1. Trang chủ
  2. » Giáo án - Bài giảng

Chuyên đề phương trình, hệ phương trình phòng giáo dục cam lâm

21 274 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 1,33 MB

Nội dung

Phòng Giáo Dục Cam Lâm HSG Toán 9 CHUYÊN ĐỀ PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH A. Giải phương trình bằng cách đặt ẩn phụ thích hợp. Bài 1:Gpt: 2 2 2 2 2 2 4 10. 11. 0. 1 1 1 x x x x x x − + −       + − =  ÷  ÷  ÷ + − −       Giải: Đặt 2 2 ; 1 1 x x u v x x − + = = + − (1). Ta có: 10.u 2 + v 2 -11.uv = 0 ⇔ (u-v).(10u-v)=0 ⇔ u=v hoặc 10u=v. Xét các trường hợp thay vào (1) ta tìm được x một cách dễ dàng. Bài 2:Gpt: (x 2 - 4x+3).(x 2 - 6x + 8)=15. Giải: Đặt x 2 - 5x + 5 = u (1). Ta có: (x 2 - 4x+3).(x 2 - 6x + 8)=15 ⇔ (x-1).(x-3).(x-2).(x-4)-15=0 ⇔ (x-1).(x-2).(x-3).(x-4)-15=0 ⇔ (x 2 -5x+4).(x 2 -5x+6)-15=0 ⇔ (u-1).(u+1)-15=0 ⇔ u 2 -16=0 ⇔ u= ± 4. Thay các giá trị của u vào (1) ta dễ dàng tìm được x. Bài 3:Gpt: 2 90. 1 1 x x x x     + =  ÷  ÷ + −     Giải:PT ⇔ 2 2 2 1 1 . 90 ( 1) ( 1) x x x   + =   + −   . 2 2 2 2 2 2 . 90 ( 1) x x x + ⇔ = − . Đặt u = x 2 ( u ≥ 0) (1). Ta có: 2 2 2 2 2 . 90 2 2 90.( 1) ( 1) u u u u u u + = ⇔ + = − − ( u ≠ 1). ⇔ 09018288 2 =+− uu . Từ đây ta dễ dàng tìm được u, thay vào (1) ta tìm được x. Bài 4:Gpt: 3 3 3 2 3 12.( 1)x x x+ − = − . Giải: Đặt 3 3 ; 2 3x u x v= − = (1). 1 Phòng Giáo Dục Cam Lâm HSG Toán 9 Có: ).(4).(3).(4 3333 3 33 vuvuuvvuvuvu +=+++⇔+=+    = −= ⇔=−+⇔=+−+⇔ vu vu vuvuvuvuvu 0)).(.(30)2).(.(3 222 Xét các trường hợp thay vào (1) ta dễ dàng tìm được x. Bài 5:Gpt: x x xxx 3 22 1 2335 2 23 +=+−++ (1). Giải: Từ (1) suy ra: 162335.2 223 −+=−++ xxxxx xxxxxxxx 122121368121220 232423 −−+++=−++⇒ 0924228 234 =+−+−⇒ xxxx (x ≠ 0). 0 924 228 2 2 =+−+−⇒ x x xx . Đặt y x x =+ 3 (*) ta có: y 2 - 8y + 16 = 0 suy ra y = 4 thay vào (*) ta dễ dàng tìm được x. Bài 6:Gpt: ( ) ).1(018 4 1 ).4.(3)4.(1 =− − + −+−+ x x xxx Giải: Điều kiện x > 4 hoặc x < -1. *Nếu x > 4, (1) trở thành: 018)4).(1(.3)4).(1( =−−++−+ xxxx Đặt 0)4).(1( ≥=−+ yxx (2) ta có: y 2 + 3y -18 = 0. Từ đó ta dễ dàng tìm được y,thay vào (2) ta tìm được x. *Nếu x < -1, (1) trở thành: 018)4).(1(.3)4).(1( =−−+−−+ xxxx Đặt 0)4).(1( ≥=−+ yxx (3) ta có: y 2 - 3y -18 = 0. Từ đó ta dễ dàng tìm được y,thay vào (3) ta tìm được x. Bài 7 Gpt:(2x 2 - 3x +1).(2x 2 + 5x + 1)=9x 2 (1). Giải: (1) 0122044 234 =++−+⇔ xxxx (x ≠ 0).Chia cả hai vế cho x 2 ta được : ⇔ 4x 2 + 4x -20 + 2 12 x x + = 0. ⇔ 024 1 2.2 1 2 2 =−       ++       + x x x x . Đặt y = x x 1 2 + .(2) Ta có: y 2 + 2y -24 = 0. Từ đó ta tìm được y,thay vào (2) ta dễ dàng tìm được x. 2 Phòng Giáo Dục Cam Lâm HSG Toán 9 Bài 8:Gpt: .0168.26416 222 =++−−+− xxxxx Giải:PT .04.28 =+−−−⇔ xxx Đến đây ta xét từng khoảng ,bài toán trở nên đơn giản. Bài 9:Gpt: (1 + x + x 2 ) 2 = 5.(1 + x 2 + x 4 ). Giải: 423242 5552221 xxxxxxx ++=+++++⇔ 4 3 2 4 3 2 4 2 2 2 4 0 2 2 0x x x x x x x x⇔ − + − + = ⇔ − + − + = Nhận thấy x = 0 không phải là nghiệm của phương trình đã cho, vậy x ≠ 0. Chia cả hai vế của phương trình trên cho x 2 ta được: 2x 2 - x + 1 - 0 21 2 =+ x x . Đặt y = x x 1 + (*). Ta có: 2y 2 - y - 3 = 0.Từ đó ta dễ dàng tìm được y, thay vào (*) ta tìm được x. Bài 10: Gpt: (6-x) 4 + (8-x) 4 = 16. Giải: Đặt 7 - x = y (*). Ta có: (y-1) 4 + (y + 1) 4 =16 ⇔ 2y 4 +12 y 2 +2 = 16 ⇔ 2.(y-1).(y+1).(y 2 +7)=0 ⇔ y =1 hoặc y = -1. Thay các giá trị của y tìm được ở trên thay vào (*) ta dễ dàng tìm được các giá trị của x.  Tìm các nghiệm nguyên (x;y) hoặc (x;y;z) của các phương trình sau: Bài 1: x 2 = y.(y+1).(y+2).(y+3) Giải: Đặt y 2 + 3y = t. Ta có: x 2 = y.(y+1).(y+2).(y+3) = (y 2 + 3y).(y 2 + 3y +2) = t 2 + 2t. *Nếu t > 0 thì t 2 < x 2 = t 2 + 2t < (t+1) 2 suy ra không tồn tại x thỏa mãn. *Nếu t < -2 thì 2t + 4 < 0 nên t 2 + 2t > t 2 + 4t + 4 suy ra t 2 + 2t > t 2 + 4t + 4 = (t+2) 2 . Suy ra: x 2 = t 2 + 2t > (t + 2) 2 (*). Lại có: t 2 +2t < t 2 suy ra x 2 < t 2 (**). Từ (*)&(**) suy ra (t + 2) 2 < x 2 < t 2 suy ra x 2 = (t+1) 2 suy ra t 2 +2t = (t +1) 2 (=x 2 ) Suy ra : t 2 +2t = t 2 +2t +1 (Vô lý). *Nếu t = -1 suy ra x 2 = t 2 +2t = -1 <0 (Vô lý). 3 x -∞ 0 4 8 +∞ x-8 - - - 0 + x-4 - - 0 + + x - 0 + + + Phòng Giáo Dục Cam Lâm HSG Toán 9 *Nếu t = 0 suy ra x = 0 ⇒ y = 0 hoặc -1 hoặc -2 hoặc -3 . Bài 2: 2 2 (1) 2 2 1 (2) x y z x xy x z − + =   − + − =  Giải: Từ (2) ta có: 2x 2 - xy+x-2z =1 kết hợp với (1) ta có: 2x 2 - xy+x-2.(2 - x + y)=1 ⇔ 2x 2 -xy +3x-2y-5=0 .7,1227 2 7 1 2 53 2 ±±=+⇒+⇒Ζ∈ + −+= + −+ =⇔ xx x x x xx y  Từ đó ta tìm được x ⇒ tìm được y ⇒ tìm được z. Bài 3:    =−− =−− )2(1 )1(3 222 zyx zyx Giải: Thay (1) vào (2) ta được: (y + z -3) 2 -y 2 -z 2 =1 ⇔ yz - 3y - 3z = -4 ⇔ (y-3).(z-3) = 5 = 1.5 = (-1).(-5) = 5.1=(-5).(-1. Từ đó ta tìm được y và z ⇒ tìm được x. Bài 4: 2xy + x + y = 83. Giải:PT ⇔ .167,11212167 12 167 1 12 2166 2 12 83 ±±=+⇒+⇒Ζ∈ + +−= + − =⇔ + − = yy yy y x y y x  Từ đó ta tìm được y ⇒ tìm được x. Bài 5: .3=++ y zx x yz z xy Giải:Điều kiện : x,y,z ≠ 0. Nhận xét:Trong ba số x,y,z luôn tồn tại hai số cùng dấu (Theo nguyên tắc Đirichlê có 3 số -3 thỏ mà chỉ có hai chuồng-mọi số nguyên khác 0 chỉ mang dấu âm hoặc dấu dương) Ta có thể giả sử x,y cùng dấu với nhau.Suy ra x.y = xy > 0 và .0, > x y y x Đặt A= .3=++ y zx x yz z xy Giả sử z <0 khi đó 3 = A = 0000 =++<++ y zx x yz z xy (Vô lý). Vậy z >0.Ta có: A = 3 3 .3 3 3 zxy x y z y x z z xy y x z x y z z xy y zx x yz z xy =≥++==++    −=== === ⇒==⇒≥⇒ 1,1 1,1 1,1.1 yxz yxz xyzzxy Bài 6: 2x 2 - 2xy = 5x + y - 19. Giải:Từ bài ra ta có: .17,1121217 12 17 2 12 1952 2 ±±=+⇒+⇒Ζ∈ + ++= + ++ = xx x x x xx y  Từ đó ta tìm được x ⇒ tìm được y. B. Giải hệ phương trình và các phương trình khác. 4 Phòng Giáo Dục Cam Lâm HSG Toán 9 Bài 1: .2 2 11 2 = − + x x Giải:Điều kiện : 2,0 <≠ xx . -Nếu x < 0 thì < − + 2 2 11 x x .2 2 1 2 1 2 <≤ − x Vậy ta xét x > 0: Đặt x = a và bx =− 2 2 (a,b > 0). Ta có:      =+ =+ 2 2 11 22 ba ba Có: 1 1 .2 11 2 ≥⇒≥+= ab abba (1). Lại có: 2 = a 2 + b 2 ≥ 2ab suy ra 1 ≥ ab (2). Từ (1)&(2) suy ra ab = 1 mà a 2 + b 2 =2 nên suy ra (a+b) 2 = 4 suy ra a + b = 2. Vậy ta có: 11 2 1 =⇒==⇒    =+ = xba ba ab . Bài 2: .51632414 4222 +−−=−−++++− yxyyxxx Giải: Điều kiện:        ≥− ≥−−+ ≥+ ≥− )4(016 )3(032 )2(041 )1(04 4 22 2 x yyx x x Từ (4) suy ra x 2 ≥ 4 kết hợp với (1) suy ra x 2 = 4 kết hợp với (2) suy ra x = 2. Phương trình đã cho trở thành: 51 +−=− yy . Lúc này việc tìm y không còn khó khăn gì nữa (Lập bảng xét dấu). Bài 3: 2x 4 -21x 3 + 74x 2 -105x +50 =0. Giải: Nhận thấy x = 0 không phải là nghiệm của phương trình đã cho. Vậy x ≠ 0.Chia cả hai vế của phương trình đã cho cho x 2 ta được: 026 25 .21 25 .20 50105 74212 2 2 2 =−       +−       +⇔=+−+− x x x x x x xx Đặt y x x =+ 25 ta có: 2y 2 -21.y - 26 = 0.Từ đó ta tìm được y ⇒ tìm ra x. 5 Phòng Giáo Dục Cam Lâm HSG Toán 9 Bài 4:      =−++ =−−+ 71.41 511.2 xx xx Giải: Đặt :      ≥−= ≥+= 01 01 xb xa Hệ đã cho trở thành:    =+ =− 74 52 ba ba Từ đó tìm được a =3,b =1. Đến đây việc tìm ra x không còn khó khăn nữa. Bài 5:      −+= =−+− )2(15 )1(151 xy yx Giải: Thay biểu thức (2) vào phương trình (1) ta có: 11.215151 =−⇔=−−++− xxx . Từ đó ta tìm được x.Việc tìm giá trị của y cũng không có gì khó khan nữa. Bài 6:      =+−+− =−+−+− )2(0332 )1(02445124152 22 22 xyxyyx yxyxyx Giải: Phương trình (2) phân tích được như sau: (x - y).(x -3 + 2y) = 0    −= = ⇔ yx yx 23 Xét các trường hợp thay vào phương trình (1) ta dễ dàng tìm được x và y. Bài 7: x 3 + (3-m).x 2 + (m-9).x + m 2 -6m + 5 = 0. Giải: Phương trình đã cho phân tích được như sau: [ ] [ ] 0)1(2.)5( 2 =−−−−− mxxmx . Đến đây việc giải và biện luận phương trình không còn khó khăn gì nữa. Bài 8:    =++ =++ xyzzyx zyx 444 1 Giải: Bổ đề: .:,, 222 cabcabcbaRcba ++≥++∈∀ Đẳng thức xảy ra khi và chỉ khi a = b = c. (Dễ dàng chứng minh được bổ đề trên). Sử dụng bổ đề ta có: xyz = x 4 + y 4 + z 4 ≥ x 2 y 2 + y 2 z 2 + z 2 x 2 ≥ xyz.(x + y + z) = xyz. 6 Phòng Giáo Dục Cam Lâm HSG Toán 9 Suy ra các dấu bất đẳng thức ở trên đều phải trở thành đẳng thức tức là ta phải có: x = y =z kết hợp với giả thiết ban đầu :x + y + z =1 ta được: 3 1 === zyx . Bài 9: ( )      +++−=− =+ )2)(2001.( )1(1 2000 20001999 1999 22 xyyxxyyx yx Giải: Điều kiện: x,y .0≥ Nhìn nhận phương trình (2) ta thấy: -Nếu x > y thì: VT > 0, VP < 0 suy ra: VT > VP. -Nếu y > x thì: VT <0, VP >0 suy ra: VT < VP. -Nếu x = y khi đó: VT =VP =0. Kết hợp với (1) (Chú ý:x,y .0 ≥ ) ta được: 2 1 == yx . Bài 10: 2.2252.3252 =+−−+−−+ xxxx (1). Giải: (1) ( ) ( ) 2.2332. 2 1 152. 2 1 22 =−−++−⇔ xx 4352152 =−−++−⇔ xx Ta có: .41525231525234 =+−+−−≥+−+−−= xxxx Vậy dấu bất đẳng thức ở trên phải trở thành dấu đẳng thức tức là: 2 5 7 529 052 0523 ≥≥⇔    −≥ ≥− ⇔≥−− x x x x Vậy nghiệm của phương trình đã cho là:       ∈ 7; 2 5 x . C. Các bài toán hay Bài toán 1 : Giải phương trình 2 2 10 12 40x x x x− + − = − + Bổ đề : Với 0; 0a b≥ ≥ ( ) ( ) ( ) ( ) 2 2 2 2 2 2a b a b a b a b a b a b+ = + ≤ + + − ⇒ + ≤ + Giải: Điều kiện : 2 10x ≤ ≤ , Ta có ( ) 2 10 2 2 10 4x x x x− + − ≤ − + − = mà ( ) ( ) 2 2 2 12 40 12 36 4 6 4 4x x x x x− + = − + + = − + ≥ . Dấu bằng xảy ra khi và chỉ khi 2 10 6 6 0 x x x x − = −  ⇔ =  − =  . Vậy phương trình có nghiệm x = 6 Hoặc: Áp dung bất đẳng thức Cô si cho hai số không âm ta có ( ) ( ) 2 .4 10 .4 2 4 10 4 2 10 4 2 2 4 4 x x x x x x − − − + − + − + − = + ≤ + = . 7 Phòng Giáo Dục Cam Lâm HSG Toán 9 Dấu bằng xảy ra khi và chỉ khi 2 4 6 10 4 x x x − =  ⇔ =  − =  . Bài toán 2: Giải phương trình: 2 2 2 1 1 2x x x x x x+ − + − + = − + Vì 2 1 0x x+ − ≥ và 2 1 0x x− + ≥ nên Áp dụng bất đẳng thức Cô si mỗi số hạng của vế trái ta được: ( ) 2 2 2 1 1 1 .1 2 2 x x x x x x + − + + + − ≤ = (1) ( ) 2 2 2 1 1 2 1 .1 2 2 x x x x x x − + + − + − + ≤ = (2) Cộng (1) và (2) vế theo vế ta có: 2 2 2 2 2 1 1 1 2 2 x x x x x x x x x + − + + − + − + ≤ + = + nên theo đề ta có : ( ) 2 2 2 1 1 0x x x x− + ≤ + ⇒ − ≤ . Đẳng thức xảy ra khi x = 1 . Thử lại ta thấy x = 1 thoả . Vậy phương trình có nghiệm là x = 1. Bài toán 3 : Giải phương trình: 2 2 3 5 2 3 12 14x x x x− + − = − + (1) Điều kiện tồn tại phương trình: 3 2 3 0 3 5 2 5 2 0 5 2 2 2 x x x x x  ≥  − ≥   ⇔ ⇔ ≤ ≤   − ≥   ≤   (*) Vế phải của (1): ( ) ( ) 2 2 2 3 12 14 3 4 4 2 3 2 2 2x x x x x− + = − + + = − + ≥ . Đẳng thức xảy ra khi và chỉ khi x = 2. Áp dụng bất đẳng thức Bunhiacôpxki thoả mãn (*) thì vế trái của phương trình (1): ( ) ( ) 2 2 2 3 5 2 1 1 2 3 5 2 4 2x x x x− + − ≤ + − + − = = . Đẳng thức xảy ra khi và chỉ khi 2 3 5 2 2x x x− = − ⇔ = . Đẳng thức xảy ra ở phương trình (1) là 2 nên x = 2 là nghiệm của phương trình. Hoặc Áp dụng bất đẳng thức Cô si cho hai số không âm ta có: ( ) ( ) 2 3 1 5 2 1 2 3 .1 5 2 .1 2 2 2 x x x x − + − + − + − ≤ + = . Đẳng thức xảy ra khi và chỉ khi 2 3 1 2 5 2 1 x x x − =  ⇔ =  − =  . Đẳng thức xảy ra ở phương trình (1) là 2 nên x = 2 là nghiệm của phương trình. Bài toán 4 : Giải phương trình: 2 2 2 2 3 2 1 3 3x x x x x x− + = − + + − . (1) Giải: Điều kiện 2 2 2 0 1 3 3 0 x x x x  − ≥   + − ≥   (2). Vế trái của phương trình (1): ( ) 2 2 2 3 1 2 2x x x− + = − + ≥ với mọi x ∈R . đẳng thức xảy ra khi x = 1. Theo bất đẳng thức Bunhiacôpxki với mọi x thoả mãn (2) thì vế phải của phương trình (1) thoả: 8 Phòng Giáo Dục Cam Lâm HSG Toán 9 ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 1 3 3 1 1 2 1 3 3 2 4 2 4 1 2x x x x x x x x x x x− + + − < + − + + − = + − = − − ≤ . đẳng thức xảy ra khi 2 2 2 1 3 3x x x x− = + − . Để đẳng thức xảy ra ở phương trình (1) thì cả hai vế của phương trình (1) đều bằng 2. Nên x = 1. Thử lại thấy x = 1 là nghiệm của phương trình. Bài toán 5 : Giải phương trình: ( ) 3 2 5 1 2 2x x+ = + (1) Giải: Điều kiện ( ) ( ) 3 2 1 0 1 1 0x x x x+ ≥ ⇔ + − + ≥ Do 2 1 0x x− + ≥ với mọi x nên 1 0 1x x + ≥ ⇔ ≥ − Đặt 1a x= + ; 2 1b x x= − + với 0 ; 0a b≥ > . Nên phương trình (1) trở thành : ( ) 2 2 2 5 2 2 5 2 0. a a ab a b b b     = + ⇔ − + =  ÷  ÷     Giải phương trình này được 2 a b = hoặc 1 2 a b = Với 2 a b = thì phương trình (1) vô nghiệm Với 1 2 a b = thì 2 2 1 2 1 1 5 3 0 x x x x x x ≥ −  + = − + ⇔  − − =  . Phương trình có hai nghiệm thoả điều kiện 1 5 37 2 x − = ; 2 5 37 2 x + = . Bài toán 6: Giải phương trình: 42 60 6 5 7x x + = − − (1) Phương trình (1) có nghĩa khi x < 5 nên ( ) 42 60 1 3 3 0 5 7x x     ⇔ − + − =  ÷  ÷  ÷  ÷ − −     42 42 60 60 3 3 3 3 5 5 7 7 0 42 60 3 3 5 7 x x x x x x       − + − +  ÷ ÷  ÷ ÷ − − − −       ⇔ + =     + +  ÷  ÷ − −     42 60 9 9 5 7 0 42 60 3 3 5 7 x x x x − − − − ⇔ + =     + +  ÷  ÷ − −     ( ) ( ) ( ) ( ) 9 5 42 9 7 60 0 42 60 5 3 7 3 5 7 x x x x x x − − − − ⇔ + =     − + − +  ÷  ÷ − −     ( ) ( ) ( ) 1 1 3 1 3 0 42 60 5 3 7 3 5 7 x x x x x       ⇔ − + =         − + − +  ÷  ÷ − −         ( ) 3 1 3 0x⇔ − = vì ( ) ( ) 1 1 42 60 5 3 7 3 5 7 x x x x +     − + − +  ÷  ÷ − −     > 0 nên 1 3 x = . Thử lại đúng nên nghiệm của phương trình là 1 3 x = . 9 Phòng Giáo Dục Cam Lâm HSG Toán 9 Bài toán 7: Giải phương trình: ( ) ( ) ( ) 2 5 3x x x x x x− + − = + (1) Điều kiện để phương trình có nghĩa là : 3 0 ;0 5x x− < < < < . Bình phương hai vế của phương trình (1) ta được: ( ) ( ) ( ) ( ) ( ) 2 2 5 2 2 5 3x x x x x x x x x− + − + − − = + ( ) ( ) 2 2 2 2 5 10x x x x x⇔ − − = − ( ) ( ) ( ) 2 2 2 4 2 5 10x x x x x⇔ − − = − ( ) ( ) ( ) 2 2 3 4 2 2 2 3 4 3 2 4 2 5 100 20 4 7 10 100 20 3 8 60 0x x x x x x x x x x x x x x x⇔ − − = − + ⇔ − + = − + ⇔ − − = ( ) 2 2 3 8 60 0x x x⇔ − − = . Giải phương trình này được 10 ;0;6 3 x   ∈ −     . Thử lai chỉ có hai nghiệm x = 0; x = 6 thoả mãn đề cho. Bài toán 8: Giải phương trình: ( ) ( ) 2 5 2 1 7 10 3x x x x+ − + + + + = (1) Điều kiện x > -2 và ( ) ( ) 2 7 10 2 5x x x x+ + = + + . Nhân hai vế của phương trình (1) với ( ) 2 5x x− + + ta được: ( ) ( ) ( ) ( ) ( ) 2 5 1 2 5 3x x x x   + − + + + + =   ( ) 2 5x x− + + ( ) ( ) ( ) 3 1 2 5 3x x⇔ + + + = ( ) 2 5x x− + + ( ) ( ) 2 5 2 5 1 0x x x x⇔ + + + − + + − = ( ) ( ) ( ) ( ) 5 1 2 1 2 0 5 1 1 2 0x x x x x⇔ + − + − − + = ⇔ + − − + = 5 1 0 5 1 4 2 1 1 1 2 0 x x x x x x  + − = + = = −   ⇔ ⇔ ⇔    + = = − − + =     Do x > -2 nên x = -4 (loại). Vậy nghiệm của phương trình x = -1. Cách giải khác: Đặt 2 2 2a x a x= + ⇒ = + ; 2 5 5b x b x= + ⇒ = + nên 2 2 5 2 3b a x x− = + − − = .Do đó phương trình (1) trở thành: 2 2 3 ( )(1 ) 3 b a b a ab  − =  − + =  (*) Từ hệ (*) suy ra ( ) ( ) ( ) ( ) 2 2 1 1 0b a b a ab b a a b ab− = − + ⇔ − + − − = ( ) ( ) 0 1 1 1 0 1 0 a b b a a b a b a b ab =  − =  ⇔ ⇔ = =   − − = + − − =   khi đó ta cũng có x = -1. Bài toán 9 : Giải phương trình: 2 2 25 10 3x x− − − = (1) Giải: Điều kiện 2 2 2 2 2 25 0 25 10 10 10 10 0 10 x x x x x x   − ≥ ≤   ⇔ ⇔ ≤ ⇔ − ≤ ≤   − ≥ ≤     (*). Đặt 2 0 25a x< = − ; 2 10 0x b− = > 2 2 2 2 25 10 15a b x x⇒ − = − − + = . Nên phương trình (1) trở thành 2 2 3 3 4 5 1 15 a b a b a a b b a b − = − = =    ⇔ ⇔    + = = − =    Nếu b = 1 thì 2 2 10 1 9 3x x x− = ⇔ = ⇔ = ± so với điều kiên (*) 3x = ± thoả Nếu a = 4 thì 2 2 25 16 9 3x x x− = ⇔ = ⇔ = ± so với điều kiên (*) 3x = ± thoả. Vậy phương trình có nghiệm là 3x = ± . 10 [...]... lý Viet cho 1 2 b 4a + c phương trình (2) y1 + y2 = − ; y1 y2 = Thay vào (3) và biến đổi ta được 5a 2 = 2b2 + ac a a Phương trình (2) có hai nghiệm y1; y2 Nếu y1 = y2 ⇔ x1 = x2 mới chỉ là một nghiệm của phương trình (2) vậy ta phải xét thêm các trường hợp 1) 2) như cách giải 2: 20 Phòng Giáo Dục Cam Lâm Bài tập về nhà về phương trình và hệ phương trình 1)Giải các phương trình sau: a) ( x + 3 x +... 4 = 0  y = − 13  5  x + y − 2 = 0 x = 1 Giải hệ phương trình  2 2 có nghiệm  y =1 x + y + x + y − 4 = 0   Vậy hệ phương trình có nghiệm là: ( x; y ) = ( 1;1) ;  − ; −  4  5 13   ÷ 5  2 x y + y x = 3 4 y − 3  Bài toán 27: Giải hệ phương trình  2 y x + x y = 3 4 x − 3  16 Phòng Giáo Dục Cam Lâm HSG Toán 9 3 4 Điều kiện của hệ: x ≥ ; y ≥ 3 4  2 x y + y x = 3 4 y − 3  2 x... Thay x = y vào hệ ta có phương trình: 3x x = 3 4 x − 3 ⇔ x3 = 4 x − 3 ⇔ x3 − 4 x + 3 = 0 17 Phòng Giáo Dục Cam Lâm HSG Toán 9 x =1  x −1 = 0 ⇔ ( x − 1) x + x − 3 = 0 ⇔  2 ⇔  x = −1 ± 13 x + x − 3 = 0  1,2  2 ( ) 2 x = y = 1  −1 − 13 So với điều kiện x = (loaị) Vậy hệ phương trình đã cho có nghiệm  −1 + 13 2 x = y =  2  x + y = 4 z − 1 (1)   Bài toán 28: Giải hệ phương trình:  y + z... ± 85 10 15 Phòng Giáo Dục Cam Lâm Nếu y = HSG Toán 9 −5 + 85 15 + 3 85 −5 − 85 15 − 3 85 thì x = 3 ( y + 1) = ; Nếu y = thì x = 3 ( y + 1) = 10 10 10 10  15 + 3 85 −5 + 85   15 − 3 85 −5 − 85    ; ; ÷;  ÷ ÷ ÷ 10 10 10 10        Vậy hệ phương trình có nghiệm là: ( x; y ) =   2 x3 + 3x 2 y = 5  Bài toán 25: Giải hệ phương trình:  3 (*) 2  y + 6 xy = 7  Hệ phương trình (*) tương... toán 26: Giải hệ phương trình  2 2 (2) x + y + x + y − 4 = 0  Giải: Từ phương trình (1) suy ra y − ( x + 1) y − 2 x + 5 x − 2 = 0 Giải phương trình bậc hai ẩn y có hai nghiệm y1 = 2 x − 1 ; y2 = − x + 2 Nên hệ phương trình trên tương đương: 2 2  y − 2x +1 = 0 x + y − 2 = 0 hoặc  2 2  2 2 x + y + x + y − 4 = 0 x + y + x + y − 4 = 0 4  x = − 5  y − 2x +1 = 0  ⇔ Giải hệ phương trình : ... Giải phương trình x 2 + 6 x − 24 = 0 ta được nghiệm: x1,2 = −3 ± 33 Vậy phương trình có hai nghiệm là x1,2 = −3 ± 33  y  20 x 2 + 11y = 2009 (1)  z  Bài toán 19: Giải hệ phương trình: 20 2 + 11z = 2009 (2)  y  x  20 2 + 11x = 2009 (3)  z 13 Phòng Giáo Dục Cam Lâm  Giải: Từ (1) suy ra y  20  HSG Toán 9 1  + 11÷ = 2009 ⇒ y > 0 Tương tự từ (2) và (3) suy ra x > 0 ; z > 0 Vì 2 x  hệ số... thức xảy ra x 4 + y 2 = 81 3 3 3 3 Do 0 ≤ x ≤ (2) vô nghiệm Nên hệ đã cho vô nghiệm ( )( )  x 2 + y 2 x 2 − y 2 = 144  Bài toán 21 : Giải hệ phương trình:  2  x + y 2 − x2 − y 2 = y  (*) Giải: Từ hệ phương trình suy ra y > 0 ( )( )  x 2 + y 2 x 2 − y 2 = 144 (1)  (*) ⇔  2 2 (2)  y = 2 x − 24  Thế phương trình (2) vào phương trình (1) ta có: (x 2 )( ) ( )( ) + 2 x 2 − 24 x 2 − 2 x 2 + 24 =... Suy ra 2 x 1 + x2 11 Phòng Giáo Dục Cam Lâm HSG Toán 9 1 là nghiệm của phương trình 2 Vậy x = Bài toán 14: Giải phương trình : 3 3x 2 − x + 2001 − 3 3 x 2 − 7 x + 2002 − 3 6 x − 2003 = 3 2002 Giải: Đ ặt : 3 3x 2 − x + 2001 = a ⇒ a3 = 3x 2 − x + 2001 − 3 3 x 2 − 7 x + 2002 = b ⇒ b3 = −3 x 2 + 7 x − 2002 − 3 6 x − 2003 = c ⇒ c3 = −6 x + 2003 Suy ra a 3 + b3 + c3 = 2002 Do đó phương trình đã cho sẽ là... 19 Phòng Giáo Dục Cam Lâm Khi m . = -1 suy ra x 2 = t 2 +2t = -1 <0 (Vô lý). 3 x - 0 4 8 +∞ x-8 - - - 0 + x-4 - - 0 + + x - 0 + + + Phòng Giáo Dục Cam Lâm HSG Toán 9 *Nếu t = 0 suy ra x = 0 ⇒ y = 0 hoặc -1 hoặc -2 hoặc -3 . 5 = u (1). Ta có: (x 2 - 4x+3).(x 2 - 6x + 8)=15 ⇔ (x-1).(x-3).(x-2).(x-4 )-1 5=0 ⇔ (x-1).(x-2).(x-3).(x-4 )-1 5=0 ⇔ (x 2 -5 x+4).(x 2 -5 x+6 )-1 5=0 ⇔ (u-1).(u+1 )-1 5=0 ⇔ u 2 -1 6=0 ⇔ u= ± 4. Thay các. Phòng Giáo Dục Cam Lâm HSG Toán 9 CHUYÊN ĐỀ PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH A. Giải phương trình bằng cách đặt ẩn phụ thích hợp. Bài 1:Gpt: 2

Ngày đăng: 06/05/2015, 16:56

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w