Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 54 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
54
Dung lượng
3,38 MB
Nội dung
Chúng tôi tuyển sinh các lớp 8, 9, 10, 11, 12 các ngày trong tuần. Các em có thể học tại nhà theo nhóm hoặc cá nhân, hoặc học tại trung tâm 40 học sinh/ 1lớp. Cung cấp tài liệu, đềthi trắc nghiệm Sở Giáo dục và đào tạo Kỳ THI TUYểN SINH LớP 10 chuyên QuốC HọC Thừa Thiên Huế Môn: TOáN - Năm học 2007-2008Đề chính thức Thời gian làm bài: 150 phút Bài 1: (2 điểm) Giải hệ phương trình: =− =+ 82 82 2 2 xy yx Bài 2: (2 điểm) Chứng minh rằng phương trình: ( ) 4 2 2 4 2 2 3 0x m x m − + + + = luôn có 4 nghiệm phân biệt 1 2 3 4 , , ,x x x x với mọi giá trị của m . Tìm giá trị m sao cho 2 2 2 2 1 2 3 4 1 2 3 4 11x x x x x x x x + + + + × × × = . Bài 3: (3 điểm) Cho hình vuông cố định PQRS. Xét một điểm M thay đổi ở trên cạnh PQ (M ≠ P, M ≠ Q). Đường thẳng RM cắt đường chéo QS của hình vuông PQRS tại E. Đường tròn ngoại tiếp tam giác RMQ cắt đường thẳng QS tại F (F ≠ Q). Đường thẳng RF cắt cạnh SP của hình vuông PQRS tại N. 1. Chứng tỏ rằng: · · · ERF QRE +SRF = . 2. Chứng minh rằng khi M thay đổi trên cạnh PQ của hình vuông PQRS thì đường tròn ngoại tiếp tam giác MEF luôn đi qua một điểm cố định. 3. Chứng minh rằng: MN = MQ + NS. Bài 4: (2 điểm) Tìm tất cả các cặp số nguyên ,p q sao cho đẳng thức sau đúng: 1232 +−−=−+− qppqqp Bài 5: (1 điểm) Chứng minh với mọi số thực , ,x y z luôn có: ( ) 2x y z y z x z x y x y z x y z + − + + − + + − + + + ≥ + + Hết SBD thí sinh: . Chữ ký GT1: Giáo viên: Trần Hải Nam – 01662 843844 – TT luyện thi Tầm Cao Mới – 0532 478138 1 Tổnghợpđềthi tuyển sinh vào lớp 10 cácnăm qua Sở Giáo dục và đào tạo Kỳ THI TUYểN SINH LớP 10 chuyên QuốC HọC Thừa Thiên Huế Môn: TOáN - Năm học 2007-2008 ĐÁP ÁN - THANG ĐIỂM BÀI NỘI DUNG Điể m B.1 =− =+ 82 82 2 2 xy yx (2đ) Ta có : ( ) ( ) 2 2 2 2 0x y y x+ − − = . 0,25 Hay ( ) ( ) 2 0x y x y+ − + = . 0,25 + Nếu 0x y+ = , thay y x= − vào phương trình đầu thì: 2 2 2 8 2 8 0x x x x− = ⇔ − − = 0,25 Giải ra : 4; 2x x= = − 0,25 Trường hợp này hệ có hai nghiệm : ( ) ( ) ; 4; 4x y = − ; ( ) ( ) ; 2;2x y = − 0,25 + Nếu 2 0x y− + = , thay 2y x= + vào phương trình đầu thì: ( ) 2 2 2 2 8 2 4 0x x x x+ + = ⇔ + − = . 0,25 Giải ra: 1 5 ; 1 5x x= − − = − + . 0,25 Trường hợp này hệ có hai nghiệm: ( ) ( ) ; 1 5;1 5x y = − − − ; ( ) ( ) ; 1 5;1 5x y = − + + 0,25 B.2 ( ) 4 2 2 4 2 2 3 0x m x m − + + + = (1) (2đ) Đặt : 2 t x= , ta có : ( ) 2 2 4 2 2 3 0t m t m− + + + = (2) ( 0t ≥ ) . 0,25 Ta chứng tỏ (2) luôn có hai nghiệm : 1 2 0 t t< < . 0,25 ( ) ( ) 2 2 4 2 ' 2 3 4 1 0m m m∆ = + − + = + > với mọi m .Vậy (2) luôn có hai nghiệm phân biệt 1 2 ,t t . 0,25 4 1 2 3 0t t m× = + > với mọi m . 0,25 ( ) 2 1 2 2 2 0t t m+ = + > với mọi m . 0,25 Do đó phương trình (1) có 4 nghiệm : 1 t − , 1 t + , 2 t − , 2 t + . ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 1 2 3 4 1 2 3 4 1 1 2 2 1 1 2 2 x x x x x x x x t t t t t t t t + + + + × × × = − + + − + + − × × − × ( ) 1 2 1 2 2 t t t t= + + × 0,25 ( ) 2 2 2 2 2 4 4 2 1 2 3 4 1 2 3 4 4 2 3 4 11x x x x x x x x m m m m+ + + + × × × = + + + = + + . 0,25 2 2 2 2 4 2 4 2 1 2 3 4 1 2 3 4 11 4 11 11 4 0 0x x x x x x x x m m m m m+ + + + × × × = ⇔ + + = ⇔ + = ⇔ = 0,25 Sưu tầm và tổng hợp: Nguyễn V V Trang Tổnghợpđềthi tuyển sinh vào lớp 10 cácnăm qua B.3 3 đ Câu3. 1 (1đ) Hình vẽ đúng 0,25 Đường tròn ngoại tiếp tam giác RMQ có đường kính RM . · · · 0 45ERF MRF MQF= = = (3) 0,25 F nằm trong đọan ES. · · · 0 90 QRE ERF FRS= + + Do đó : · · 0 45QRE SRF+ = (4) 0,25 Từ (3) và (4) : · · · ERF QRE SRF= + . 0,25 Câu3. 2 (1đ) Ta chứng minh đường tròn ngoại tiếp tam giác MEF luôn qua điểm cố định P. 0,25 Ta có : · · 0 45NSE NRE= = . Do đó N, S, R, E ở trên đường tròn đường kính NR. 0,25 Ta cũng có: · · 0 45FME FNE= = . Do đó N, F, E, M ở trên đường tròn đường kính MN. 0,25 Do · 0 90MPN = nên đường tròn ngoại tiếp tam giác MEF đi qua điểm P. 0,25 Câu3. 3 (1đ) Tam giác RMN có hai đường cao MF và NE. Gọi H là giao điểm của MF và NE, ta có RH là đường cao thứ ba. RH vuông góc với MN tại D. Do đó : · · DRM ENM= . 0,25 Ta có: · · ENM EFM= (do M, N, F, E ở trên một đường tròn); · · · EFM QFM QRM= = (do M, F, R, Q ở trên một đường tròn). Suy ra: · · DRM QRM= . D nằm trong đọan MN. 0,25 Hai tam giác vuông DRM và QRM bằng nhau, suy ra : MQ = MD 0,25 Tương tự : Hai tam giác vuông DRN và SRN bằng nhau, suy ra : NS = ND . Từ đó : MN = MQ+NS 0,25 B. 4 1232 +−−=−+− qppqqp ( α ) (2đ) Điều kiện: 2 0,p − ≥ 3 0,q − ≥ 2 1 0.pq p q− − + ≥ (p, q là các số nguyên) 0,25 Bình phưong hai vế của ( α ) : 2 2 3 3 2 6p q pq p q− × − = − − + . 0,25 Sưu tầm và tổng hợp: Nguyễn V V Trang D H N F E M S R Q P Tổnghợpđềthi tuyển sinh vào lớp 10 cácnăm qua Hay : ( ) ( ) 2 ( 2)( 3) 2 3p q p q− − = − − . 0,25 Tiếp tục bình phương : ( ) ( ) ( ) ( ) 2 2 4 2 3 2 3p q p q− − = − − . 0,25 + Nếu 2p = thì ( α ) trở thành: 0 + 3 − q = 3 − q , đúng với mọi số nguyên 3q ≥ tùy ý. 0,25 + Nếu 3q = thì ( α ) trở thành: 2 − p + 0 = 2 − p ,đúng với mọi số nguyên 2p ≥ tùy ý. 0,25 + Xét 2p > và 3q > . Ta có : ( ) ( ) 4 2 3p q= − − ( p, q là các số nguyên) Chỉ xảy ra các trường hơp : 1/ 2 1,p − = 3 4q − = ; 2/ 2 2,p − = 3 2q − = ; 3/ 2 4,p − = 3 1q − = . 0,25 Ta có thêm các cặp (p; q): (3; 7) , (4; 5) , (6, 4) . Kiểm tra lại đẳng thức ( α ): 1 + 4 = 9 ; 2 + 2 = 8 ; 4 + 1 = 9 0,25 B.5 )(2 zyxzyxyxzxzyzyx ++≥+++−++−++−+ (*) (1đ) Đặt: ,a x y z= + − ,b y z x= + − c z x y= + − . Trong ba số a, b, c bao giờ cũng có ít nhất hai số cùng dấu, chẳng hạn: 0a b × ≥ . Lúc này : zyx −+ + zxy −+ = a + b = ba + = 2 y 0,25 Ta có : x y z a b c+ + = + + ; 2x a c= + ; 2z b c= + . Do đó để chứng minh (*) đúng, chỉ cần chứng tỏ : c + cba ++ ≥ ca + + cb + (**) đúng với 0a b× ≥ . 0,25 Ta có: (**) ( ) 2 2 c a b c ab a c b c ca cb c ab ca cb c ab⇔ × + + + ≥ + × + ⇔ + + + ≥ + + + (***) 0,25 Đặt: 2 ca cb c A+ + = ; ab B= , ta có B B= (do a.b ≥ 0) ta có: (***) ⇔ A + B ≥ BA + ⇔ A . B ≥ AB ⇔ AB ≥ AB . Dấu đẳng thức xảy ra trong trường hợpcác số: a, b, c, a + b + c chia làm 2 cặp cùng dấu. Ví dụ: 0ab ≥ và ( ) 0c a b c+ + ≥ . 0,25 Chú ý: Có thể chia ra các trường hợp tùy theo dấu của a, b, c (có 8 trường hợp) để chứng minh(*) Sưu tầm và tổng hợp: Nguyễn V V Trang Tổnghợpđềthi tuyển sinh vào lớp 10 cácnăm qua ĐỀTHI TUYỂN SINH LỚP 10 HỆ THPT CHUYÊN ĐHKHTN, ĐHQG HÀ NỘI NĂM HỌC 2007-2008 – Thời gian 150 phút NGÀY THỨ NHẤT Câu 1. (3 điểm) Giải hệ phương trình và phương trình sau a) 2 2 4 1 2 2 1x x x x x− + = − + + . b) 3 3 ( ) 2 4 xy x y x y x y + = + + + = . Câu 2. (3 điểm) a) Giả sử x 1 , x 2 là 2 nghiệm dương của phương trình x 2 – 4x + 1 = 0. Chứng minh rằng 5 5 1 2 x x+ là một số nguyên. b) Cho a, b là các số nguyên dương thỏa mãn a + 1 và b + 2007 đều chia hết cho 6. Chứng minh rằng 4 a + a + b chia hết cho 6. Câu 3. (3 điểm) Cho M là trung điểm của cung nhỏ AB của đường tròn tâm O (AB không phải là đường kính). C và D là 2 điểm phân biệt, thay đổi nằm giữa A và B. Các đường thẳng MC, MD cắt (O) tương ứng tại E, F khác M. a) Chứng minh các điểm C, D, E, F nằm trên một đường tròn. b) Gọi O 1 và O 2 lần lượt là tâm các đường tròn ngoại tiếp các tam giác ACE và BDF. Chứng minh rằng khi C và D thay đổi trên đoạn AB thì giao điểm của hai đường thẳng AO 1 và BO 2 là một điểm cố định. Câu 4. (1 điểm) Cho a, b, c là các số thực dương thỏa mản abc = 1. Chứng minh rằng: ( ) ( ) ( ) 2 2 2 1 . 1 1 1 a b c a b c ab a bc b ca c ≤ + + + + + + + + + + Sưu tầm và tổng hợp: Nguyễn V V Trang Tổnghợpđềthi tuyển sinh vào lớp 10 cácnăm qua ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH ĐỀTHI TUYỂN SINH LỚP 10 NĂNG KHIẾU NĂM HỌC 2007 – 2008 MÔN TOÁN AB ( Chung cho các lớp Toán , Tin , Lý , Hoá , Sinh ) Thời gian làm bài : 150 phút. Câu 1. Cho phương trình : 2 2 2 ( 1) 3 0 1 x x m m m x − + + − = − (1) a) Tìm m để x = -1 là một nghiệm của phương trình (1) b) Tìm m để phương trình (1) vô nghiệm Câu 2. a) Giải bất phương trình : 2 ( 3)( 1) 2 1 7x x x x+ − − − < − b) Giải hệ phương trình : 2 3 2 1 2 3 2 1 x y y x x x y x x y y y + = − + = − Câu 3. a) Cho a,b là hai số thoả mãn điều kiện : 2 2 2 2 3 2 5 7 0a ab b a b a ab b a b− + + − = − + − + = Chứng tỏ rằng : 12 15 0ab a b − + = b) Cho : 2 2 ( 4 2)( 1)( 4 2) 2 1 ( 1) x x x x x x A x x x + − + + + + − + = − Hãy tìm tất cả các giá trị của x để 0A ≥ Câu 4. Cho tam giác ABC nhọn có H là trực tâm và góc BAC bằng 60 o . Gọi M , N , P lần lượt là chân đường cao kẻ từ A , B , C của tam giác ABC là I là trung điểm của BC . a) Chứng minh rằng tam giác INP đều b) Gọi E và K lần lượt là trung điểm của PB và NC . Chứng minh các điểm I , M , E và K cùng thuộc một đường tròn c) Giả sử IA là phân giác của góc NIP . Hãy tính số đo của góc BCP Câu 5. Một công ty may giao cho tổ A may 16800 sản phẩm , tổ B may 16500 sản phẩm và bắt đầu thực hiện công việc cùng một lúc . Nếu sau 6 ngày , tổ A được hỗ trợ thêm 10 công nhân may thì họ hoàn thành công việc cùng lúc với tổ B . Nếu tổ A được hỗ trợ thêm 10 công nhân may ngay từ đầu thì họ sẽ hoàn thành công việc sớm hơn tổ B 1 ngày. Hãy xác định số công nhân ban đầu của mỗi tổ . Biết rằng , mỗi công nhân may mỗi ngày được 20 sản phẩm . − HẾT − Sưu tầm và tổng hợp: Nguyễn V V Trang Tổnghợpđềthi tuyển sinh vào lớp 10 cácnăm qua Sở Giáo dục-đào tạo Kỳ THI TUYểN SINH LớP 10 thpt thành phố huế Thừa Thiên Huế Khóa ngày 12.7.2007 Đề chính thức Môn: TOáN Thời gian làm bài: 120 phút Bài 1 : (1,75 điểm) a) Không sử dụng máy tính bỏ túi, tính giá trị của biểu thức: 3 2 3 6 3 3 3 A − = + + b) Rút gọn biểu thức ( ) − = − > ≠ ÷ + + + + 1 1 1 : 0 vµ 1 1 2 1 x B x x x x x x x . Bài 2: (2,25 điểm) Trên mặt phẳng tọa độ cho hai điểm ( ) 4 ; 0B và ( ) 1 ; 4C − . a) Viết phương trình đường thẳng (d) đi qua điểm C và song song với đường thẳng 2 3y x= − . Xác định tọa độ giao điểm A của đường thẳng (d) với trục hoành Ox. b) Xác định các hệ số a và b biết đồ thị hàm số y = ax + b đi qua 2 điểm B và C. Tính góc tạo bởi đường thẳng BC và trục hoành Ox (làm tròn đến phút). c) Tính chu vi của tam giác ABC (đơn vị đo trên các trục tọa độ là xentimét) (kết quả làm tròn đến chữ số thập phân thứ nhất). Bài 3: (2 điểm) a) Tìm hai số u và v biết: 1, 42 vàu v uv u v+ = = − > . b) Khoảng cách giữa hai bến sông A và B là 60 km. Một xuồng máy đi xuôi dòng từ bến A đến bến B, nghỉ 30 phút tại bến B rồi quay trở lại đi ngược dòng 25 km để đến bến C. Thời gian kể từ lúc đi đến lúc quay trở lại đến bến C hết tất cả là 8 giờ. Tính vận tốc xuồng máy khi nước yên lặng, biết rằng vận tốc nước chảy là 1 km/h. Bài 4: (2,5 điểm) Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ hai tia tiếp tuyến Ax và By của nửa đường tròn (Ax, By và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB). Gọi M là điểm tùy ý thuộc nửa đường tròn (khác A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax tại D và cắt By tại E. a) Chứng minh rằng: ∆ DOE là tam giác vuông. b) Chứng minh rằng: 2 AD BE = R× . c) Xác định vị trí của điểm M trên nửa đường tròn (O) sao cho diện tích của tứ giác ADEB nhỏ nhất. Bài 5: (1,5 điểm) Một cái xô dạng hình nón cụt có bán kính hai đáy là 19 cm và 9 cm, độ dài đường sinh 26cml = . Trong xô đã chứa sẵn lượng nước có chiều cao 18 cm so với đáy dưới (xem hình vẽ). a) Tính chiều cao của cái xô. Hỏi phải đổ thêm bao nhiêu lít nước để đầy xô ? Sưu tầm và tổng hợp: Nguyễn V V Trang Tổnghợpđềthi tuyển sinh vào lớp 10 cácnăm qua bài 1 a. bài này đặt ẩn phụ là ra b. đặt x+y=a xy=b ta có hệ ab=2 +a-3ab=4 thay ab=2 vào phương trình 2 ta tính đc a= 2=> b=1 thay a và b ta tính đc x=y=1 1. a)đk Đặt phương trình trở thành: Đặt Câu 2 a)PT có 2 nghiệm và Do đó là số nguyên đpcm b) và a,b lẻ (1) (2) Từ(1)(2)=>đ.p.c.m Sở Giáo dục và đào tạo Kỳ THI TUYểN SINH LớP 10 thpt Tp. Huế Thừa Thiên Huế Môn: TOáN - Khóa ngày: 12/7/2007 ý Nội dung Điểm 1,75 1.a + ( ) ( ) ( ) ( ) 3 3 2 6 3 3 3 2 3 6 3 3 3 3 3 3 3 3 A − − − = + = + + + − 0,25 Sưu tầm và tổng hợp: Nguyễn V V Trang Tổng hợpđềthi tuyển sinh vào lớp 10 cácnăm qua + ( ) 6 3 3 3 2 9 3 A + = − + − + 3 2 3 3 1A = − + + = 0,25 0,25 1.b Ta có: + ( ) − = − + + + + 1 1 1 1 1 1 1 x x x x x x + = ( ) − + 1 1 x x x + ( ) − − = + + + 2 1 1 2 1 1 x x x x x + ( ) ( ) 2 1 1 1 : 1 1 x x x B x x x x − − + = = − + + (vì 0x > và 1x ≠ ). 0,25 0,25 0,25 0,25 2,25 2.a + Đường thẳng (d) song song với đường thẳng 2 3y x= − , nên phương trình đường thẳng (d) có dạng 2 ( 3)y x b b= + ≠ − . + Đường thẳng (d) đi qua điểm ( ) 1; 4C − nên: 4 2 6 3b b= − + ⇔ = ≠ − . Vậy: Phương trình đường thẳng (d) là: 2 6y x= + . + Đường thẳng (d) cắt trục Ox tại điểm ( ; 0)A x nên 0 2 6 3x x = + ⇔ = − . Suy ra: ( ) 3 ; 0A − 0,25 0,25 0,25 2.b + Đồ thị hàm số y ax b= + là đường thẳng đi qua ( ) 4; 0B và ( ) 1; 4C − nên ta có hệ phương trình: 0 4 4 a b a b = + = − + + Giải hệ phương trình ta được: ( ) 4 16 ; ; 5 5 a b = − ÷ . 0,25 0,25 + Đường thẳng BC có hệ số góc 4 0,8 0 5 a = − = − < , nên tang của góc ' α kề bù với góc tạo bởi BC và trục Ox là: 0 ' 0,8 ' 38 40'tg a α α = = ⇒ ≈ . + Suy ra: Góc tạo bởi đường thẳng BC và trục Ox là 0 0 180 ' 141 20' α α = − ≈ 0,25 0,25 2.c + Theo định lí Py-ta-go, ta có: 2 2 2 2 2 4 2 5AC AH HC= + = + = +Tương tự: 2 2 5 4 41BC = + = . Suy ra chu vi tam giác ABC là: 7 2 5 41 17,9( )AB BC CA cm+ + = + + ≈ 0,25 Sưu tầm và tổng hợp: Nguyễn V V Trang Tổng hợpđềthi tuyển sinh vào lớp 10 cácnăm qua 0,25 2,0 3.a + u, v là hai nghiệm của phương trình: 2 42 0x x− − = + Giải phương trình ta có: 1 2 6; 7x x= − = + Theo giả thiết: u v> , nên 7; 6u v= = − 0,25 0,25 0,25 3.b + Gọi x (km/h) là vận tốc của xuồng khi nước yên lặng. Điều kiện: x > 1. + Thời gian xuồng máy đi từ A đến B: 60 (h) 1x + , thời gian xuồng ngược dòng từ B về C : 25 (h) 1x − + Theo giả thiết ta có phương trình : 60 25 1 8 1 1 2x x + + = + − + Hay 2 3 34 11 0x x− + = Giải phương trình trên, ta được các nghiệm: 1 11x = ; 2 1 3 x = + Vì x > 1 nên x = 11 . Vậy vận tốc của xuồng khi nước đứng yên là 11km/h. 0,25 0,25 0,25 0,25 0,25 2,5 4.a + Hình vẽ đúng (câu a): + Theo giả thiết: DA và DM là hai tiếp tuyến cắt nhau tại D, nên OD là tia phân giác góc AOM. Tương tự: OE là tia phân giác góc MOB. + Mà · AOM và · MOB là hai góc kề bù, nên · 0 90DOE = . Vậy tam giác DOE vuông tại O. 0,25 0,50 0,50 4.b + Tam giác DOE vuông tại O và OM DE ⊥ nên theo hệ thức lượng trong tam giác vuông, ta có: 2 2 DM EM OM R× = = (1) + Mà DM = DA và EM = EB (định lí về 2 tiếp tuyến cắt nhau) (2). + Từ (1) và (2) ta có: 2 DA EB R× = 0,25 0,25 0,25 4.c + Tứ giác ADEB là hình thang vuông, nên diện tích của nó là: ( ) ( ) 1 1 2 2 2 S AB DA EB R DM EM R DE= + = × × + = × + S nhỏ nhất khi và chỉ khi DE nhỏ nhất. Mà DE là đường xiên hay đường vuông góc kẻ từ D đến By, nên DE nhỏ nhất khi DE = DH (DH vuông góc với By tại H). 0,25 Khi đó DE song song với AB nên M là điểm chính giữa của nửa đường tròn (O) (hoặc OM ⊥ AB). Giá trị nhỏ nhất của diện tích đó là: 2 0 2S R= Ghi chú: Nếu học sinh không tìm giá trị nhỏ nhất của diện tích vẫn cho điểm tối đa. 0,25 1,5 Sưu tầm và tổng hợp: Nguyễn V V Trang [...]... chớnh thc Đề thi tuyển sinh vào 10 Năm học: 2007-2008 Môn thi : Toán Thời gian làm bài: 120 phút Bài 1:(2,0 điểm) Cho biểu thức A= x2 x 2 x + x 2( x 1) + x + x +1 x x 1 (Với x > 0; x 1 ) a, Rút gọn biểu thức trên b, Tìm các giá trị x để A = 13 Bài 2:(2,0 điểm) Cho phơng trình: x2 - 2(m - 1)x + m2 - 7 = 0 a, Giải phơng trình trên khi m = 2 b, Tìm m để phơng trình trên có 2 nghiệm phân biệt Bài 3:(3,5... tha HC > HE) * Khi HC = 6 thỡ HE = 2 (tha HC > HE) Vy HC = 6 (cm) HC = 2 hoc HC = 6 S GD- T LONG AN K THI TUYN SINH LP 10 NM HC 2007-2008 Mụn thi: Toỏn Ngy thi: 27/6/2007 CHNH THC Thi gian lm bi: 30 phỳt (khụng k phỏt ) Su tm v tng hp: Nguyn V V Trang Tng hp thi tuyn sinh vo lp 10 cỏc nm qua PHN THI TRC NGHIM: v y = mx 3m 7 song song vi nhau khi giỏ tr thng: y = (2 m 2 ) x + m 5 1 Hai ng ca m... tng hp: Nguyn V V kớnh Ta Trang AE cú Tng hp thi tuyn sinh vo lp 10 cỏc nm qua ng thng y = (m-1)x+2 mx= y+x-2i qua im c nh A(0;2) Do OA=2 Khong cỏch ln nht t gc ta n ng thng d l OA=2, xy ra khi d vuụng gúc vi OA hay h s gúc ng thng d l 0 tc l m-1 Kè THI TUYN SINH LP 10 THPT NM HC 2007-2008 KHểA NGY 20-6-2007 MễN THI: TON Thi gian lm bi: 120 phỳt (khụng k thi gian giao ) Cõu 1: (1, 5 im) Gii cỏc phng... 2006 2y z x Bi 6: Ba s dng x, y, z 2008 món: x + y + z > 4 Tỡm giỏ tr nh nht ca biu thc: tha 2007 2006 2z 2x 2y 2 x y z P y z z x x y THI TUYN SINH VO LP 10 ( khi chuyờn) MễN THI : TON Thi gian lm bi : 150 phỳt D THI Su tm v tng hp: Nguyn V V Trang Tng hp thi tuyn sinh vo lp 10 cỏc nm qua Bi1: ( 1,5 im)Tỡm x, y  bit a) x2 -25 = y(y+6) b) 1+x + x2 +x3 = y3 Bi 2: ( 1, 5 im) Cho P = x... y 2 4 y + 3 = 0 Bài 5:(1,0 điểm) Cho x và y là 2 số thỏa mãn: x 2 + x 2 y 2 2 y = 0 Tính B = x2 + y2 Hớng dẫn chấm và thang điểm Đề thi tuyển sinh vào 10 Năm học: 2007-2008 Môn : Toán ỏp ỏn chớnh thc Bài B1 (2đ) 1a (1đ) Nội dung 1a A= ) x (2 ( x 1)( x + x +1) x ( x 1) (2 x +1) + 2( x +1) A= ( )( x x x 1 x 1 ) + 2( x +1 x )( x 1 ) x +1 x 1 Thang điểm 0.5 đ 0.25đ... hp: Nguyn V V Trang Tng hp thi tuyn sinh vo lp 10 cỏc nm qua a/ chng minh t giỏc CDOE l t giỏc ni tip Xỏc nh tõm ca ng trũn ngoi tip t giỏc ny b/ chng minh tam giỏc CDE l tam giỏc u c/ Chng minh CD2 = CM.CN d/ Tớnh di cung DOE v din tớch hỡnh trũn ngoi tip t giỏc THE END S Giỏo dc v o to Tha Thi n Hu chớnh thc K THI TUYN SINH LP 10 chuyờn QuC HC Mụn: TOỏN - Nm hc 2007-2008Thi gian lm bi: 150 phỳt... + z x + z + x y + x + y + z 2( x + y + z ) Ht Su tm v tng hp: Nguyn V V Trang Tng hp thi tuyn sinh vo lp 10 cỏc nm qua SBD thớ sinh: Su tm v tng hp: Nguyn V V Ch ký GT1: Trang Tng hp thi tuyn sinh vo lp 10 cỏc nm qua S Giỏo dc v o to K THI TUYN SINH LP 10 chuyờn QuC HC Tha Thi n Hu Mụn: TOỏN - Nm hc 2007-2008 P N - THANG IM BI B.1 NI DUNG i m (2) x 2 + 2 y = 8 2 y 2x = 8 2 2 Ta cú : (... Chứng minh HK song song với AB c, Chứng minh CK.CD = CH.CM Bài 4:(1,5 điểm) Cho đờng thẳng d: y = ax + b và (P): y = kx2 a, Tìm a và b để đờng thẳng d đi qua 2 điểm A(2;3) ; B(3;9) b, Tìm k (k khác không) sao cho (P) tiếp xúc với đờng thẳng d Su tm v tng hp: Nguyn V V Trang Tng hp thi tuyn sinh vo lp 10 cỏc nm qua x 3 + 2 y 2 4 y + 3 = 0 Bài 5:(1,0 điểm) Cho x và y là 2 số thỏa mãn: x 2 + x 2 y... AF.AC c) Gi O l tõm ng trũn ngoi tip tam giỏc ABC v K l trung im ca BC Su tm v tng hp: Nguyn V V Trang Tng hp thi tuyn sinh vo lp 10 cỏc nm qua Tớnh t s khi t giỏc BHOC ni tip d) Cho HF = 3 cm, HB = 4 cm, CE = 8 cm v HC > HE Tớnh HC Gi ý mt phng ỏn bi gii thi tuyn sinh lp 10 THPT Nm hc 2007-2008 Cõu 1: a) Ta cú = 1 nờn phng trỡnh cú 2 nghim phõn bit l x1 = 5 1 v x2 = 5 + 1 b) t t = x2 0, ta c... k2, trong ú k l s dng cho trc v k nh hn khong cỏch t A n ng thng xy Dng hỡnh vuụng AIJK, tỡm tp hp im I v tp hp im K THI TUYN SINH VO LP 10 TRNG THPT CHUYấN TNH Nm hc: 2007 - 2008 Thi gian: 150' Bi 1: a) Gii phng trỡnh: x4- 2x3 + 4x2-3x - 4 = 0 Su tm v tng hp: Nguyn V V Trang Tng hp thi tuyn sinh vo lp 10 cỏc nm qua xy b)Tỡm nhng im M(x;y) trờn ng thng y = x +1 cú ta tha món ng P 2 2 thc: x y 2 y . b, c (có 8 trường hợp) để chứng minh(*) Sưu tầm và tổng hợp: Nguyễn V V Trang Tổng hợp đề thi tuyển sinh vào lớp 10 các năm qua ĐỀ THI TUYỂN SINH LỚP. và tổng hợp: Nguyễn V V Trang Tổng hợp đề thi tuyển sinh vào lớp 10 các năm qua Sở Giáo dục-đào tạo Kỳ THI TUYểN SINH LớP 10 thpt thành phố huế Thừa Thi n