1. Trang chủ
  2. » Giáo án - Bài giảng

de thi hsg toan7

36 257 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 36
Dung lượng 0,93 MB

Nội dung

Tuyển chọn các đề thi HSG Toán 7 Đề số 1: đề thi học sinh giỏi huyện Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Bài 1. Tìm giá trị n nguyên dơng: a) 1 .16 2 8 n n = ; b) 27 < 3 n < 243 Bài 2. Thực hiện phép tính: 1 1 1 1 1 3 5 7 49 ( ) 4.9 9.14 14.19 44.49 89 + + + + Bài 3. a) Tìm x biết: 2x3x2 +=+ b) Tìm giá trị nhỏ nhất của A = x20072006x + Khi x thay đổi Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm đối diện nhau trên một đờng thẳng. Bài 5. Cho tam giác vuông ABC ( A = 1v), đờng cao AH, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA, qua I vẽ đờng thẳng song song với AC cắt đờng thẳng AH tại E. Chứng minh: AE = BC Đáp án đề 1toán 7 Bài 1. Tìm giá trị n nguyên dơng: (4 điểm mỗi câu 2 điểm) a) 1 .16 2 8 n n = ; => 2 4n-3 = 2 n => 4n 3 = n => n = 1 b) 27 < 3 n < 243 => 3 3 < 3 n < 3 5 => n = 4 Bài 2. Thực hiện phép tính: (4 điểm) 1 1 1 1 1 3 5 7 49 ( ) 4.9 9.14 14.19 44.49 89 + + + + Su tầm: Trần Quang Tiến 1 Tuyển chọn các đề thi HSG Toán 7 = 1 1 1 1 1 1 1 1 1 2 (1 3 5 7 49) ( ). 5 4 9 9 14 14 19 44 49 12 + + + + + + + + + = 1 1 1 2 (12.50 25) 5.9.7.89 9 ( ). 5 4 49 89 5.4.7.7.89 28 + = = Bài 3. (4 điểm mỗi câu 2 điểm) a) Tìm x biết: 2x3x2 +=+ Ta có: x + 2 0 => x - 2. + Nếu x - 2 3 thì 2x3x2 +=+ => 2x + 3 = x + 2 => x = - 1 (Thoả mãn) + Nếu - 2 x < - 2 3 Thì 2x3x2 +=+ => - 2x - 3 = x + 2 => x = - 3 5 (Thoả mãn) + Nếu - 2 > x Không có giá trị của x thoả mãn b) Tìm giá trị nhỏ nhất của A = x20072006x + Khi x thay đổi + Nếu x < 2006 thì: A = - x + 2006 + 2007 x = - 2x + 4013 Khi đó: - x > -2006 => - 2x + 4013 > 4012 + 4013 = 1 => A > 1 + Nếu 2006 x 2007 thì: A = x 2006 + 2007 x = 1 + Nếu x > 2007 thì A = x - 2006 - 2007 + x = 2x 4013 Do x > 2007 => 2x 4013 > 4014 4013 = 1 => A > 1. Vậy A đạt giá trị nhỏ nhất là 1 khi 2006 x 2007 Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm đối diện nhau trên một đờng thẳng. (4 điểm mỗi) Gọi x, y là số vòng quay của kim phút và kim giờ khi 10giờ đến lúc 2 kim đối nhau trên một đờng thẳng, ta có: x y = 3 1 (ứng với từ số 12 đến số 4 trên đông hồ) và x : y = 12 (Do kim phút quay nhanh gấp 12 lần kim giờ) Do đó: 33 1 11: 3 1 11 yx 1 y 12 x 1 12 y x == ===>= => x = 11 4 x)vũng( 33 12 ==> (giờ) Vậy thời gian ít nhất để 2 kim đồng hồ từ khi 10 giờ đến lúc nằm đối diện nhau trên một đờng thẳng là 11 4 giờ Bài 5. Cho tam giác vuông ABC ( A = 1v), đờng cao AH, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA, Su tầm: Trần Quang Tiến 2 Tuyển chọn các đề thi HSG Toán 7 qua I vẽ đờng thẳng song song với AC cắt đờng thẳng AH tại E. Chứng minh: AE = BC (4 điểm mỗi) Đờng thẳng AB cắt EI tại F ABM = DCM vì: AM = DM (gt), MB = MC (gt), ã AMB = DMC (đđ) => BAM = CDM =>FB // ID => ID AC Và FAI = CIA (so le trong) (1) IE // AC (gt) => FIA = CAI (so le trong) (2) Từ (1) và (2) => CAI = FIA (AI chung) => IC = AC = AF (3) và E FA = 1v (4) Mặt khác EAF = BAH (đđ), BAH = ACB ( cùng phụ ABC) => EAF = ACB (5) Từ (3), (4) và (5) => AFE = CAB =>AE = BC Đề số 2: đề thi học sinh giỏi huyện Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Bi 1:(4 im) a) Thc hin phộp tớnh: ( ) ( ) 12 5 6 2 10 3 5 2 6 3 9 3 2 4 5 2 .3 4 .9 5 .7 25 .49 A 125.7 5 .14 2 .3 8 .3 = + + b) Chng minh rng : Vi mi s nguyờn dng n thỡ : 2 2 3 2 3 2 n n n n+ + + chia ht cho 10 Bi 2:(4 im) Tỡm x bit: a. ( ) 1 4 2 3,2 3 5 5 x + = + b. ( ) ( ) 1 11 7 7 0 x x x x + + = Bi 3: (4 im) Su tầm: Trần Quang Tiến 3 D B A H C I F E M Tuyển chọn các đề thi HSG Toán 7 a) S A c chia thnh 3 s t l theo 2 3 1 : : 5 4 6 . Bit rng tng cỏc bỡnh phng ca ba s ú bng 24309. Tỡm s A. b) Cho a c c b = . Chng minh rng: 2 2 2 2 a c a b c b + = + Bi 4: (4 im) Cho tam giỏc ABC, M l trung im ca BC. Trờn tia i ca ca tia MA ly im E sao cho ME = MA. Chng minh rng: a) AC = EB v AC // BE b) Gi I l mt im trờn AC ; K l mt im trờn EB sao cho AI = EK . Chng minh ba im I , M , K thng hng c) T E k EH BC ( ) H BC . Bit ã HBE = 50 o ; ã MEB =25 o . Tớnh ã HEM v ã BME Bi 5: (4 im) Cho tam giỏc ABC cõn ti A cú à 0 A 20= , v tam giỏc u DBC (D nm trong tam giỏc ABC). Tia phõn giỏc ca gúc ABD ct AC ti M. Chng minh: a) Tia AD l phõn giỏc ca gúc BAC b) AM = BC Ht Đáp án đề 2 toán 7 Bi 1:(4 im): a) (2 im) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 10 12 5 6 2 10 3 5 2 12 5 12 4 10 3 4 6 3 12 6 12 5 9 3 9 3 3 9 3 2 4 5 12 4 10 3 12 5 9 3 3 10 3 12 4 12 5 9 3 2 .3 4 .9 5 .7 25 .49 2 .3 2 .3 5 .7 5 .7 2 .3 2 .3 5 .7 5 .2 .7 125.7 5 .14 2 .3 8 .3 2 .3 . 3 1 5 .7 . 1 7 2 .3 . 3 1 5 .7 . 1 2 5 .7 . 6 2 .3 .2 2 .3 .4 5 .7 .9 1 10 7 6 3 2 A = = + + + + = + + = = = b) (2 im) 2 2 3 2 3 2 n n n n+ + + = 2 2 3 3 2 2 n n n n+ + + = 2 2 3 (3 1) 2 (2 1) n n + + = 1 3 10 2 5 3 10 2 10 n n n n ì ì = ì ì = 10( 3 n -2 n ) Vy 2 2 3 2 3 2 n n n n+ + + M 10 vi mi n l s nguyờn dng. Bi 2:(4 im) Su tầm: Trần Quang Tiến 4 TuyÓn chän c¸c ®Ò thi HSG To¸n 7 a) (2 điểm) ( ) 1 2 3 1 2 3 1 7 2 3 3 1 5 2 3 3 1 4 2 1 4 16 2 3,2 3 5 5 3 5 5 5 1 4 14 3 5 5 1 2 3 x x x x x x x x − = − =− = + = − =− + = − − + = − + ⇔ − + = + ⇔ − + =   ⇔ − = ⇔         ⇔ b) (2 điểm) ( ) ( ) ( ) ( ) 1 11 1 10 7 7 0 7 1 7 0 x x x x x x x + + + − − − =   ⇔ − − − =   ( ) ( ) ( ) 1 10 1 10 7 0 1 ( 7) 0 7 0 7 ( 7) 1 8 7 1 7 0 10 x x x x x x x x x x +    ÷   + − = − − = − = ⇒ = − = ⇒ =   ⇔ − − − =     ⇔     ⇔   Bài 3: (4 điểm) a) (2,5 điểm) Gọi a, b, c là ba số được chia ra từ số A. Theo đề bài ta có: a : b : c = 2 3 1 : : 5 4 6 (1) và a 2 +b 2 +c 2 = 24309 (2) Từ (1) ⇒ 2 3 1 5 4 6 a b c = = = k ⇒ 2 3 ; ; 5 4 6 k a k b k c= = = Su tÇm: TrÇn Quang TiÕn 5 TuyÓn chän c¸c ®Ò thi HSG To¸n 7 Do đó (2) ⇔ 2 4 9 1 ( ) 24309 25 16 36 k + + = ⇒ k = 180 và k = 180 − + Với k =180, ta được: a = 72; b = 135; c = 30. Khi đó ta có số A = a + b + c = 237. + Với k = 180 − , ta được: a = 72 − ; b = 135 − ; c = 30 − Khi đó ta có só A = 72 − +( 135 − ) + ( 30 − ) = 237 − . b) (1,5 điểm) Từ a c c b = suy ra 2 .c a b= khi đó 2 2 2 2 2 2 . . a c a a b b c b a b + + = + + = ( ) ( ) a a b a b a b b + = + Bài 4: (4 điểm) a/ (1điểm) Xét AMC ∆ và EMB∆ có : AM = EM (gt ) · AMC = · EMB (đối đỉnh ) BM = MC (gt ) Nên : AMC ∆ = EMB∆ (c.g.c ) 0,5 điểm ⇒ AC = EB Vì AMC∆ = EMB∆ · MAC⇒ = · MEB (2 góc có vị trí so le trong được tạo bởi đường thẳng AC và EB cắt đường thẳng AE ) Suy ra AC // BE . 0,5 điểm b/ (1 điểm ) Xét AMI∆ và EMK∆ có : AM = EM (gt ) · MAI = · MEK ( vì AMC EMB∆ = ∆ ) AI = EK (gt ) Nên AMI EMK∆ = ∆ ( c.g.c ) Suy ra · AMI = · EMK Mà · AMI + · IME = 180 o ( tính chất hai góc kề bù ) ⇒ · EMK + · IME = 180 o ⇒ Ba điểm I;M;K thẳng hàng c/ (1,5 điểm ) Su tÇm: TrÇn Quang TiÕn 6 K H E M B A C I Tuyển chọn các đề thi HSG Toán 7 Trong tam giỏc vuụng BHE ( à H = 90 o ) cú ã HBE = 50 o ã HBE = 90 o - ã HBE = 90 o - 50 o =40 o ã HEM = ã HEB - ã MEB = 40 o - 25 o = 15 o ã BME l gúc ngoi ti nh M ca HEM Nờn ã BME = ã HEM + ã MHE = 15 o + 90 o = 105 o ( nh lý gúc ngoi ca tam giỏc ) Bi 5: (4 im) a) Chng minh ADB = ADC (c.c.c) suy ra ã ã DAB DAC= Do ú ã 0 0 20 : 2 10DAB = = b) ABC cõn ti A, m à 0 20A = (gt) nờn ã 0 0 0 (180 20 ): 2 80ABC = = ABC u nờn ã 0 60DBC = Tia BD nm gia hai tia BA v BC suy ra ã 0 0 0 80 60 20ABD = = . Tia BM l phõn giỏc ca gúc ABD nờn ã 0 10ABM = Xột tam giỏc ABM v BAD cú: AB cnh chung ; ã ã ã ã 0 0 20 ; 10BAM ABD ABM DAB= = = = Vy: ABM = BAD (g.c.g) suy ra AM = BD, m BD = BC (gt) nờn AM = BC Đề số 3: đề thi học sinh giỏi Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Câu 1: Tìm tất cả các số nguyên a biết a 4 Câu 2: Tìm phân số có tử là 7 biết nó lớn hơn 9 10 và nhỏ hơn 9 11 Câu 3. Cho 2 đa thức P ( ) x = x 2 + 2mx + m 2 và Q ( ) x = x 2 + (2m+1)x + m 2 Tìm m biết P (1) = Q (-1) Câu 4: Tìm các cặp số (x; y) biết: Su tầm: Trần Quang Tiến 7 20 0 M A B C D Tuyển chọn các đề thi HSG Toán 7 = = = x y a / ; xy=84 3 7 1+3y 1+5y 1+7y b/ 12 5x 4x Câu 5: Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau : A = 1+x +5 B = 3 15 2 2 + + x x Câu 6: Cho tam giác ABC có Â < 90 0 . Vẽ ra phía ngoài tam giác đó hai đoạn thẳng AD vuông góc và bằng AB; AE vuông góc và bằng AC. a. Chứng minh: DC = BE và DC BE b. Gọi N là trung điểm của DE. Trên tia đối của tia NA lấy M sao cho NA = NM. Chứng minh: AB = ME và ABC = EMA c. Chứng minh: MA BC Đáp án đề 3 toán 7 Câu 1: Tìm tất cả các số nguyên a biết a 4 0 a 4 => a = 0; 1; 2; 3 ; 4 * a = 0 => a = 0 * a = 1 => a = 1 hoặc a = - 1 * a = 2 => a = 2 hoặc a = - 2 * a = 3 => a = 3 hoặc a = - 3 * a = 4 => a = 4 hoặc a = - 4 Câu 2: Tìm phân số có tử là 7 biết nó lớn hơn 9 10 và nhỏ hơn 9 11 Gọi mẫu phân số cần tìm là x Ta có: 9 7 9 10 11x < < => 63 63 63 70 9 77x < < => -77 < 9x < -70. Vì 9x M 9 => 9x = -72 => x = 8 Vậy phân số cần tìm là 7 8 Câu 3. Cho 2 đa thức P ( ) x = x 2 + 2mx + m 2 và Q ( ) x = x 2 + (2m+1)x + m 2 Tìm m biết P (1) = Q (-1) P(1) = 1 2 + 2m.1 + m 2 Su tầm: Trần Quang Tiến 8 Tuyển chọn các đề thi HSG Toán 7 = m 2 + 2m + 1 Q(-1) = 1 2m 1 +m 2 = m 2 2m Để P(1) = Q(-1) thì m 2 + 2m + 1 = m 2 2m 4m = -1 m = -1/4 Câu 4: Tìm các cặp số (x; y) biết: = x y a / ; xy=84 3 7 => 2 2 84 4 9 49 3.7 21 x y xy = = = = => x 2 = 4.49 = 196 => x = 14 => y 2 = 4.4 = 16 => x = 4 Do x,y cùng dấu nên: x = 6; y = 14 x = -6; y = -14 = = 1+3y 1+5y 1+7y b/ 12 5x 4x áp dụng tính chất dãy tỉ số bằng nhau ta có: + + = = = = = = 1+3y 1+5y 1+7y 1 7y 1 5y 2y 1 5y 1 3y 2y 12 5x 4x 4x 5x x 5x 12 5x 12 => 2 2 5 12 y y x x = => -x = 5x -12 => x = 2. Thay x = 2 vào trên ta đợc: 1 3 2 12 2 y y y + = = =>1+ 3y = -12y => 1 = -15y => y = 1 15 Vậy x = 2, y = 1 15 thoả mãn đề bài Câu 5: Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau : A = 1+x +5 Ta có : 1+x 0. Dấu = xảy ra x= -1. A 5. Dấu = xảy ra x= -1. Vậy: Min A = 5 x= -1. B = 3 15 2 2 + + x x = ( ) 3 123 2 2 + ++ x x = 1 + 3 12 2 +x Ta có: x 2 0. Dấu = xảy ra x = 0 Su tầm: Trần Quang Tiến 9 Tuyển chọn các đề thi HSG Toán 7 x 2 + 3 3 ( 2 vế dơng ) 3 12 2 +x 3 12 3 12 2 +x 4 1+ 3 12 2 +x 1+ 4 B 5 Dấu = xảy ra x = 0 Vậy : Max B = 5 x = 0. Câu 6: a/ Xét ADC và BAF ta có: DA = BA(gt) AE = AC (gt) DAC = BAE ( cùng bằng 90 0 + BAC ) => DAC = BAE(c.g.c ) => DC = BE Xét AIE và TIC I 1 = I 2 ( đđ) E 1 = C 1 ( do DAC = BAE) => EAI = CTI => CTI = 90 0 => DC BE b/ Ta có: MNE = AND (c.g.c) => D 1 = MEN, AD = ME mà AD = AB ( gt) => AB = ME (đpcm) (1) Vì D 1 = MEN => DA//ME => DAE + AEM = 180 0 ( trong cùng phía ) mà BAC + DAE = 180 0 => BAC = AEM ( 2 ) Ta lại có: AC = AE (gt) ( 3). Từ (1),(2) và (3) => ABC = EMA ( đpcm) c/ Kéo dài MA cắt BC tại H. Từ E hạ EP MH Xét AHC và EPA có: CAH = AEP ( do cùng phụ với gPAE ) AE = CA ( gt) PAE = HCA ( do ABC = EMA câu b) => AHC = EPA => EPA = AHC => AHC = 90 0 Su tầm: Trần Quang Tiến 10 [...]... các đề thi HSG Toán 7 Bi 4 (3): V th hm s: 2 x ; x 0 x ; x < 0 y= Bi 5 (3): Chng t rng: A = 75 (42004 + 42003 + + 42 + 4 + 1) + 25 l s chia ht cho 100 Bi 6 (4): Cho tam giỏc ABC cú gúc A = 600 Tia phõn giỏc ca gúc B ct AC ti D, tia phõn giỏc ca gúc C ct AB ti E Cỏc tia phõn giỏc ú ct nhau ti I Chng minh: ID = IE Su tầm: Trần Quang Tiến 16 Tuyển chọn các đề thi HSG Toán 7 Đề số 8: đề thi học... vẽ tia Ay vuông góc với AC Trên tia đó lấy điểm E sao cho AE = AC Chứng minh rằng: a) DE = 2 AM b) AM DE Câu 5: (1 điểm) Cho n số x1, x2, , xn mỗi số nhận giá trị 1 hoặc -1 Chứng minh rằng nếu x 1 x2 + x2 x3 + + xn x1 = 0 thì n chia hết cho 4 Su tầm: Trần Quang Tiến 30 Tuyển chọn các đề thi HSG Toán 7 Đề số 22: đề thi học sinh giỏi (Thời gian làm bài 120 phút) Bài 1: (2 điểm) a) Tính giá trị của biểu... đề thi HSG Toán 7 Đề số 10: đề thi học sinh giỏi (Thời gian làm bài 120 phút) Câu 1: (2 điểm) 3 3 0,375 0,3 + + 1,5 + 1 0,75 11 12 : 1890 + 115 + a) Tính A = 2,5 + 5 1,25 0,625 + 0,5 5 5 2005 3 11 12 1 1 1 1 1 1 b) Cho B = + 2 + 3 + 4 + + 2004 + 2005 3 3 3 3 3 3 1 Chứng minh rằng B < 2 Câu 2: (2 điểm) a) Chứng minh rằng nếu a c 5a + 3b 5c + 3d thì = = b d 5a 3b 5c 3d (giả thi t... Bài 4: (3 điểm) Cho ABC có góc A bằng 1200 Các đờng phân giác AD, BE, CF a) Chứng minh rằng DE là phân giác ngoài của ADB b) Tính số đo góc EDF và góc BED Bài 5: (1 điểm) Tìm các cặp số nguyên tố p, q thoả mãn: 2 52 p + 1997 = 52 p + q 2 Su tầm: Trần Quang Tiến 21 Tuyển chọn các đề thi HSG Toán 7 Đề số 13: đề thi học sinh giỏi (Thời gian làm bài 120 phút) Bài 1: (2 điểm) 5 5 1 3 1 13 2 10 230 +... bit x = ; y l s nguyờn õm ln nht 2 Bi 2 (1): Tỡm x bit: 3x + 3x + 1 + 3x + 2 = 117 Su tầm: Trần Quang Tiến 13 Tuyển chọn các đề thi HSG Toán 7 Bi 3 (1): Mt con th chy trờn mt con ng m hai phn ba con ng bng qua ng c v on ng cũn li i qua m ly Thi gian con th chy trờn ng c bng na thi gian chy qua m ly Hi vn tc ca con th trờn on ng no ln hn ? Tớnh t s vn tc ca con th trờn hai on ng ? Bi 4 (2): Cho ABC nhn... lợt là giao điểm của DE với AB và AC Tính số đo các góc AIC và AKB ? Bài 5: (1 điểm) Cho x = 2005 Tính giá trị của biểu thức: x 2005 2006 x 2004 + 2006 x 2003 2006 x 2002 + 2006 x 2 + 2006 x 1 Đề số 25: đề thi học sinh giỏi (Thời gian làm bài 120 phút) Câu 1 ( 2đ) Cho: a b c = = b c d 3 Chứng minh: a + b + c = a b+c+d d Su tầm: Trần Quang Tiến 33 Tuyển chọn các đề thi HSG Toán 7 Câu 2 (1đ)... MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC Câu 5: (1 điểm) Tìm số tự nhiên n để phân số 7n 8 có giá trị lớn nhất 2n 3 Su tầm: Trần Quang Tiến 19 Tuyển chọn các đề thi HSG Toán 7 Đề số 11: đề thi học sinh giỏi (Thời gian làm bài 120 phút) Câu 1: (2 điểm) a) Tính: 3 3 11 11 A = 0,75 0,6 + + : + + 2,75 2,2 7 13 7 13 10 1,21 22 0,25 5 225 : + + B= 49 7 3 9 ... các điểm P, Q sao cho chu vi APQ bằng 2 Chứng minh rằng góc PCQ bằng 450 Câu 5: (1 điểm) Chứng minh rằng: 1 1 1 1 9 + + + + < 5 15 25 1985 20 Su tầm: Trần Quang Tiến 20 Tuyển chọn các đề thi HSG Toán 7 Đề số 12: đề thi học sinh giỏi (Thời gian làm bài 120 phút) Bài 1: (2 điểm) a) Chứng minh rằng với mọi số n nguyên dơng đều có: A= 5n (5n + 1) 6n (3n + 2) 91 b) Tìm tất cả các số nguyên tố P sao cho... 12 5 Tuyển chọn các đề thi HSG Toán 7 Từ : x2-2y2=1suy ra x2-1=2y2 Nếu x chia hết cho 3 vì x nguyên tố nên x=3 lúc đó y= 2 nguyên tố thoả mãn Nếu x không chia hết cho 3 thì x2-1 chia hết cho 3 do đó 2y2 chia hết cho 3 Mà(2;3)=1 nên y chia hết cho 3 khi đó x 2=19 không thoả mãn Vậy cặp số (x,y) duy nhất tìm đợc thoả mãn điều kiện đầu bài là (2;3) 0,25 0,25 0,25 0,25 Đề số 5: đề thi học sinh giỏi (Thời... lấy các điểm P, Q sao cho chu vi APQ bằng 2 Chứng minh rằng góc PCQ bằng 450 Bài 5: (1 điểm) Chứng minh rằng: 3a + 2b 17 10a + b 17 (a, b Z ) Su tầm: Trần Quang Tiến 22 Tuyển chọn các đề thi HSG Toán 7 Đề số 14: đề thi học sinh giỏi (Thời gian làm bài 120 phút) Bài 1: (2 điểm) a) Tìm số nguyên dơng a lớn nhất sao cho 2004! chia hết cho 7a 1 1 1 1 + + + + 2 3 4 2005 b) Tính P = 2004 2003 2002 1 + + . Tiến 13 Tuyển chọn các đề thi HSG Toán 7 Bi 3 (1): Mt con th chy trờn mt con ng m hai phn ba con ng bng qua ng c v on ng cũn li i qua m ly. Thi gian con th chy trờn ng c bng na thi gian chy qua m ly EPA = AHC => AHC = 90 0 Su tầm: Trần Quang Tiến 10 Tuyển chọn các đề thi HSG Toán 7 => MA BC (đpcm) Đề số 4: đề thi học sinh giỏi (Thời gian làm bài 120 phút) Câu 1 ( 2 điểm) Thực hiện. Tuyển chọn các đề thi HSG Toán 7 Đề số 1: đề thi học sinh giỏi huyện Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Bài 1. Tìm giá

Ngày đăng: 22/04/2015, 20:00

Xem thêm

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w