1. Trang chủ
  2. » Giáo án - Bài giảng

de hsg toan 8

2 224 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 93 KB

Nội dung

ĐỀ THI HỌC SINH GIỎI TOÁN 8 (Thời gian 90’) Bài 1: (2,5đ) a/ Phân tích đa thức sau thành nhân tử: x 5 – 5x 3 + 4x b/ Cho a + b = 1. Tính giá trị của biểu thức: A = a 2 (2a - 3) + b 2 (-3 + 2b) Bài 2: (2,5đ) a/ Cho a;b;c ≠ 0, a + b + c =1 và cba 111 ++ = 0 Chứng minh rằng: a 2 + b 2 + c 2 = 1 b/ Giải phương trình: 4 1994 15 1993 16 1992 17 1991 18 −= + + + + + + + xxxx Bài 3: (2đ) Cho biểu thức: M = )1)(1()1)(()1)(( 2222 yx yx xyx y yyx x −+ − ++ − −+ a/ Tìm điều kiện xác định của biểu thức M. b/ Rút gọn biểu thức M. c/ Tìm các cặp số nguyên (x;y) để biểu thức M có giá trị bằng 3. Bài 4: (3đ) Cho hình thang ABCD (AB//CD) và O là giao điểm của hai đường chéo AC, BD. Chứng minh rằng: a/ Diện tích tam giác AOD bằng diện tích tam giác BOC. b/ Tích của diện tích tam giác AOB và diện tích tam giác COD bằng bình phương diện tích tam giác BOC. Hết ĐÁP ÁN: Bài 1: (2,5đ) a/ (1,5đ) x 5 – 5x 3 + 4x = x(x 4 -5x 2 + 4) (0,25) = x[x 2 ( x 2 -1)-4(x 2 -1)] (0,5) = x( x 2 -1)(x 2 -4) (0,25) = (x-2)(x-1)x(x+1)(x+2) (0,5) b/ (1đ) A = a 2 (2a - 3) + b 2 (-3 + 2b) = 2(a 3 +b 3 )-3(a 2 +b 2 ) (0,25) = 2(a+b)(a 2 –ab + b 2 ) -3(a 2 +b 2 ) (0,25) = 2(a 2 –ab + b 2 ) -3(a 2 +b 2 ) (vì a+b=1) (0,25) = -2ab-a 2 -b 2 = -(a+b) 2 = -1 (0,25) Bài 2: (2,5đ) a/ (1đ) (a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc = 1 (0,25) cba 111 ++ = 0 abc bcacab ++ ⇒ = 0 (0,25) ⇒ ab + ac + bc = 0 (0,25) ⇒ 2ab + 2ac + 2bc = 0 ⇒ a 2 + b 2 + c 2 = 1 (0,25) b/(1,5đ) 4 1994 15 1993 16 1992 17 1991 18 −= + + + + + + + xxxx 0 1994 2009 1993 2009 1992 2009 1991 2009 = + + + + + + + ⇔ xxxx (0,5) 1 ĐỀ 1 ⇔ (x+2009) 0) 1994 1 1993 1 1992 1 1991 1 ( =+++ (0,25) ⇔ (x+2009) = 0 (vì )0 1994 1 1993 1 1992 1 1991 1 ≠+++ (0,5) ⇔ x =-2009 (0,25) Bài 3: (2đ) a/ (0,5đ) x ≠ -1, y ≠ 1, x ≠ y (Thiếu, sai 1ĐK trừ 0,25đ) b/ (1đ) M = )1)(1()1)(()1)(( 2222 yx yx xyx y yyx x −+ − ++ − −+ = )1)(1)(( )()1()1( 2222 xyyx yxyxyyxx +−+ +−−−+ (0,25) = [ ] )1)(1)(( )1()1()1)(1( 22 xyyx xyyxyx +−+ −++−+ (0,25) = )1)(1)(( ))()(1)(1( xyyx xyyxyxyx +−+ +−+−+ (0,25) = x – y + xy (0,25) c/ (0,5đ) M = 3 ⇔ x – y + xy = 3 ⇔ (x –1) (y+1) = 2 (0,25)    = = ⇔    =+ =− ⇒ 1 2 21 11 y x y x (loại) Hoặc    −= = ⇔    −=+ −=− 3 0 21 11 y x y x (thỏa mãn) Vậy (x;y) = (0;-3) (0,25) Bài 4: (3đ) Hình vẽ phục vụ câu a (0,5), ( Hình vẽ chưa phục vụ chứng minh (0,25)) a/ (1,25đ) Vẽ AH ⊥ DC, BK ⊥ DC (H,K ∈ DC) )25,0( )25,0( )25,0)(( )25,0(. 2 1 )25,0(. 2 1 BOCAOD DOCBOCDOCAOD BDCADC BDC ADC SS SSSS BKdoAHSS DCBKS DCAHS =⇒ +=+⇒ ==⇒ = = b/ (1,25đ) Vẽ DM ⊥ AC (M ∈ AC), BN ⊥ AC (N ∈ AC) Ta có: AOB BOC 1 BN.AO S AO 2 1 S OC BN.OC 2 = = (0,25) AOD DOC 1 DN.AO S AO 2 1 S OC DN.OC 2 = = (0,25) COD AOD BOC AOB S S S S =⇒ (0,25) BOCAODCODAOB SSSS =⇒ (0,25) )()( 2 BOCAODBOCCODAOB SdoSSSS ==⇒ (0,25) 2 . ĐỀ THI HỌC SINH GIỎI TOÁN 8 (Thời gian 90’) Bài 1: (2,5đ) a/ Phân tích đa thức sau thành nhân tử: x 5 – 5x 3 + 4x b/ Cho. Chứng minh rằng: a 2 + b 2 + c 2 = 1 b/ Giải phương trình: 4 1994 15 1993 16 1992 17 1991 18 −= + + + + + + + xxxx Bài 3: (2đ) Cho biểu thức: M = )1)(1()1)(()1)(( 2222 yx yx xyx y yyx x −+ − ++ − −+ a/. 2ab + 2ac + 2bc = 0 ⇒ a 2 + b 2 + c 2 = 1 (0,25) b/(1,5đ) 4 1994 15 1993 16 1992 17 1991 18 −= + + + + + + + xxxx 0 1994 2009 1993 2009 1992 2009 1991 2009 = + + + + + + + ⇔ xxxx (0,5) 1 ĐỀ

Ngày đăng: 30/04/2015, 23:00

Xem thêm

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w