1. Trang chủ
  2. » Giáo án - Bài giảng

Chuyên đề GTLN - GTNN

22 407 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 810 KB

Nội dung

¤n Thi TNPT 2009 Vấn đềâ 3 : Gía trò lớn nhất , giá trò nhỏ nhất A.KIẾN THỨC CƠ BẢN D o o D o o ĐN : Cho hàm số y = f(x) liên tục có TXĐ là D. Kí hiệu: f(x) M, x D GTLN là M = max f(x) x D : f(x ) M f(x) m, x D GTNN là m = min f(x) x D : f(x ) m Do đó : m f(x) M, x D  ≤ ∀ ∈ ⇔  ∃ ∈ =   ≥ ∀ ∈ ⇔  ∃ ∈ =  ≤ ≤ ∀ ∈ g g g g g g i i i ª Cách 1 : f liên tục trên [a;b] 1. TXĐ 2. ĐH : Tìm y tính f(a),f(b),f(x ) y = 0 x ? là các nghiệm của đạo hàm trên [a;b] 3. KLuận : M = max{f(a),f(b),f(x ′ → ′ ⇔ = i )} m = min{f(a),f(b),f(x )} ª Cách 2 : D [a;b] hoặc f không liên tục trên [a;b] 1. TXĐ 2. ĐH : Tìm y BBT 3. KLuận ≠ ′ → 2 Chú ý : 1. f có thể không có GTLN,GTNN 2. y không co ù GTLN 3. y không co ù GTNN 4. Nếu y 0 . Đôi khi tìm GTLN,GTNN của y M,m? → + ∞ → − ∞ ≥ → o ª Cách 3 : Miền giá trò ( Dùng GTLN,GTNN để cm BĐT ) 1. TXĐ 2. Xét pt ẩn x : f(x) y = 0 (*) , y là tham số 3. Pt (*) có n x D điều kiện y M, m ? − ∈ → → o o o o ª Cách 4 : Bất đẳng thức 1. Dùng BĐTđể cm : f(x) M, x D hay f(x) m, x D 2. Phải chỉ ra ít nhất một x D: f(x ) M hay f(x ) m ( Tìm một x D để dấu "=" xảy ra ) Chú ý: ≤ ∀ ∈ ≥ ∀ ∈   ∈ = =   ∈ sin[u(x)] 1; cos[u(x)] 1 với u(x) có nghóa sin[u(x)] cos[u(x)] 2 với u(x) có nghóa ª Cách 5: Lượng giác hoá, đại số hoá,đặt ẩn phụ. Dùng PP đổi biến số để đ ≤ ≤ ± ≤ g g ưa vế 4 cách ở trên B. VÍ DỤ 3 2 2 1 3 3 6 3 2 : Tìm giá trò lớn nhất và giá trò nhỏ nhất của các hàm số liên tục trên một đo y = x x trên đoạn [ 1; 3 ] Giải TXĐ : D = [ 1; 3 ] Đạo hàm : y x x LOẠI 1 x(x ạn : y ) ; − ′ ′ = − = − 2 2 0 0 3 2 0 2 4 2 0 0 4 2 4 2 2 4 0 [ 1; 3 ] [ 1; 3 ] x [ 1; 3 ] x(x ) x Ta có : y(2) = , y(1) = , y(3) = Vậy : M = max y y(3) = , m = min y y(2) = y x x Hàm số xác đònh và liên tục trên D [ ; ] . Vì x  = ∉ = ⇔ − = ⇔  =  − − = = − = + − = − − ≥ 2 2x⇔ − ≤ ≤ - 1 - ¤n Thi TNPT 2009 2 2 2 2 2 2 2 0 1 0 1 0 4 2 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 1 3 1 [ 1; 3 ] [ ; ] x x x y , y x x x x x x x Ta có: y( ) ,y( ) ,y( ) Vậy : M = max y y( ) = , m = min y y( 2) = x y = trên [0 ; 2] x Hàm số xác đònh và −  ≥  ′ ′ = − = ⇔ − = ⇔ − = ⇔ ⇔ =  − =   − − = − = − = = = − − − + 2 0 2 5 0 1 1 2 1 2 1 0 1 4 2 2 2 2 1 2 2 0 1 [ 0; 2 ] [ ; ] liên tục trên D = [0 ; 2] y , x [0 ; 2] (x ) Ta có: y(0) = ,y( ) Vậy : M = max y y( ) = , m = min y y( ) = y = x sin2x trên [ ; ] TXĐ : D = [ ; ] y cos x , y ′ = > ∀ ∈ + − = = = − π π − − π π − ′ ′ = − = ⇔ − 2 2 2 2 1 2 2 0 2 2 6 3 3 6 6 2 6 6 2 2 2 2 2 2 2 2 2 4 5 3 [ ; ] [ ; ] cos x cos x x ( xem lại phần cực trò ) Ta có : y( ) , y( ) , y( ) , y( ) Vậy : M = max y y( ) , m = min y y( ) (TNPT - 04) y = 2sinx s π π π π − − π = ⇔ = ⇔ = ± π π π π π π π π − = − + = − − = − = π π π π = = = − = − − 3 3 2 2 2 0 4 0 3 1 1 2 4 0 2 4 0 2 2 1 2 2 2 3 3 2 in x trên [0 ; ] TXĐ : D = [ ; ] Đặt t = sinx , x [0 ; ] nên t [ ;1] , ta được : y = 2t t = g(t) y t , y t t t ( vì t 0) Ta có : g( ) = , g(0) = 0 , g(1) = Vậy : M π π ∈ π ∈ − ′ ′ = − = ⇔ − = ⇔ = ⇔ = ≥ 0 0 1 0 0 1 4 3 2 3 2 2 1 2 2 1 1 3 4 2 2 2 0 0 0 0 0 6 4 4 1 4 12 8 4 3 [ ; ] [ ; ] [ ; ] [ ; ] = max y maxg = g( ) = khi t = sin x x m = min y min g = g( ) = khi t = sinx x x y = x x x trên [ 1;1] TXĐ : D = [ 1;1] y x x x x[x x π π π = ⇔ = ⇔ = = ⇔ = ⇔ = ∨ = π − + + − − ′ = − + = − 2 2 0 2 0 4 3 2 0 1 2 1 1 1 10 10 0 1 1 7 1 1 1 [ 1;1] [ 1;1] x ] , y x[x x ] x x [ ; ] Ta có : y(0) = 1, y(1) = 2 , y( ) Vậy : M = max y y( ) = , m = min y y( ) = cosx y cos x cosx TXĐ : D Đặt t = cosx , t [ ; ] − −  =  ′ + = ⇔ − + = ⇔ =  = ∉ −   − = = − = + = + + = ∈ − ¡ - 2 - ¤n Thi TNPT 2009 2 2 2 2 2 1 2 0 2 0 2 1 1 1 1 2 1 0 1 3 0 1 0 0 2 [ 1;1] t t t t thì y = = g(t) , t [ 1;1] , g = ;g = 0 t t t [ ; ] t t (t t ) Ta có : g(0) = 1 , g( ) ,g( ) Vậy : M = max y max g = g( ) = khi t = cosx x k ,k − + − −  = ′ ′ ∈ − ⇔ − − = ⇔  = − ∉ −  + + + + − = = π = ⇔ = ⇔ = + π ∈ ¡ ¢ 2 2 2 1 0 1 1 2 2 8 1 1 1 1 2 1 [ 1;1] m = min y min g = g( ) = khi t = sin x x k ,k y = 2cosx + cos2x Cách 1: y = 2cosx + (2cos x ) 2cos x 2cosx Đặt : t cos x,t [ ; ] thì y = 2t t g(t) g = 4t + 2 ; g = 0 − π = − − ⇔ = − ⇔ = − + π ∈ − = + − = ∈ − + − = ′ ′ ¡ ¢ 1 2 1 3 1 1 1 3 2 2 1 3 1 1 2 1 3 1 1 2 2 2 2 2 6 [ 1;1] [ 1;1] 4t + 2 = 0 t = Ta có : g( ) , g( ) ,g( ) Vậy : M = max y max g = g( ) khi t = cos x x k , k m = min y min g = g( ) khi t = sin x x k ,k Cá − − ⇔ ⇔ − − = − − = − = = = ⇔ = ⇔ = π ∈ π = − = − − ⇔ = − ⇔ = − + π ∈ ¡ ¡ ¢ ¢ 3 2 2 2 2 2 4 2 2 3 3 2 4 2 4 0 0 2 2 3 3 0 2 ch 2 : Vì hàm số có chu kì T = 2 nên ta xét hàm số trên D = [0 ; 2 ] x x y = sinx sin x (sin x sin x) sin cos x sin = 0 x x y = 0 sin cos x , x , x = , x = , x cos π π ′ − − = − + = −   π π ′ ⇔ − = ⇔ ⇔ = = π   =   2 2 2 2 3 4 3 2 3 3 2 3 2 2 4 3 3 3 2 9 4 3 4 4 4 3 4 4 4 3 0 x = 2 Ta có : y(0) = 3 , y( ) ,y( ) ,y( ) Vậy : M = max y y(0) = y(2 ) = 3 m = min y y( ) y( ) y x x trên [ ; ] Cách 1: Xét t x x ,x [ ; ] , t = 0 x x π π π = − = − π = = π π π = = = − = − + − = − + ∈ − ⇔ − + = ⇔ ¡ ¡ 1 3 2 4 0 2 4 0 2 x ,x t x , t x x = = ′ ′ = − = ⇔ − = ⇔ = Bảng biến thiên của t : - 3 - x 4− 1 2 3 4 ′ y − − 0 + + y 35 3 0 0 1− ¤n Thi TNPT 2009 Suy ra bảng biến thiên của y : 4 35 1 3 0 [ 4;4] [ 4;4] Vậy : M = max y y( ) m = minx y y( ) y( ) − − = − = = = = 2 2 1 2 2 1 2 1 2 4 3 4 1 3 4 4 3 4 3 1 3 2 4 4 1 3 4 2 4 1 3 2 4 0 2 0 2 4 0 2 y x x nếu x [ ; ] [ ; ] Cách 2: Vì y x x = y x x nếu x ( ; ) y x nếu x ( ; ) ( ; ) y y x nếu x ( ; ) y x x (loại) y y x x (nhận) Ta c  = − + ∈ − ∪  = − +  = − + − ∈   ′  = − ∈ − ∪ ′ =  ′ = − + ∈  ′  = − =  = ′ = ⇔ ⇔   ′ = − + = =   ó : y(2) = 1 , y( 4) = 35 , y(1) = 0 , y(3) = 0 , y(4) = 3− 4 35 1 3 0 [ 4;4] [ 4;4] Vậy : M = max y y( ) m = minx y y( ) y( ) − − = − = = = = 2 2 3 2 1 10 1 2 1 1 2 1 1 3 2 1 0 2 5 1 2 1 0 2 [ 4;4] [ 4;4] x y = trên [ ; ] x TXĐ : D [ ; ] x y , y = 0 x = 1 . (x ) Ta có : y(1) = ,y( ) ,y( ) Vậy : M = max y y( ) m = minx y y( ) k) y sinx sin x TXĐ : D . Đặt : t = − − + − + = − − ′ ′ = ⇔ + − = = = = = − = = + − = ¡ 2 2 2 2 2 2 2 2 2 2 0 2 0 2 2 2 0 1 2 1 0 1 2 sinx , t [ 1;1] ta được hàm số y = t + t xác đònh và liên tục trên [ 1;1] t t t Lúc đó : y = 1 ;y = t t t t t t t t t t Ta có : y( ) ,y( ) ∈ − − − − − ′ ′ − = ⇔ − − = ⇔ − = − −  ≥  ⇔ ⇔ =  − =   − = = - 4 - x 4− 1 2 3 4 ′ y − − 0 + + y 35 1 3 0 0 ¤n Thi TNPT 2009 2 2 2 1 0 1 1 2 2 1 2 1 1 2 2 11 [ 4;4] [ 4;4] Vậy : M = max y y( ) khi t = sin x x k ,k m = minx y y( ) khi t = sinx x k ,k y = cos x sinx Biến đổi : y = (1 sin x) sinx sin x sinx 1 Đặt : t = sin − − π = = ⇔ = ⇔ = + π ∈ π = − = − ⇔ = − ⇔ = − + π ∈ + − + = − + + ¢ ¢ 2 1 2 1 2 1 0 2 1 7 1 1 1 1 2 4 x , t [ 1;1] thì y = t t 1 = g(t) g = t , g = 0 t t Ta có: g( ) ,g( ) ,g( ) ∈ − − + + ′ ′ − + ⇔ − + = ⇔ = = − − = − = 1 1 1 1 1 2 2 [ ;1] Vậy : M = max y max g g( ) khi t = sin x x k ,k − π = = = ⇔ = ⇔ = + π ∈ ¡ ¢ 1 1 7 1 1 5 2 2 2 4 2 2 6 6 [ ;1] m =min y = min g g( ) khi t = sinx x k ,x k với k − π π = = − ⇔ = ⇔ = + π = + π ∈ ¡ ¢ 3 3 3 2 3 2 2 2 12 2 2 1 2 1 2 1 1 1 2 1 1 3 4 1 0 3 4 1 0 1 3 1 1 1 3 y = sin x cos x sin x Biến đổi : y = sin x ( cos x) sinx y sin x sin x sin x Đặt : t sin x,t [ ; ] ta được y = t t t g(t) g t t , g t t t ,t Ta có : g( ) , g( ) − + + + − + + ⇒ = + + + = ∈ − + + + = ′ ′ = + + = ⇔ + + = ⇔ = − = − = = 23 27 1 1 2 2 1 23 3 27 1 1 1 1 2 2 3 3 3 3 [ 1;1] [ 4;4] [ 1;1] , g(1) = 5 Vậy : M = max y max g g(1) = 5 khi t = sin x x k ,k m = minx y max g g( ) khi t = sin x x arcsin k , x arcsin k với k − − − π = = ⇔ = ⇔ = + π ∈ = = = ⇔ = ⇔ = + π = π − + π ∈ ¡ ¢ ¢ - 5 - ¤n Thi TNPT 2009 13 2 6 1 1 1 1 0 2 6 4 2 2 2 6 2 2 2 6 2 2 [2;6] y = x x Hàm số xác đònh và liên tục trên D = [2;6] y = , y = 0 x x x x x x x Ta có : y(2) = 2 , y(6) = 2 , y(4) = 2 Vậy : M =max y = y(4) = 2 m =m − + − ′ ′ − ⇔ − = ⇔ − = − ⇔ = − − − − 2 2 2 2 2 2 2 1 14 1 1 1 1 2 2 1 0 1 2 0 2 1 1 2 1 2 1 1 0 2 2 2 2 2 2 [2;6] [ ; 1] in y = y(2) = y(6) = 2 y = x x Hàm số xác đònh và liên tục trên D [ ; ] x x y x , y x x x x Ta có : y( ) ,y( ) ,y( ) Vậy : M = max y = y( ) − − = − − ′ ′ = − − = = ⇔ − = ⇔ = ± − − − = − = ± = = 1 1 2 2 1 2 2 [ ; 1] m = min y = y( ) − − = − 2 15 2 3 2 2 4 1 1 3 1 x nếu 2 x 1 y = x + 2 nếu 1< x 3 Hàm số xác đònh và liên tục trên D [ ; ] x nếu 2 x 1 y , y = 0 x = 0 1 nếu 1< x 3 Ta có : y(0) = 0 , y( ) ,y( ) ,y( ) Vậy :   − ≤ ≤  − ≤   = −  − < < ′ ′ = ⇔  − <  − = = = − 2 3 2 3 2 4 1 [ ; ] [ ; ] M = max y = y( ) = m = min y = y(3) = − − − − 16 0 2 2 0 2 y sin x cos x sinx ĐK : k x k ,k cosx = + π  ≥ ⇔ π ≤ ≤ + π ∈  ≥  ¢ 4 4 0 2 2 0 4 2 2 2 2 8 1 4 2 8 4 [ ; ] Vì hàm số tuần hoàn với chu kì 2 nên ta chỉ cần xét D = [0 ; ] sinx cosx sinx cosx y ; y x cosx sin x cosx sin x Ta có : y( ) , y(0) = 1 , y( ) Vậy : M =max y = y( ) π π π π ′ ′ = − + = ⇔ = ⇔ = π π = = π = 0 2 1 2 [ ; ] m = min y = y(0) = y( ) π π = - 6 - ¤n Thi TNPT 2009 2 2 2 2 2 1 17 1 2 1 1 2 4 0 1 cos x cosx y cosx t t TXĐ : D . Đặt t = cosx , t [0;1] ta được : y = = g(t) với t [0;1] t t t g = ,t [0;1] , g (t) = 0 chỉ tại t = 0 nên g(t) đồng biến trên [0;1] (t ) Vì : g( + + = + + + = ∈ ∈ + + ′ ′ ≥ ∈ + ¡ 0 1 0 1 0 1 1 2 1 2 1 0 1 0 0 2 [ ; ] [ ; ] ) ,g( ) Vậy : M =max y = max g g( ) khi t = 1 cosx sin x x k ,k m =min y =ming y(0) = khi t = 0 cosx cosx x k ,k = = = = ⇔ = ⇔ = ⇔ = π ∈ π = ⇔ = ⇔ = ⇔ = + π ∈ ¡ ¡ ¢ ¢ 2 2 1 2 3 : Tìm GTNNGTLN của các hàm số liên tục trên D [aLOẠ ;b y x x I T ] : XĐ : D = ≠ − + = ¡ 2 2 0 2 2 0 1 y x , y x x ′ ′ = − = ⇔ − = ⇔ = Bảng biến thiên 2 Vậy : Không có GTLN . m =min y = y(1) = ¡ 3 4 2 4 3 y x x TXĐ : D = − = ¡ 2 3 2 2 12 12 0 0 0 1 y x x = 12x (1 x) , y 12x (1 x) x ,x ′ ′ = − − = ⇔ − = ⇔ = = Bảng biến thiên 1 1Vậy : M =max y = y( ) = Không có GTNN ¡ 4 3 y x với x > 0 . x = + - 7 - x −∞ 1 +∞ ′ y − 0 + y +∞ +∞ 2 x −∞ 0 1 +∞ y ′ + 0 + 0 − y 1 −∞ −∞ ¤n Thi TNPT 2009 2 4 1 4 4 4 2 4 4 4 2 4 (0;+ ) Cách : Áp dụng bđt Côsi cho hai số dương x và . x Ta có : x + x . y , x (0;+ ) .Dấu "=" xảy ra x = x x x x x Vậy : M = max y ∞ ≥ = ⇔ ≥ ∀ ∈ ∞ ⇔ ⇔ = ⇔ = = 2 2 2 0 4 4 1 0 1 0 4 2 Cách 2 : TXĐ : D ( ; ) y , y x x x x = +∞ ′ ′ = − = ⇔ − = ⇔ = ⇔ = Bảng biến thiên 0 4 ( ; ) Vậy : Không có GTLN m = min y = y(2) = +∞ 4 3 3 6 3 3 0 6 3 0 2 2 3 2 3 y x x TXĐ : D = ( ; ] x x y x , y x x x x = − −∞ − ′ ′ = − − = = ⇔ − = ⇔ = − − Bảng biến thiên 2 2Vậy : M =max y = y( ) = Không có GTNN ¡ { } 2 2 2 2 2 1 1 1 1 2 0 0 2 0 2 1 1 x x 5 y x TXĐ : D = \ x x x x x Xét hàm số g(x) = ; g (x) = ,g x x x x (x ) − + = − − + −  = ′ ′ = ⇔ − = ⇔  = −  − ¡ Bảng biến thiên g - 8 - x −∞ 2− 0 2 +∞ y ′ + 0 − − 0 + y +∞ +∞ 4 x −∞ 2 3 +∞ y ′ + 0 − − y 2 −∞ −∞ ¤n Thi TNPT 2009 Suy ra bảng biến thiên của y 1 Vậy : Không có GTLN m =min y = y(0) = ¡ 6 3 6 3 6 3 0 3 3 6 3 6 6 0 6 1 1 3 3 6 0 2 2 3 2 6 y x x ( x)( x) x x TXĐ : D [ ; ] . Vì x x x Đặt t x x , ta có : t = ;t x x x = + + − − + −   + ≥ ≥ − = − ⇔ ⇔ − ≤ ≤   − ≥ ≥   ′ ′ = + + − − = ⇔ = + − Bảng biến thiên của t Vậy : t [3;3 2]∈ 2 2 2 2 9 9 2 9 9 2 3 6 3 6 2 2 2 1 2 9 2 3 2 2 t t t t Khi đó : t x. x x. x nên y = t g(t) g (t) t , g = 0 t = 1 [3;3 ] . Ta có : g(3) = 3 , g(3 ) − − − + + = + + − ⇒ + − = − = = ′ ′ = − + ⇔ ∉ = − + - 9 - x −∞ 0 1 2 +∞ g ′ + 0 − − 0 + g 1− −∞ −∞ +∞ +∞ 3 x −∞ 0 1 2 +∞ y ′ + 0 − − 0 + y +∞ +∞ 1 +∞ +∞ 3 x −∞ 3− 3 2 6 +∞ t ′ + 0 − t 3 2 3 3 ¤n Thi TNPT 2009 3 6 3 3 2 3 6 3 3 2 3 3 3 6 9 3 2 3 2 2 2 2 [ ; ] [ ; ] [ ; ] [ ; ] Vậy : M = max y = max g g( ) = khi t = 3 . x = x m = min y = m in g g(3 ) = khi t = 3 . x = − − = ⇔ ⇔ − ∨ = = − + ⇔ ⇔ 2 1 7 2 3 0 2 x y trên nửa khoảng (2;3] x TXĐ : D = (2;3] y , với x (2;3] (x ) + = − − ′ = < ∈ − Bảng biến thòên 2 3 4 ( ; ] Vậy : Không có GTLN m =min y = y(3) = 2 1 8 1 1 1 x x y trên nửa khoảng ( ;+ ) x TXĐ : D = ( ;+ ) − + + = − ∞ + − ∞ 2 2 2 2 0 0 2 0 2 1 x x x y ; y x x x (x ) − −  = ′ ′ = = ⇔ − − = ⇔  = −  + Bảng biến thiên 1 0 1 ( ; ) Vậy : M = max y = y( ) = Không có GTNN − +∞ 2 2 9 1 x y x x = + + 2 2 2 2 2 1 0 2 0 2 0 1 1 2 TXĐ : D = . Vì x x vô nghiệm x x x y = ;y = 0 x x x (x Cách : PP hàm số x . ) + + = +  = ′ ′ ⇔ + = ⇔  = −  + + ¡ Bàng biến thiên - 10 - x −∞ 2 3 y ′ − y +∞ 4 x −∞ 2− 1 0 +∞ y ′ + 0 − y 1 −∞ −∞ [...]... gax+by ≤ (a2 + b2 )(x 2 + y 2 ) g(a+b)2 ≤ 2 (a2 + b 2 ) gDấu "=" ⇔ a b = ≥0 x y g(ax+by+cz)2 ≤ (a2 + b2 + c2 ) (x 2 + y 2 + z 2 ) Tìm GTLN , GTNN nếu có của các biểu thức sau: - 16 - Thi TNPT ¤n 2009 1 Cho a ≥ 0,b ≥ 0 thỏa mãn : 2a + 3b ≤ 6 và 2a+ b ≤ 4 Tìm GTLNGTNN của biểu thức : A = a2 − 2a − b Giải • Từ 2a+ b ≤ 4 và b ≥ 0 suy ra 2a ≤ 4 hay a ≤ 2 Do đó : A = a2 − 2a − b ≤ − b ≤ 0 Vậy : maxA... Do đó : AB2 = (4t + 2)2 + (4t)2 = 32t 2 + 16t + 4 = g(t) 1 g′ = 64t + 16 ; g′ = 0 ⇔ 64t + 16 = 0 ⇔ t = − 4 Bảng biến thiên - 15 - Thi TNPT −∞ t − − g′ g 1 4 0 ¤n 2009 +∞ + m 1 1 9 ⇔ M(− ; ) 4 4 4 LOẠI 4 : Tìm GTLN , GTNN của biểu thức Một số bất đẳng thức thường gặp : Vậy : AB đạt GTNN ⇔ t = − 1 Bất đẳng thức Cauchy a + a + + an n 1 Bất đẳng Côsi cho a1,a2 , ,a n ≥ 0 : a1 + a 2 + + an ≥ n.n a1.a2 an... ) 2 2 Không có GTNN π 13 y = 2 sin x + 2 cos x − sin 2x trên (0; ) 2 π π π π 3π Đặt t = sinx+ cosx = 2 sin(x + ) Vì x ∈ ( 0; ) ⇒ x + ∈ ( ; ) ⇒ t ∈ (1; 2 ] 4 2 4 4 4 2 2 Ta có : t = 1 + 2 sin x cos x = 1 + sin 2x ⇒ sin 2x = t − 1 ⇒ y = 2t − (t 2 − 1) = −t 2 + 2t − 1 = g(t) g′ = − 2t + 2 ; g′ = 0 ⇔ −2t + 2 = 0 ⇔ t = 1 Bảng biến thiên t y′ y 1 − 2 2 2 −3 - 12 - Thi TNPT Vậy : Không có GTLN m = min y... điều kiện x+ y + z = 3 Tìm GTNN nhất của biểu thức : 1 1 1 P= + + x y z 1 1 1 1 9 9 Giải : Đặt a = x , b = y , c = z ta được : P = + + ≥ ≥ = =3 a b c a+b+c 3(a2 + b2 + c2 3 x+y+z =1 3 Vậy : min P = 3 khi x = y = z = 1 Dấu " = " xảy ra ⇔ x = y = z = 7 Tìm GTNN của biểu thức A = a) x + y + z = 1 xy yz zx + + với x,y,z là các số dương và : z x y b) x 2 + y 2 + z 2 = 1 - 18 - Thi TNPT a) Với x + y + z... y = 4 Bảng biến thiên cho (0;8) Vậy : Hình vuông có cạnh bằng 4cm là hình có diện tích lớn nhất - 13 - Thi TNPT ¤n 2009 2 2 Trong các hình chữ nhật có cùng diện tích 8cm , hãy tìm hình chữ nhật có chu vi nhỏ nhất Giải Gọi x,y lần lượt là chiều dài và chiều rộng của hình chữ nhật , suy ra x,y > 0 8 Theo đề : x.y = 8 ⇒ y = x 8 16 Khi đó : Chu vi p = 2(x+y) ⇒ p = 2(x+ ) = 2x + với x > 0 x x x = 2 2... minA = − khi (a;b) = ( ; ) 9 3 9 1 1 2 Cho a, b là các số thực dương Tìm GTNN của biểu thức M = (a + b)( + ) a b Giải Áp dụng BĐT Côsi cho hai số không âm ta có : a + b ≥ 2 ab > 0 1 1 1 1 + ≥2 >0 a b a b 1 1 1 Nhân theo vế hai BĐT trên ta được : M = (a + b)( + ) ≥ 2 ab.2 =4 a b ab Vậy : minA = 4 khi (a;b) = (1;1) 3 Tìm GTLN, GTNN của biểu thức P = x − y + 2040 Với x,y là các số thực thỏ a mãn hệ... minP = 2010 khi (x;y) = ( − 4 Cho x,y là các số dương thay thỏa mãn : x + y = 1 Tìm GTNN của biểu thức P = xy + Giải 1 xy 1 1 Đặt t = xy thì 0 < t ≤ 4 4 1 1 1 1 Khi đó : P = t + = g(t) ; g′ = 1 − , g′ = 0 ⇔ 1 − = 0 ⇔ t = ± 1∉ (0; ] t 4 t2 t2 Bảng biến thiên Áp dụng BĐT Côsi ta có : 1 = x + y ≥ 2 xy ⇒ 0 < xy ≤ - 17 - Thi TNPT t g′ ¤n 2009 1 4 0 − 17 4 g 1 17 1 1 1 min P = min g = g( ) = khi t = ⇔ xy... 4 0 0 − y′ y π 2 + 2−1004 Vậy : Không có GTLN π m = min y = y( ) = 2−1004 4 ¡ LOẠI 3 : Tìm GTNNGTLN có liên quan đến hình học 1 Trong các hình chữ nhật có cùng chu vi 16cm , hãy tìm hình chữ nhật có diện tích lớn nhất Giải Gọi x,y lần lượt là chiều dài và chiều rộng của hình chữ nhậ t , suy ra x,y > 0 Theo đề : x< 8,y< 8 Do đó : 0 < x< 8 , 0 < y< 8 Khi đó : Chu vi p = 2(x+y) = 16 ⇒ x+y = 8 ⇒ y... xảy ra khi a = b = c a a a a a a a+b+c 1 1 1 1 1 1 9 9 3 Vì : P = (1 − ) + (1 − ) + (1 − ) = 3−( + + ) ≤ 3− = 3− = x +1 y +1 z +1 x +1 y +1 z +1 (x + 1) + (y + 1) + (z + 1) 4 4 - 19 - Thi TNPT ¤n 2009 9 Cho tam giác ABC , tìm GTLN của biểu thức P = 2sinA + 2sinB + sin2C Giải A+B A−B C C A−B sinA + sinB = 2sin cos ≤ 2 cos Vì cos > 0 ; cos ≤ 1 ; A,B,C ∈ (0;π) 2 2 2 2 2 A−B Đẳng thức xảy ra ⇔ cos =1⇔... Cho x,y là các số không âm thay đổi thỏa mãn x 2 + y 2 = 1 a) Chứng minh rằng : 1 ≤ x + y ≤ 2 b) Tìm GTLN , GTNN của biểu thức P = ĐS : maxP = 1 + 2x + 1 + 2y 2 + 2 2 + 2 3 + 2 2 khi x = y = 1 2 ; min P = 4 + 2 3 khi x = 0 hay y = 0 5 Cho a,b,c là ba số dương thay đổi thỏa mãn a + b + c = 2 Tìm GTNN của biểu thức : P= a2 b2 c2 + + b+ c c+a a+ b 7 Đònh m để pt : x3 − 3x 2 + 3 = m có 3 nghiệm phân . có GTLN, GTNN 2. y không co ù GTLN 3. y không co ù GTNN 4. Nếu y 0 . Đôi khi tìm GTLN, GTNN của y M,m? → + ∞ → − ∞ ≥ → o ª Cách 3 : Miền giá trò ( Dùng GTLN, GTNN. − uuuur uuuur Bảng biến thiên - 15 - ¤n Thi TNPT 2009 1 1 9 4 4 4 Vậy : AB đạt GTNN t = M( ; )⇔ − ⇔ − LOẠI 4 : Tìm GTLN , GTNN của biểu thức 2 1 2 1 2

Ngày đăng: 05/08/2013, 01:26

HÌNH ẢNH LIÊN QUAN

ẤT --;[-: Hộp hiện:thị hình lình kiện ...................... - Chuyên đề GTLN - GTNN
p hiện:thị hình lình kiện (Trang 3)
Cịn một thanh toolba rở giữa như trên hình nữa, nhưng thanh này chủ yếu dùng liên  quan  đên  tạo  mạch  1m,  ta  khơng  đê  cập  ở  đây - Chuyên đề GTLN - GTNN
n một thanh toolba rở giữa như trên hình nữa, nhưng thanh này chủ yếu dùng liên quan đên tạo mạch 1m, ta khơng đê cập ở đây (Trang 5)
Hình lính kiện và sơ đơ chân mạc hi in hiện ra bên cạnh khi bạn m&#34; vào ` đồng chứa  tên  linh  kiện,  để  chọn,  bạn  nhấp  OK  hoặc  nhấp  đúp  vảo  tên  linh  kiện,  lúc  này  trên  hộp  thoại  DEVICES  sẽ  xuất  hiện  tên  linh  kiện  đã  chọn:  - Chuyên đề GTLN - GTNN
Hình l ính kiện và sơ đơ chân mạc hi in hiện ra bên cạnh khi bạn m&#34; vào ` đồng chứa tên linh kiện, để chọn, bạn nhấp OK hoặc nhấp đúp vảo tên linh kiện, lúc này trên hộp thoại DEVICES sẽ xuất hiện tên linh kiện đã chọn: (Trang 6)

TỪ KHÓA LIÊN QUAN

w