1. Trang chủ
  2. » Giáo án - Bài giảng

Đề Thi các Tỉnh Năm 2010

34 250 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 34
Dung lượng 874,5 KB

Nội dung

Sở GD&ĐT Hà Nội Đề thi tuyển sinh lớp 10 Năm học: 2009 2010 . Môn: Toán. Ngày thi: 23 - 6 2009 . Thời gian làm bài: 120 phút. Câu I(2,5đ): Cho biểu thức A = 1 1 4 2 2 x x x x + + + , với x 0 và x 4. 1/ Rút gọn biểu thức A. 2/ Tính giá trị của biểu thức A khi x = 25. 3/ Tìm giá trị của x để A = -1/3. Câu II (2,5đ): Giải bài toán bằng cách lập phơng trình hoặc hệ phơng trình: Hai tổ sản xuất cùng may một loại áo. Nếu tổ thứ nhất may trong 3 ngày, tổ thứ hai may trong 5 ngày thì cả hai tổ may đợc 1310 chiếc áo. Biết rằng trong một ngày tổ thứ nhất may đợc nhiều hơn tổ thứ hai là 10 chiếc áo. Hỏi mỗi tổ trong một ngày may đợc bao nhiêu chiếc áo? Câu III (1,0đ): Cho phơng trình (ẩn x): x 2 2(m+1)x + m 2 +2 = 0 1/ Giải phơng trình đã cho khi m = 1. 2/ Tìm giá trị của m để phơng trình đã cho có nghiệm phân biệt x 1 , x 2 thoả mãn hệ thức x 1 2 + x 2 2 = 10. Câu IV(3,5đ): Cho đờng tròn (O;R) và điểm A nằm bên ngoài đờng tròn. Kẻ tiếp tuyến AB, AC với đờng tròn (B, C là các tiếp điểm). 1/ Chứng minh ABOC là tứ giác nội tiếp. 2/ Gọi E là giao điểm của BC và OA. Chứng minh BE vuông góc với OA và OE.OA = R 2 . 3/ Trên cung nhỏ BC của đờng tròn (O;R) lấy điểm K bất kỳ (K khác B và C). Tiếp tuyến tại K của đờng tròn (O;R) cắt AB, AC theo thứ tự tại P, Q. Chứng minh tam giác APQ có chu vi không đổi khi K chuyển động trên cung nhỏ BC. 4/ Đờng thẳng qua O và vuông góc với OA cắt các đờng thẳng AB, AC theo thứ tự tại các điểm M, N. Chứng minh PM + QN MN. Câu V(0,5đ): Giải phơng trình: 2 2 3 2 1 1 1 (2 2 1) 4 4 2 x x x x x x + + + = + + + Sở GD&ĐT Cần Thơ Đề thi tuyển sinh lớp 10 Năm học: 2009 2010 . Môn: Toán. Thời gian làm bài: 120 phút Câu I: (1,5đ) Cho biểu thức A = 1 1 1 1 1 x x x x x x x x + 1/ Rút gọn biểu thức A. 2/ Tìm giá trị của x để A > 0. Câu II: (2,0đ) Giải bất phơng trình và các phơng trình sau: 1. 6 - 3x -9 2. 2 3 x +1 = x - 5 3. 36x 4 - 97x 2 + 36 = 0 4. 2 2 3 2 3 2 1 x x x = + Câu III: (1,0đ) Tìm hai số a, b sao cho 7a + 4b = -4 và đờng thẳng ax + by = -1 đi qua điểm A(-2;-1). Câu IV: (1,5đ) Trong mặt phẳng toạ độ Oxy cho hàm số y = ax 2 có đồ thị (P). 1. Tìm a, biết rằng (P) cắt đờng thẳng (d) có phơng trình y = -x - 3 2 tại điểm A có hoành độ bằng 3. Vẽ đồ thị (P) ứng với a vừa tìm đợc. 2. Tìm toạ độ giao điểm thứ hai B (B khác A) của (P) và (d). Câu V: (4,0đ) Cho tam giác ABC vuông ở A, có AB = 14, BC = 50. Đờng phân giác của góc ABC và đ- ờng trung trực của cạnh AC cắt nhau tại E. 1. Chứng minh tứ giác ABCE nội tiếp đợc trong một đờng tròn. Xác định tâm O của đờng tròn này. 2. Tính BE. 3. Vẽ đờng kính EF của đờng tròn tâm (O). AE và BF cắt nhau tại P. Chứng minh các đờng thẳng BE, PO, AF đồng quy. 4. Tính diện tích phần hình tròn tâm (O) nằm ngoài ngũ giác ABFCE. Sở GD&ĐT Thừa Thiên Huế Đề thi tuyển sinh lớp 10 Năm học: 2009 2010 . Môn: Toán. Thời gian làm bài: 120 phút Bài 1: (2,25đ) Không sử dụng máy tính bỏ túi, hãy giải các phơng trình sau: a) 5x 2 + 13x - 6=0 b) 4x 4 - 7x 2 - 2 = 0 c) 3 4 17 5 2 11 x y x y = + = Bài 2: (2,25đ) a) Cho hàm số y = ax + b. Tìm a, b biết rằng đồ thị của hàm số đã cho song song với đờng thẳng y = -3x + 5 và đi qua điểm A thuộc Parabol (P): y = 1 2 x 2 có hoàng độ bằng -2. b) Không cần giải, chứng tỏ rằng phơng trình ( 3 1+ )x 2 - 2x - 3 = 0 có hai nghiệm phân biệt và tính tổng các bình phơng hai nghiệm đó. Bài 3: (1,5đ) Hai máy ủi làm việc trong vòng 12 giờ thì san lấp đợc 1 10 khu đất. Nừu máy ủi thứ nhất làm một mình trong 42 giờ rồi nghỉ và sau đó máy ủi thứ hai làm một mình trong 22 giờ thì cả hai máy ủi san lấp đ ợc 25% khu đất đó. Hỏi nếu làm một mình thì mỗi máy ủi san lấp xong khu đất đã cho trong bao lâu. Bài 4: (2,75đ) Cho đờng tròn (O) đờng kính AB = 2R. Vẽ tiếp tuyến d với đờng tròn (O) tại B. Gọi C và D là hai điểm tuỳ ý trên tiếp tuyến d sao cho B nằm giữa C và D. Các tia AC và AD cắt (O) lần lợt tại E và F (E, F khác A). 1. Chứng minh: CB 2 = CA.CE 2. Chứng minh: tứ giác CEFD nội tiếp trong đờng tròn tâm (O ). 3. Chứng minh: các tích AC.AE và AD.AF cùng bằng một số không đổi. Tiếp tuyến của (O ) kẻ từ A tiếp xúc với (O ) tại T. Khi C hoặc D di động trên d thì điểm T chạy trên đờng thẳng cố định nào? Bài 5: (1,25đ) Một cái phễu có hình trên dạng hình nón đỉnh S, bán kính đáy R = 15cm, chiều cao h = 30cm. Một hình trụ đặc bằng kim loại có bán kính đáy r = 10cm đặt vừa khít trong hình nón có đầy nớc (xem hình bên). Ngời ta nhấc nhẹ hình trụ ra khỏi phễu. Hãy tính thể tích và chiều cao của khối nớc còn lại trong phễu. Sở GD và ĐT Thành phố Hồ Chí Minh Kì thi tuyển sinh lớp 10 Trung học phổ thông Năm học 2009-2010 Khoá ngày 24-6-2009 Môn thi: toán Câu I: Giải các phơng trình và hệ phơng trình sau: a) 8x 2 - 2x - 1 = 0 b) 2 3 3 5 6 12 x y x y + = = c) x 4 - 2x 2 - 3 = 0 d) 3x 2 - 2 6 x + 2 = 0 Câu II: a) Vẽ đồ thị (P) của hàm số y = 2 2 x và đờng thẳng (d): y = x + 4 trên cùng một hệ trục toạ độ. b) Tìm toạ độ giao điểm của (P) và (d) bằng phép tính. Câu III: Thu gọn các biểu thức sau: A = 4 8 15 3 5 1 5 5 + + + B = : 1 1 1 x y x y x xy xy xy xy + + ữ ữ ữ + Câu IV: Cho phơng trình x 2 - (5m - 1)x + 6m 2 - 2m = 0 (m là tham số) a) Chứng minh phơng trình luôn có nghiệm với mọi m. b) Gọi x 1 , x 2 là nghiệm của phơng trình. Tìm m để x 1 2 + x 2 2 =1. C©u V: Cho tam gi¸c ABC (AB<AC) cã ba gãc nhän néi tiÕp ®êng trßn (O) cã t©m O, b¸n kÝnh R. Gäi H lµ giao ®iĨm cđa ba ®êng cao AD, BE, CF cđa tam gi¸c ABC. Gäi S lµ diƯn tÝch tam gi¸c ABC. a) Chóng minh r»ng AEHF vµ AEDB lµ c¸c tø gi¸c néi tiÕp ®êng trßn. b) VÏ ®êng kÝnh AK cđa ®êng trßn (O). Chøng minh tam gi¸c ABD vµ tam gi¸c AKC ®ång d¹ng víi nhau. Suy ra AB.AC = 2R.AD vµ S = . . 4 AB BC CA R . c) Gäi M lµ trung ®iĨm cđa BC. Chøng minh EFDM lµ tø gi¸c néi tiÕp ®êng trßn. d) Chøngminh r»ng OC vu«ng gãc víi DE vµ (DE + EF + FD).R = 2 S. Së GD - §T K× thi tun sinh líp 10 n¨m häc 2009-2010 Kh¸nh hoµ m«n: to¸n Ngµy thi : 19/6/2009 Thêi gian lµm bµi: 120 phót (kh«ng kĨ thêi gian giao ®Ị) Bµi 1: (2,0®) (Kh«ng dïng m¸y tÝnh cÇm tay) a. Cho biÕt A = 5 + 15 vµ B = 5 - 15 h·y so s¸nh tỉng A + B vµ tÝch A.B. b. Gi¶i hƯ ph¬ng tr×nh 2 1 3 2 12 x y x y + =   − =  Bài 2: (2,50 điểm) Cho Parabol (P) : y = x 2 và đường thẳng (d): y = mx – 2 (m là tham số, m ≠ 0 ) a. Vẽ đồ thò (P) trên mặt phẳng Oxy. b. Khi m = 3, tìm tọa độ giao điểm của (p) và (d). c. Gọi A(x A ; y A ), B(x B ; y B ) là hai giao điểm phân biệt của (P) và (d). tìm các giá trò của m sao cho y A + y B = 2(x A + x B ) – 1 Bài 3: (1,50 điểm) Một mảnh đất hình chữ nhật có chiều dài hơn chiều rộng 6(m) và bình phương độ dài đường chéo gấp 5 lần chu vi. Xác đònh chiều dài và chiều rộng mảnh đất đó. Bài 4: (4,00 điểm) Cho đường tròn (O; R). Từ một điểm M nằm ngoài (O; R) vẽ hai tiếp tuyến MA và MB (A, B là hai tiếp điểm). Lấy điểm C bất kì trên cung nhỏ AB (Ckhác với A và B). Gọi D, E, F lần lượt là hình chiếu vuông góc của C trên AB, AM, BM. a. Chứng minh AECD là một tứ giác nội tiếp. b. Chứng minh: · · CDE CBA= c. Gọi I là giao điểm của AC và ED, K là giao điểm của CB và DF. Chứng minh IK//AB. d. Xác đònh vò trí điểm C trên cung nhỏ AB để (AC 2 + CB 2 ) nhỏ nhất. Tính giá trò nhỏ nhất đó khi OM = 2R. Sở GD&ĐT Hà Tĩnh ĐỀ CHÍNH THỨC Mã 04 ĐỀ TUYỂN SINH LỚP 10 THPT NĂM HỌC 2009-2010 Mơn: Tốn Thời gian là bài:120 phút Bàì 1: 1. Giải phương trình: x 2 + 5x + 6 = 0 2. Trong hệ trục toạ độ Oxy, biết đường thẳng y = ax + 3 đi qua điểm M(-2;2). Tìm hệ số a Bài 2:Cho biểu thức:         −         + + + = xxxx x x xx P 1 2 1 2 với x >0 1.Rút gọn biểu thức P 2.Tìm giá trị của x để P = 0 Bài 3: Một đồn xe vận tải nhận chun chở 15 tấn hàng. Khi sắp khởi hành thì 1 xe phải điều đi làm cơng việc khác, nên mỗi xe còn lại phải chở nhiều hơn 0,5 tấn hàng so với dự định. Hỏi thực tế có bao nhiêu xe tham gia vận chuyển. (biết khối lượng hàng mỗi xe chở như nhau) Bài 4: Cho đường tròn tâm O có các đường kính CD, IK (IK khơng trùng CD) 1. Chứng minh tứ giác CIDK là hình chữ nhật 2. Các tia DI, DK cắt tiếp tuyến tại C của đường tròn tâm O thứ tự ở G; H a. Chứng minh 4 điểm G, H, I, K cùng thuộc một đường tròn. b. Khi CD cố định, IK thay đổỉ, tìm vị trí của G và H khi diện tích tam giác DỊJ đạt giá trị nhỏ nhất. Bài 5: Các số [ ] 4;1,, −∈cba thoả mãn điều kiện 432 ≤++ cba chứng minh bất đẳng thức: 3632 222 ≤++ cba Đẳng thức xảy ra khi nào? …………… HẾT…………… SỞ GIÁO DỤC &ĐÀO TẠO TỈNH BÌNH ĐỊNH ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH TRUNG HỌC PHỔ THƠNG NĂM HỌC 2009-2010 Mơn thi: TỐN ( Hệ số 1 – mơn Tốn chung) Thời gian: 120 phút (khơng kể thời gian phát đề) ***** Bài 1: (1,5 điểm) Cho 2 1 1 1 1 1 x x x P x x x x x + + + = + − − − + + a. Rút gọn P b. Chứng minh P <1/3 với và x#1 Bài 2: (2,0 điểm) Cho phương trình: (1) a. Chứng minh rằng phương trình (1) ln ln có 2 nghiệm phân biệt. b. Gọi là 2 nghiệm của phương trình (1). Tìm giá trị nhỏ nhất của biểu thức c. Tìm hệ thức giữa và khơng phụ thuộc vào m. Câu 3: (2,5 điểm) Hai vòi nước cùng chảy vào 1 cái bể khơng có nước trong 6 giờ thì đầy bể. Nếu để riêng vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại và mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được 2/5 bể. Hỏi nếu chảy riêng thì mỗi vòi chảy đầy bể trong bao lâu? Bài 4: (3 điểm) Cho tam giác ABC nội tiếp trong đường tròn (O), I là trung điểm của BC, M là 1 điểm trên đoạn CI (M khác C và I). Đường thẳng AM cắt (O) tại D, tiếp tuyến của đường tròn ngoại tiếp tam giác AIM tại M cắt BD tại P và cắt DC tại Q. a. Chứng minh DM . AI = MP . IB b. Tính tỉ số Câu 5: (1,0 điểm) Cho 3 số dương a, b, c thoả mãn điều kiện a+b+c=3. Chứng minh rằng: SỞ GIÁO DỤC ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT BÌNH ĐỊNH NĂM HỌC 2009 - 2010 Đề chính thức Môn thi: Toán Ngày thi: 02/ 07/ 2009 Thời gian làm bài: 120 phút (không kể thời gian giao đề) Bài 1: (2,0 điểm) Giải các phương trình sau: 1. 2(x + 1) = 4 – x 2. x 2 – 3x + 0 = 0 Bài 2: (2,0 điểm) 1. Cho hàm số y = ax + b. tìm a, b biết đồ thò hàm số đẫ cho đi qua hai điểm A(-2; 5) và B(1; -4). 2. Cho hàm số y = (2m – 1)x + m + 2 a. tìm điều kiện của m để hàm số luôn nghòch biến. b. Tìm giá trò m để đồ thò hàm số cắt trục hoành tại điểm có hoành độ bằng 2 3 − Bài 3: (2,0 điểm) Một người đi xe máy khởi hành từ Hoài Ân đi Quy Nhơn. Sau đó 75 phút, trên cùng tuyến đường đó một ôtô khởi hành từ Quy Nhơn đi Hoài Ân với vận tốc lớn hơn vận tốc của xe máy là 20 km/giờ. Hai xe gặp nhau tại Phù Cát. Tính vận tốc của mỗi xe, giả thiết rằng Quy Nhơn cách Hoài Ân 100 km và Quy Nhơn cách Phù Cát 30 km. Bài 4: (3,0 điểm) Cho tam giác vuông ABC nội tiếp trong đường tròn tâm O đường kính AB. Kéo dài AC (về phía C) đoạn CD sao cho CD = AC. 1. Chứng minh tam giác ABD cân. 2. Đường thẳng vuông góc với AC tại A cắt đường tròn (O) tại E. Kéo dài AE (về phía E) đoạn EF sao cho EF = AE. Chứng minh rằng ba điểm D, B, F cùng nằm trên một đường thẳng. 3. Chứng minh rằng đường tròn đi qua ba điểm A, D, F tiếp xúc với đường tròn (O). Bài 5: (1,0 điểm) Với mỗi số k nguyên dương, đặt S k = ( 2 + 1) k + ( 2 - 1) k Chứng minh rằng: S m+n + S m- n = S m .S n với mọi m, n là số nguyên dương và m > n. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT QUẢNG NAM NĂM HỌC 2009-2010 Mơn thi TỐN ( chung cho tất cả các thí sinh) Thời gian 120 phút (khơng kể thời gian giao đề) Bài 1 (2.0 điểm ) 1. Tìm x để mỗi biểu thức sau có nghĩa a) x b) 1 1x − 2. Trục căn thức ở mẫu a) 3 2 b) 1 3 1− 3. Giải hệ phương trình : 1 0 3 x x y − =   + =  Bài 2 (3.0 điểm ) Cho hàm số y = x 2 và y = x + 2 a) Vẽ đồ thị của các hàm số này trên cùng một mặt phẳng tọa độ Oxy b) Tìm tọa độ các giao điểm A,B của đồ thị hai hàm số trên bằng phép tính ĐỀ CHÍNH THỨC c) Tớnh din tớch tam giỏc OAB Bi 3 (1.0 im ) Cho phng trỡnh x 2 2mx + m 2 m + 3 cú hai nghim x 1 ; x 2 (vi m l tham s ) . Tỡm m biu thc x 1 2 + x 2 2 t giỏ tr nh nht. Bi 4 (4.0 im ) Cho ng trũn tõm (O) ,ng kớnh AC .V dõy BD vuụng gúc vi AC ti K ( K nm gia A v O).Ly im E trờn cung nh CD ( E khụng trựng C v D), AE ct BD ti H. a) Chng minh rng tam giỏc CBD cõn v t giỏc CEHK ni tip. b) Chng minh rng AD 2 = AH . AE. c) Cho BD = 24 cm , BC =20cm .Tớnh chu vi ca hỡnh trũn (O). d) Cho gúc BCD bng . Trờn na mt phng b BC khụng cha im A , v tam giỏc MBC cõn ti M .Tớnh gúc MBC theo M thuc ng trũn (O). ======Ht====== Sở giáo dục - đào tạo nam định Đề chính thức đề thi tuyển sinh năm học 2009 2010 Môn : Toán - Đề chung Thời gian làm bài 120 phút, không kể thời gian giao đề Bài1 (2,0 điểm)Trong mỗi Câu từ 1 đến Câu 8 đều có bốn phơng án trả lời A, B, C, D; Trong đó chỉ có một phơng án đúng. Hãy chọn phơng án đúng để viết vào bài làm. Câu 1. Trên mặt phẳng tọa độ Oxy, đồ thị các hàm số y = x 2 và y = 4x + m cắt nhau tại hai điểm phân biệt khi và chỉ khi A. m > 1. B. m > - 4. C. m < -1. D. m < - 4 Câu 2. Cho phơng trình3x 2y + 1 = 0. Phơng trình nào sau đay cùng với phơng trình đã cho lập thành một hệ phơng trình vô nghiệm A. 2x 3y 1 = 0 B. 6x 4y + 2 = 0 C. -6x + 4y + 1 = 0 D. -6x + 4y 2 = 0 Câu 3. Phơng trình nào sau đây có ít nhất một nghiệm nguyên ? A. 2 ( 5) 5x = B . 9x 2 - 1 = 0 C. 4x 2 4x + 1 = 0 D. x 2 + x + 2 = 0 Câu 4. Trên mặt phẳng tọa độ Oxy góc tạo bởi đờng thẳng y = 3 x + 5 và trục Ox bằng A. 30 0 B. 120 0 C. 60 0 D. 150 0 Câu 5. Cho biểu thức P = a 5 với a < 0. Đ thừa số ở ngoài dấu căn vào trong dấu căn, ta đợc P bằng: A. 2 5a B. - 5a C. 5a D. - 2 5a Câu 6. Trong các phơng trình sau đây phơng trình nào có hai nghiệm dơng: A. x 2 - 2 2 x + 1 = 0 B. x 2 4x + 5 = 0 C. x 2 + 10x + 1 = 0 D.x 2 - 5 x 1 = 0 Câu 7. Cho đờng tròn (O; R) ngoại tiếp tam giác MNP vuông cân ở M . Khi đó MN bằng: A. R B. 2R C.2 2 R D. R 2 Câu 8.Cho hònh chữ nhật MNPQ có MN = 4cm; MQ = 3 cm. Khi quay hình chữ nhật đã cho một vòng quanh cạn MN ta đợc một hình trụ có thể tích bằng H v tờn : S bỏo danh A. 48 cm 3 B. 36 cm 3 C. 24 cm 3 D.72 cm 3 Bài 2 (2,0 điểm) 1) Tìm x biết : 2 (2 1) 1 9x + = 2) Rút gọn biểu thức : M = 4 12 3 5 + + 3) Tìm điều kiện xác định của biểu thức: A = 2 6 9x x + Bài 2 (1,5 điểm) Cho phơng trình: x 2 + (3 - m)x + 2(m - 5) = 0 (1), với m là tham số. 1) Chứng minh rằng với mọi giá trị của m phơng trình (1) luôn có nghiệm x 1 = 2. 2) Tìm giá trị của m để phơng trình (1) có nghiệm x 2 = 1 + 2 2 Bài 3. ( 3,0 điểm) Cho đờng tròn (O; R) Và điểmA nằm ngoài (O; R) .Đờng tròn đờng kính AO cắt đờng tròn (O; R) Tại M và N. Đờng thẳng d qua A cắt (O; R) tại B và C ( d không đi qua O; điểm B nằm giữa A và C). Gọi H nlà trung điểm của BC. 1) Chứng minh: AM là tiếp tuyến của (O; R) và H thuộc đờng tròn đờng kính AO. 2) Đờng thẳng qua B vuông góc với OM cắt MN ở D. Chứng minh rằng: a) Góc AHN = góc BDN b) Đờng thẳng DH song song với đờng thẳng MC. c) HB + HD > CD Bài 5 (1,5 điểm) 1) Giải hệ phơng trình: 2 2 2 2 0 ( 1) 1 x y xy x y x y xy + = + = + 2) Chứng minh rằng với mọi x ta luôn có: 2 2 (2 1) 1 (2 1) 1x x x x x x+ + > + + Đề thi tuyển sinh lớp 10 tỉnh Nghệ An Năm học: 2009-2010 Môn: Toán Thời gian: 120 phút (không kể thời gian giao đề) Câu I: (3,0đ). Cho biểu thức A = 1 1 1 1 x x x x x + + 1. Nêu điều kiện xác định và rút gọn biểu thức A. 2. Tính giá trị biểu thức A khi x = 9/4. 3. Tìm tất cả các giá trị của x để A <1. CâuII: (2,5đ). Cho phơng trình bậc hai, với tham số m: 2x 2 (m+3)x + m = 0 (1). 1. Giải phơng trình (1) khi m = 2. 2. Tìm các giá trị của tham số m để phơng trình (1) có hai nghiệm x 1 , x 2 thoả mãn: x 1 + x 2 = 5 2 x 1 x 2 . 3. Gọi x 1 , x 2 là hai nghiệm của phơng trình (1). Tìm giá trị nhỏ nhất của biểu thức P = 1 2 x x Câu III: (1,5đ). Một thửa ruộng hình chữ nhật có chiều rộng ngắn hơn chiều dài 45m. Tính diện tích thửa ruộng, biết rằng nếu chiều dài giảm đi 2 lần và chiều rộng tăng 3 lần thì chu vi thửa ruộng không thay đổi. Câu IV: (3,0đ). Cho đờng tròn (O;R), đờng kính AB cố định và CD là một đờng kính thay đổi không trùng với AB. Tiếp tuyến của đờng tròn (O;R) tại B cắt các đờng thẳng AC và AD lần lợt tại E và F. 1. Chứng minh rằng BE.BF = 4R 2 . 2. Chứng minh tứ giác CEFD nội tiếp đờng tròn. 3. Gọi I là tâm đờng tròn ngoại tiếp tứ giác CEFD. Chứng minh rằng tâm I luôn nằm trên một đ- ờng thẳng cố định. S GIO DC V O TO QUNG NINH K THI TUYN SINH LP 10 THPT NM HC 2009 - 2010 THI CH NH TH C MễN : TO N Ngày thi : 29/6/2009 Thời gian làm bài : 120 phút (không kể thời gian giao đề) Chữ ký GT 1 : Chữ ký GT 2 : Bài 1. (2,0 điểm) Rút gọn các biểu thức sau : [...]... tạo Bắc giang Đề thi chính thức (đợt 1) Kỳ thi tuyển sinh lớp 10 THPT Năm học 2009 -2010 Môn thi: Toán Thời gian làm bài: 120 phút không kể thời gian giao đề Ngày 08 tháng 07 năm 2009 (Đề thi gồm có: 01 trang) Câu I: (2,0 điểm) 1 Tính 4 25 2 x = 4 2 Giải hệ phơng trình: x + 3y = 5 Câu II: (2,0 điểm) 1.Giải phơng trình x2-2x+1=0 2 Hàm số y=2009x +2010 đòng biến hay nghịch... thẳng HB Câu VI:(0,5 điểm) 16 =0 Cho các số dơng x, y, z thỏa mãn xyz x+ y+z Tìm giá trị nhỏ nhất của biểu thức P = (x+y)(x+z) Hết Sở Giáo dục và đào tạo Bắc giang Đề thi chính thức (đợt 2) Kỳ thi tuyển sinh lớp 10 THPT Năm học 2009 -2010 Môn thi: Toán Thời gian làm bài: 120 phút không kể thời gian giao đề Ngày 10 tháng 07 năm 2009 (Đề thi gồm có: 01 trang) ... sinh: Số báo danh Chữ kí của giám thị 1: Chữ kí của giám thị 2: Sở Giáo dục và đào tạo Kỳ thi tuyển sinh lớp 10 THPT Hải Dơng Năm học 2009 -2010 Môn thi: Toán Thời gian làm bài: 120 phút không kể thời gian giao đề Ngày 08 tháng 07 năm 2009 (buổi chiều) (Đề thi gồm có: 01 trang) Đề thi chính thức Cõu 1(2.0 im): x 1 x +1 + 1= 2 4 x = 2y 2) Gii h phng trỡnh: x y = 5 1) Gii phng trỡnh:... minh rng: MN2 + NK2 = 4R2 Cõu 5:(1,0 im) Tỡm giỏ tr ln nht, nh nht ca biu thc: A = Sở Giáo Dục & Đào Tạo Hà Giang Đề Chính Thức Bài 1(2,0 điểm): 6 4x x2 + 1 Kì Thi Tuyển Sinh Vào 10 THPT Năm Học 2009 2010 Đề thi môn: Toán Học Thời gian thi : 120 phút ( không kể thời gian giao đề) Ngày thi: 10/7/2009 .&*& 3 x + 4 y = 4 a, Không dùng máy tính cầm tay, giải hệ phơng trình : x 2 y = 3 b, Tìm... SCB Bi 5: (1 im) Tớnh din tớch xung quanh v th tớch ca hỡnh nún cú chiu cao h = 12 cm v bỏn kớnh ng trũn ỏy r = 9 cm Sở GD và ĐT Tỉnh Long An Kì thi tuyển sinh lớp 10 Trung học phổ thông Năm học 2009 -2010 Môn thi: Toán Đề thi Chính thức Thi gian lm bi: 120 phỳt (khụng k thi gian giao ) Cõu 1: (2) Rỳt gn biu thc 1 128 + 300 2 b/Gii phng trỡnh: 7x2+8x+1=0 Cõu2: (2) a/ A = 2 8 3 27 Cho biu thc P = a2... lt ti B , C v i qua D Gi E l giao im th hai ca hai ng trũn ny Chng minh rng im E nm trờn ng trũn (O) - HT sở giáo dục và đào tạo hng yên kỳ thi tuyển sinh và lớp 10 thpt năm học 2009 - 2010 đề thi chính thức Môn thi : toán (Đề thi có 02 trang) Thời gian làm bài: 120 phút phần a: trắc nghiệm khách quan (2,0 điểm) Từ câu 1 đến câu 8, hãy chọn phơng án đúng và viết chữ cái đứng trớc phơng... phng trỡnh: x 2 + 2(m + 1)x + 2m 2 + 9m + 7 = 0 (m l tham s) 7(x1 + x 2 ) x1 x 2 18 Chng minh rng : 2 Sở Giáo dục và đào tạo Đề thi chính thức BìNH DƯƠNG Kỳ thi tuyển sinh lớp 10 THPT Năm học 2009 -2010 Môn thi: Toán Thời gian làm bài: 120 phút (không kể thời gian giao đề. ) Bài 1: (3,0 điểm) 2 x 3 y = 4 1 GiảI hệ phơng trình 3 x + 3 y = 1 2 Giải hệ phơng trình: a) x2 ... giác AOCD là hình thoi Tính diện tích hình thoi AOCD theo R sở gd&đt quảng bình đề thi chính thức tuyển sinh vào lớp 10 thpt Năm học 2009 -2010 Môn :toán Thời gian làm bài: 120 phút (không kể thời gian phát đề) Phần I Trắc nghiệm khách quan (2,0 điểm) * Trong các câu từ Câu 1 đến Câu 8, mỗi câu đều có 4 phơng án trả lời A, B, C, D; trong đó chỉ có một phơng án trả lời đúng Hãy chọn chữ... tho món iu kin 1 1 1 1 + + + + = 37 a1 a2 a3 a 361 Chng minh rng trong 361 s t nhiờn ú, tn ti ớt nht 2 s bng nhau S GD & O TO TNH KIấN GIANG THI TUYN SINH VO LP 10 THPT Nm hc 2009 2010 Mụn thi : Toỏn Thi gian lm bi: 120 phỳt (khụng k thi gian giao ) Ngy thi: 25/6/2009 Bi 1: (1,5 im) Gii h phng trỡnh v phng trỡnh sau : 3x + 2y = 1 a) 5x + 3y = 4 b) 9x4 + 8x2 1= 0 Bi 2: (2,0 im) 1 x +3 1 Cho... trờn cung nh BC Bi 5 (0,5 im) Gii phng trỡnh: x2 - 1 + 4 x2 + x + 1 1 = ( 2 x 3 + x 2 + 2 x + 1) 4 2 Ht -S GIO DC - O TO THI BèNH K THI TUYN SINH LP 10 TRUNG HC PH THễNG Nm hc 2009 -2010 CHNH THC Mụn thi: TON Thi gian lm bi: 120 phỳt (khụng k thi gian giao ) Bi 1 (2,0 im) 1 Rỳt gn cỏc biu thc sau: a) b) 3 13 6 + + 2+ 3 4 3 3 x yy x xy + xy x y vi x > 0 ; y > 0 ; x y 2 Gii phng trỡnh: . nam định Đề chính thức đề thi tuyển sinh năm học 2009 2010 Môn : Toán - Đề chung Thời gian làm bài 120 phút, không kể thời gian giao đề Bài1 (2,0 điểm)Trong mỗi Câu từ 1 đến Câu 8 đều có bốn. nhau. SỞ GD & ĐÀO TẠO TỈNH KIÊN GIANG ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2009 – 2010 Môn thi : Toán Thời gian làm bài: 120 phút (không kể thời gian giao đề) Ngày thi: 25/6/2009 Bài 1:. ng trũn (O) HT sở giáo dục và đào tạo hng yên đề thi chính thức (Đề thi có 02 trang) kỳ thi tuyển sinh và lớp 10 thpt năm học 2009 - 2010 Môn thi : toán Thời gian làm bài: 120 phút phần a: trắc

Ngày đăng: 30/04/2015, 01:00

TỪ KHÓA LIÊN QUAN

w