏ nhất trên một tập hợp số thực cho trước . ( ) ( ) ( ) ( ) ( ) ( ) { } 1 2 ; ; max max , , , i x a b x a b f x f a f x f x f x f b ∈ ∈ • = ( ) ( ) ( ) ( ) ( ) ( ) { } 1 2 ; ; min min , , , i x a b x a b f x f a f x f x f x f b ∈ ∈ • = ( ) ( ) ( ) 0 0 , max , x D x D f x M M f x x D f x M ∈ ∀ ∈ ≤ • = ⇔ ∃ ∈ = ( ) ( ) ( ) 0 0 , min , x D x D f x m m f x x D f x m ∈ ∀ ∈ ≥ • = ⇔ ∃ ∈ = CÁC BÀI TỐN CƠ BẢN Ví dụ 1: Giải : Xét : 2 1 ( 1 ) 1 1 1 1 2 (2 1)( 1) 2 ( 1) 1 4 4 1 n n n n n n n n n n n n n + − + − = < = − + + + + + + + Vậy : 1 1 1 1 1 1 1 1 1 1 2 2 3 3 5 1 n S n n n < − + − + + − = − + 2 2 2 2 2 1 1 1 2 2( 2) 4 4 4 4 n n n S S n n n n n < − < − = − ⇒ < + + + + + 2001 2001 2 2001 2001 2001 2 1 2003 2003 4006 n S S= ⇒ < − = ⇒ < GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦ A HÀM SỐ Chứng minh rằng : 1 1 1 1 2001 4006 3(1 2) 5( 2 3) 7( 3 4) 4003( 2001 2002) + + + + < + + + + Nguyễn Phú Khánh -ðà Lạt Các vấn ñề liên quan Hàm số lớp 12 Giá trị lớn nhất và nhỏ nhất Nguy ễ n Ph ú Kh ánh – ð à L ạt 78 Ví dụ 2: Giải : Vận dụng bất ñẳng thức a b a b − ≥ − . Dấu " " = xảy ra khi 0 ab ≥ 1 1 2 2 2008 2008 1 1 1 1 1 1 x x x x x x − ≥ − − ≥ − − ≥ − 1 2 2008 1 2 2008 2008 1 1 1 1 1 1 1 so E x x x x x x ⇒ = − + − + + − ≥ + + + − + + + Hay 2009 2008 1 E ≥ − = Dấu " " = xảy ra khi 1 2 3 4 2008 1 2 2008 , , , , 0 2009 x x x x x x x x ≥ + + + = Vậy min 1 E = khi 1 2 3 4 2008 1 2 2008 , , , , 0 2009 x x x x x x x x ≥ + + + = Ví dụ 3: Giải : Ta có 2 2 ( , ) ( 1) ( 1) 5 5 P x y x y = − + + + ≥ , x y ∀ ∈ ℝ Dấu " " = xảy ra khi 1 1 x y = = Vậy min ( , ) 5 P x y = khi ( ) ( ) , 1;1 x y = Ví dụ 4: Cho 1 2 3 4 2008 , , , , x x x x x thoả mãn 1 2 2008 2009 x x x+ + + = . Tìm giá trị nhỏ nhất của biểu thức 1 2 2008 1 1 1 E x x x = − + − + + − Tìm GTNN của biểu thức 2 2 ( , ) 2 2 7 P x y x y x y = + − + + . Cho 2 2 9 0 x y z + − − = . Tìm GTNN của biểu thức 2 2 2 (1 ) (2 ) (3 ) P x y z = − + − + − . Nguyễn Phú Khánh -ðà Lạt Các vấn ñề liên quan Hàm số lớp 12 Giá trị lớn nhất và nhỏ nhất Nguy ễ n Ph ú Kh ánh – ð à L ạt 79 Giải : Trong không gian Oxyz ta xét ñiểm ( ) 1;2;3 A và mặt phẳng ( ) : 2 2 9 0 x y z α + − − = Nếu ( ) ( ) ; ;M x y z α ∈ thì 2 2 2 2 (1 ) (2 ) (3 ) AM x y z = − + − + − Mà 2 4 3 9 ( ; ) 2 4 4 1 AM d A α + − − ≥ = = + + nên 2 2 2 (1 ) (2 ) (3 ) 4 P x y z = − + − + − ≥ . Dấu " " = xảy ra khi ( ) ; ; M x y z là chân ñường vuông góc hạ từ ( ) 1;2;3 A lên mặt phẳng ( ) α . Vậy min 4 P = . Ví dụ 5: Giải : 2 2 3 5 , 1 ( 1) x x A x x + + = ≠ − 2 2 2 ( 2 1) 5.( 1) 9 5 9 1 1 ( 1) ( 1) x x x A x x x − + + − + = = + + − − − ðặt 1 , 0 1 t t x = ≠ − 2 2 5 11 11 1 9 3 6 6 6 A t t t = + + = + + ≥ Dấu " " = xảy ra khi 5 1 5 13 8 1 8 5 t x x = − ⇔ = − ⇔ = − − 2 2 3 8 6 ( 1) 2 1 x x B x x x − + = ≠ − + 2 2 2 3( 2 1) 2( 1) 1 2 1 3 1 ( 1) ( 1) x x x B x x x − + − − + = = − + − − − Tìm GTNNcủa biểu thức 2 2 3 5 , 1 ( 1) x x A x x + + = ≠ − 2 2 3 8 6 ( 1) 2 1 x x B x x x − + = ≠ − + 2 2 1 1, N x x x x x = + + + − + ∈ ℝ Nguyễn Phú Khánh -ðà Lạt Các vấn ñề liên quan Hàm số lớp 12 Giá trị lớn nhất và nhỏ nhất Nguy ễ n Ph ú Kh ánh – ð à L ạt 80 ðặt 1 , 0 1 t t x = ≠ − ( ) 2 2 3 2 1 2 2 B t t t = − + = − + ≥ Dấu " " = xảy ra khi 1 1 1 2 1 t x x = ⇔ = ⇔ = − Vậy min 2 B = khi 2 x = 2 2 1 1, N x x x x x = + + + − + ∈ ℝ Bài toán này có rất nhiều cách giải và tôi ñã giới thiệu trong chuyên ñề bất ñẳng thức. Nhân ñây tôi giới thiệu 5 cách giải ñộc ñáo . Cách 1 : 2 2 2 2 1 3 1 3 2 2 2 2 N x x = + + + − + 2 2 2 2 1 3 1 3 ( ) 0 ( 0 2 2 2 2 N x x = − − + − − + − + − Trên mặt phẳng toạ ñộ Oxy xét các ñiểm ( ) 1 3 1 3 , , , , ,0 2 2 2 2 A B C x − − Dựa vào hình vẽ ta có N AC CB AB = + ≥ 2 1 AC x x = + + , 2 1 BC x x = − + Mà 2 2 1 1 3 3 2 2 2 2 2 2 AB AB = + + + = ⇒ = Dấu " " = xảy ra khi , , A B C thẳng hàng , hay 0 x = , nghĩa là C O ≡ Vậy min 2 N = khi 0 x = Cách 2: Dùng bất ñẳng thức vectơ : a b a b N a b + ≥ + ⇒ ≥ + Nguyễn Phú Khánh -ðà Lạt Các vấn ñề liên quan Hàm số lớp 12 Giá trị lớn nhất và nhỏ nhất Nguy ễ n Ph ú Kh ánh – ð à L ạt 81 Chọn : 2 2 1 3 1 3 ; 1, ; 1 2 2 2 2 a x a x x b x b x x = − + ⇒ = − + = + ⇒ = + + ( ) 2 2 (1; 3) 1 3 2 2 a b a b N + = ⇒ + = + = ⇒ ≥ Dấu " " = xảy ra khi 0 a b x = ⇔ = Vậy min 2 N = khi 0 x = Cách 3: Do 2 2 1 1, N x x x x x = + + + − + ∈ ℝ , do ñó gợi ta nghĩ ñến bất ñẳng thức trung bình cộng, trung bình nhân . Ta có : ( ) ( ) 4 2 2 4 2 4 2 1 1 2 1 2,N x x x x x x x ≥ − + + + = + + ≥ ∈ ℝ Dấu " " = xảy ra khi 2 2 4 2 1 1 0 1 1 x x x x x x x + + = − + ⇔ = + + = Vậy min 2 N = khi 0 x = Cách 4: Vì ( ) 2 2 2 4 2 2 1 0, 0, 2 1 2 1 1 0, x x x N x N x x x x x x − + ≥ ∀ ∈ ⇒ ≥ ∀ ∈ ⇒ = + + + + + + ≥ ∀ ∈ ℝ ℝ ℝ Do 2 4 2 1 1 1 1 x x x + ≥ + + ≥ . ðẳng thức ñồng thời xảy ra khi 0 x = , nên 2 4 2 N N ≥ ⇒ ≥ Vậy min 2 N = khi 0 x = Cách 5: Dễ thấy ( ) 2 2 1 1,N f x x x x x x = = + + + − + ∈ ℝ là hàm số chẵn x ∈ ℝ . Với 1 2 0 x x ∀ > > , ta có ( ) ( ) 1 2 0, 0 f x f x > > nên dấu của ( ) ( ) 1 2 f x f x − cũng là dấu của ( ) ( ) 2 2 1 2 f x f x − ( ) ( ) ( ) ( ) 2 2 2 2 4 2 4 2 1 2 1 2 1 1 2 2 2 2 1 1 . f x f x x x x x x x− == − + + + − + + Vì 2 2 1 2 1 2 4 2 4 2 1 1 2 2 0 0 1 1 x x x x x x x x > > > > ⇒ + + ≥ + + nên ( ) ( ) 2 2 1 2 1 2 0, 0 f x f x x x − > ∀ > > Suy ra ( ) ( ) 1 2 1 2 0, 0 f x f x x x − > ∀ > > Với 0 x > thì hàm số ( ) f x luôn ñồng biến và 0 x < thì hàm số ( ) f x luôn nghịch biến và ( ) 0 2 f = Vậy ( ) f x ñạt ñược giá trị cực tiểu tại 0 x = . Do ñó min 2 N = khi 0 x = . Nguyễn Phú Khánh -ðà Lạt Các vấn ñề liên quan Hàm số lớp 12 Giá trị lớn nhất và nhỏ nhất Nguy ễ n Ph ú Kh ánh – ð à L ạt 82 Ví dụ 6: Giải : Ví dụ 7: Giải : 2 2 2 2 3 6 10 4 4 3 3 7 2 2 2 2 ( 1) 1 x x A x x x x x + + = = + = + ≤ + + + + + + Dấu " " = xảy ra khi 2 ( 1) 0 1 x x + = ⇔ = − Vậy max 7 A = khi 1 x = − 2 , 0 ( 2000) x M x x = > + Vì 0 x > nên 0 M > .Do ñó 1 max min M M → ⇔ → 2 2 2 2 2 1 1 2 .2000 2000 2.2000 2000 4.2000 ( 2000) . x x x x x x M x x x + + − + + = + = = 2 1 ( 2000) 8000 8000 x M x − = + ≥ Tìm GTLNcủa biểu thức 2 2 3 6 10 2 2 x x A x x + + = + + 2 , 0 ( 2000) x M x x = > + Tìm GTLN và NN của biểu thức Nguyễn Phú Khánh -ðà Lạt Các vấn ñề liên quan Hàm số lớp 12 Giá trị lớn nhất và nhỏ nhất Nguy ễ n Ph ú Kh ánh – ð à L ạt 83 Dấu " " = xảy ra khi 2000 x = 1 1 min 8000 max 8000 M M = → = Vậy 1 max 8000 M = khi 2000 x = Ví dụ 8: Giải : ( ) ( ) ( ) 2 2 2 2 10 3 , 3 2 5 3 0, * 3 2 1 x x A x A x A x A x x x + + = ∀ ∈ ⇔ − + − + − = ∀ ∈ + + ℝ ℝ • 2 3 2 0 , 3 A A x − = ⇔ = ∀ ∈ ℝ • 2 3 2 0 , 3 A A x − ≠ ⇔ ≠ ∀ ∈ ℝ phương trình ( ) * là phương trình bậc 2 ñối với x . Do ñó phương trình ( ) * có nghiệm nếu ( ) ( )( ) 2 5 5 4 3 2 3 0 7 2 A A A A ∆ = − − − − ≥ ⇔ ≤ ≤ Vậy 5 max 7, min 2 A A = = 2 2 2 2 12 8 3 , (2 1) x x B x x + + = ∈ + ℝ ðặt tan 2, 2 2 u x x π π − = < < 4 2 4 2 2 4 2 2 2 2 2 2 3 tan 4 tan 3 3cos 4 sin cos 3 sin sin 2 ( ) 3 2 (1 tan ) (sin cos ) u u u u u u u A g u u u u + + + + = = = = − + + Vì 2 5 5 5 min ( ) min 0 sin 2 1 ( ) 3 2 2 2 max ( ) 3 max 3 g u B u g u g u B = = ≤ ≤ ⇒ ≤ ≤ ⇒ ⇒ = = Ví dụ 9: Giải : Tìm giá trị lớn nhất và nhỏ nhất của biểu thức : 2 2 2 10 3 , 3 2 1 x x A x x x + + = ∈ + + ℝ 2 2 2 2 12 8 3 , (2 1) x x B x x + + = ∈ + ℝ Cho 2 2 2 1 x y z + + = . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức : T xy yz zx = + + . Nguyễn Phú Khánh -ðà Lạt Các vấn ñề liên quan Hàm số lớp 12 Giá trị lớn nhất và nhỏ nhất Nguy ễ n Ph ú Kh ánh – ð à L ạt 84 Ta có 2 2 2 2 ( ) 0 2( ) 0 x y z x y z xy yz zx + + ≥ ⇒ + + + + + ≥ hay 1 1 2 0 2 T T + ≥ ⇔ ≥ − Dấu " " = xảy ra chẳng hạn khi 1 1 0; ; 2 2 x y z= = = − Vậy 1 min 2 T = − chẳng hạn khi 1 1 0; ; 2 2 x y z= = = − Mặt khác 2 2 2 2 2 2 ( ) 0 ( ) 0 2( ) 2( ) ( ) 0 x y y z x y z xy yz zx z x − ≥ − ≥ ⇒ + + ≥ + + − ≥ hay 2 2 1 T T ≥ ⇔ ≤ Dấu " " = xảy ra khi 3 3 x y z= = = ± Vậy max 1 T = khi 3 3 x y z= = = ± Ví dụ 10: Giải : Áp dụng bất ñẳng thức trung bình cộng , trung bình nhân. 2 1 1 (1 )(1 ) xy x y x y x y + ≥ + + + + 1 1 1 2 1 1 (1 )(1 ) x y x y + ≥ + + + + Cộng vế theo vế , ta ñược: ( ) 2 2 1 1 2 1 (1 (1 )(1 ) (1 )(1 ) 1 (1 )(1 ) (1 )(1 ) xy xy xy x y x y xy x y x y + + ≥ ⇔ ≤ ⇔ + ≤ + + ⇔ + + ≥ + + + + + Dấu " " = xảy ra khi 0 x y = > Ví dụ 11: Giải : Chứng minh rằng với mọi 0, 0 x y > > , ta luôn có ( ) 2 (1 )(1 ) 1 x y xy + + ≥ + . Cho 4 a ≥ , chứng minh rằng : 1 17 4 a a + ≥ . Nguyễn Phú Khánh -ðà Lạt Các vấn ñề liên quan Hàm số lớp 12 Giá trị lớn nhất và nhỏ nhất Nguy ễ n Ph ú Kh ánh – ð à L ạt 85 Ta có : 1 1 15 16 16 a a a a a + = + + Áp dụng bất ñẳng thức trung bình cộng , trung bình nhân cho hai số dương 16 a và 1 a . 1 1 1 1 2 . 2 16 16 16 2 a a a a + ≥ = = Mà 15 15 15 4 .4 16 16 4 a a ≥ ⇒ ≥ = Vậy : 1 1 15 17 16 16 4 a a a a a + = + + ≥ Dấu " " = xảy ra khi 4 a = . Ví dụ 12: Giải : ðặt 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1A a b c a b c a b b c a c a b c = + + + = + + + + + + + Áp dụng bất ñẳng thức trung bình cộng , trung bình nhân cho hai số dương, ta ñược: 3 2 2 2 3 3 3 3 3 1 1 1 1A abc abc a b c a b c ≥ + + + = + Và 3 1 1 8 8 3 8 + + ≤ = ⇒ ≤ ⇒ ≥ a b c abc abc abc Vậy : 3 1 729 1 8 512 A ≥ + = . Dấu " " = xảy ra khi 2 a b c = = = . Cho 0 x y > ≥ . Chứng minh rằng : 2 4 3 ( )( 1) x x y y + ≥ − + Áp dụng bất ñẳng thức trung bình cộng , trung bình nhân cho bốn số dương 2 8 2 2 , 1, 1, ( )( 1) x y y y x y y − + + − + 2 4 2 2 8 8 2 2 2( 1) 4 2( )( 1) ( )( 1) ( )( 1) x y y x y y x y y x y y ⇒ − + + + ≥ − + − + − + 2 2 4 4 1 4 3 ( )( 1) ( )( 1) x x x y y x y y ⇔ + + ≥ ⇔ + ≥ − + − + Cho , , 0 a b c > thoả mãn 6 a b c + + = . Chứng minh rằng : 3 3 3 1 1 1 729 1 1 512 a a b c + + + ≥ . Nguyễn Phú Khánh -ðà Lạt Các vấn ñề liên quan Hàm số lớp 12 Giá trị lớn nhất và nhỏ nhất Nguy ễ n Ph ú Kh ánh – ð à L ạt 86 Dấu " " = xảy ra khi 2 8 2 2 2( 1) 2; 1 ( )( 1) x y y x y x y y − = + = ⇔ = = − + Ví dụ 13: Giải : ðiều kiện : 2008 x ≥ . ðặt 2 2 2007 0 2 2009 2008 2008 0 a x x a x b b x = − ≥ + = + ⇒ = + = − ≥ , ta có : 2 2 1 1 2009 2008 2009 2008 a b A a b a b a b = + = + + + + + Áp dụng bất ñẳng thức trung bình cộng , trung bình nhân 2009 2008 2 2009, 2 2008 a b a b + ≥ + ≥ Do ñó 1 1 2 2009 2 2008 A ≤ + Dấu " " = xảy ra khi 2 2 2 2 2009 2009 2007 4006 2008 2008 2008 a a x a a x b x b b b = = = + ⇔ ⇒ ⇒ = = = + = Vậy 1 1 max 2 2009 2 2008 A = + khi 4006 x = Ví dụ 14: Giải : Với , 0 x y > ta luôn có 1 1 4 x y x y + ≥ + 2 2 2 2 2 2 1 1 1 1 1 4 1 2 2 2 2 A x y xy x y xy xy x y xy xy = + = + + ≥ + + + + + hay ( ) 2 4 1 A xy x y ≥ + + Mặt khác ( ) 2 1 2 4 4 x y x y xy xy + + ≥ ⇒ ≤ = Tìm giá trị lớn nhất của biểu thức 2007 2008 2 x x A x x − − = + + . Cho , 0 x y > thoả mãn 1 x y + = . Tìm GTNN của biểu thức 2 2 1 1 A x y xy = + + . . thức 1 2 2008 1 1 1 E x x x = − + − + + − Tìm GTNN của biểu thức 2 2 ( , ) 2 2 7 P x y x y x y = + − + + . Cho 2 2 9 0 x y z + − − = . Tìm GTNN của biểu thức 2 2 2 (1 ) (2 ) (3 ) P x y. + = ≠ − + 2 2 2 3( 2 1) 2( 1) 1 2 1 3 1 ( 1) ( 1) x x x B x x x − + − − + = = − + − − − Tìm GTNNcủa biểu thức 2 2 3 5 , 1 ( 1) x x A x x + + = ≠ − 2 2 3 8 6 ( 1) 2 1 x x B x x x − + = ≠ −. của biểu thức 2007 2008 2 x x A x x − − = + + . Cho , 0 x y > thoả mãn 1 x y + = . Tìm GTNN của biểu thức 2 2 1 1 A x y xy = + + . Nguyễn Phú Khánh -ðà Lạt Các vấn ñề liên quan Hàm