Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 22 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
22
Dung lượng
348,2 KB
Nội dung
1 ỨNG DỤNG ĐẠO HÀM GIẢI BÀI TOÁN CỰC TRỊ TRONG HÌNH HỌC GIẢI TÍCH OXYZ A. MỞ ĐẦU 1. Lý do chọn đề tài Kiến thức về hình học giải tích là một bộ phận quan trọng trong chương trình môn Toán ở bậc THPT. Bài toán cực trị trong hình học giải tích là một bài toán khó, gây ra nhiều khó khăn, lúng túng cho học sinh khi tìm hướng giải. Đạo hàm là một công cụ tốt cho việc giải quyết bài toán tìm cực trị của hàm số. Các hàm số xuất hiện trong bài toán cực trị của hình học giải tích Oxyz: Hàm số khoảng cách, hàm số liên quan đến công thức tính góc hầu hết đều là những hàm số mà học sinh có thể dễ dàng khảo sát và tìm cực trị của nó. Khó khăn của học sinh là việc thiết lập các hàm số này. Thông qua việc giải quyết bài toán cực trị, học sinh có thêm định hướng và phương pháp giải quyết các bài toán khác của hình học giải tích Oxyz: Bài toán viết phương trình mặt phẳng, bài toán viết phương trình đường thẳng thỏa mãn điều kiện cho trước. Nhằm giúp các em học sinh có định hướng tốt khi tìm lời giải, cũng như giải quyết được bài toán cực trị một cách trọn vẹn, rõ ràng và mạch lạc, tôi chọn nghiên cứu chuyên đề: “ ỨNG DỤNG ĐẠO HÀM GIẢI BÀI TOÁN CỰC TRỊ TRONG HÌNH HỌC GIẢI TÍCH OXYZ ” 2. Mục đích nghiên cứu Chuyên đề cung cấp cho học sinh một phương pháp để giải quyết bài toán cực trị trong hình học Oxyz, rèn luyện cho học sinh kĩ năng chuyển đổi bài toàn toán cực trị trong hình học sang bài toán cực trị trong giải tích. Từ đó, với công cụ đạo hàm học sinh có thể giải quyết trọn vẹn bài toán cực trị. Đồng thời, chuyên đề cũng nhằm giúp học sinh có thể giải quyết tốt các bài toán khác của hình học giải tích. 3. Phương pháp nghiên cứu + Tổng hợp kiến thức, kiểm nghiệm qua thực tế dạy học. + Tập hợp những vấn đề nảy sinh, những băn khoăn, lúng túng của học sinh trong quá trình giải quyết bài toán cực trị trong hình học giải tích Oxyz. Từ đó, đề xuất phương án giải quyết, tổng kết thành kinh nghiệm. 4. Phạm vi nghiên cứu Trong bài toán cực trị của hình học giải tích Oxyz: Cực trị liên quan đến khoảng cách và Cực trị liên quan đến góc trong không gian. Song ở đây, tôi chỉ tập trung nghiên cứu các bài toán cực trị có thể giải quyết được bằng phương pháp khảo sát hàm số. Trong chuyên đề, tôi tổng hợp và đúc rút những kinh nghiệm từ thực tế giảng dạy vấn đề này cho học sinh lớp 12 ôn thi ĐH – CĐ. 2 5. Điểm mới của chuyên đề + Chuyên đề tập trung rèn luyện cho học sinh kĩ năng dùng đạo hàm để giải quyết bài toán cực trị trong hình học Oxyz. + Đặc biệt, chuyên đề đã xây dựng một phương pháp giải toán hiệu quả đối với một lượng lớn các bài toán cực trị và giải quyết hầu hết các dạng toán đặt ra. + Ngoài ra, chuyên đề còn cung cấp cho học sinh các phương pháp tiếp cận khác đối với bài toán cực trị và rèn luyện thêm cho học sinh phương pháp giải các bài toán khác của hình học giải tích. (Thông qua các nhận xét sau mỗi ví dụ). 3 B. NỘI DUNG I. BÀI TOÁN CỰC TRỊ LIÊN QUAN ĐẾN KHOẢNG CÁCH 1.1 Kiến thức cơ sở Các công thức về khoảng cách: Khoảng cách giữa hai điểm: Cho hai điểm ; ; A A A A x y z và ; ; B B B B x y z . Khi đó: 2 2 2 B A B A B A AB AB x x y y z z . Khoảng cách từ một điểm đến mặt phẳng: Cho điểm ; ; M M M M x y z và mặt phẳng : 0 P Ax By Cz D . Khi đó: 2 2 2 , M M M Ax By Cz D d M P A B C . Khoảng cách từ một điểm đến đường thẳng: , , MN u d M u . Trong đó, N là một điểm thuộc đường thẳng và u là VTCP của đường thẳng . Khoảng cách giữa hai đường thẳng chéo nhau: 1 2 1 2 1 2 , . , , u u AB d u u . Trong đó, A , B lần lượt là các điểm thuộc đường thẳng 1 và 2 . 1 u , 2 u lần lượt là các VTCP của hai đường thẳng 1 và 2 . 1.2 Các ví dụ minh họa Ví dụ 1. Trong không gian với hệ tọa độ Oxyz , cho hai điểm 1;4;2 A , 1;2;4 B và đường thẳng 1 : 2 2 x t y t z t . Tìm tọa độ điểm M thuộc đường thẳng sao cho biểu thức 2 2 P MA MB đạt giá trị nhỏ nhất. Lời giải. Điểm M thuộc đường thẳng nên tọa độ điểm M có dạng: 1 ; 2 ;2 M t t t . Ta có: 2 2 2 2 2 6 2 2 6 20 40 MA t t t t t và 2 2 2 2 2 2 4 4 2 6 28 36 MB t t t t t . 4 Do đó, 2 2 2 12 48 76 P MA MB t t . Xét hàm số 2 12 48 76 f t t t , với t R . Ta có: ' 24 48 f t t . Khi đó, ' 0 2 f t t Bảng biến thiên: t 2 f t 0 f t 28 Từ bảng biến thiên suy ra GTNN của 2 28 f t f khi 2 t . Vậy P có GTNN khi 2 t , tức là 1;0;4 M . Nhận xét. 1. Việc tìm GTNN của hàm số 2 12 48 76 f t t t có thể sử dụng kiến thức về hàm số bậc hai: “ Hàm số 2 y ax bx c đạt GTNN tại 2 b x a (khi 0 a ) và đạt GTLN tại 2 b x a (khi 0 a )’’. 2. Bài toán trên có thể mở rộng cho biểu thức của P có dạng: 2 2 P aMA bMB , P aMA bMB hoặc P k , với k là hằng số thỏa mãn điều kiện 0 k P là GTNN của P . Bài toán 1.1 Trong không gian Oxyz , cho hai điểm 1;4;2 A , 1;2;4 B và đường thẳng 1 : 2 2 x t y t z t . Tìm điểm M thuộc đường thẳng sao cho biểu thức 2 2 2 P MA MB đạt giá trị lớn nhất. Gợi ý. 2 6 36 32 P t t . Đạt GTLN khi 3 t . Khi đó, 2;1;6 M . Bài toán 1.2 Trong không gian Oxyz , cho ba điểm 1;0;2 A , 2;1;0 B , 0;0;3 C và đường thẳng 1 : 1 2 3 x y z . Xác định tọa độ điểm M thuộc đường thẳng sao cho: 2 2 2 2 3 96 MA MB MC . Dựa theo biểu thức của 2 MA và 2 MB có thể mở rộng bài toán với hình thức như sau: 5 Bài toán 1.3 Trong không gian Oxyz , cho hai điểm 1;4;2 A , 1;2;4 B và đường thẳng 1 : 2 2 x t y t z t . Tìm điểm M thuộc đường thẳng sao cho biểu thức MA P MB đạt giá trị lớn nhất. Gợi ý. Nhận xét 0 P . Xét 2 2 2 2 2 6 20 40 6 28 36 MA t t P MB t t . Kết quả 2 max 309 10 309 14 P . Trong bài toán 1.3, phương pháp sử dụng hàm số thể hiện rõ ràng tính hiệu quả của nó. Ví dụ 2. Trong không gian Oxyz , cho đường thẳng : 1 1 1 x y z và hai điểm 0;0;3 A , 0;3;3 B . Tìm tọa độ điểm M thuộc đường thẳng sao cho biểu thức P MA MB đạt giá trị nhỏ nhất. Lời giải. Điểm M thuộc đường thẳng nên tọa độ điểm M có dạng ; ; M t t t . Ta có: 2 2 2 2 2 2 0 0 3 0 3 3 P MA MB t t t t t t 2 2 3 2 3 4 6 t t t t . Xét hàm số 2 2 2 3 4 6 f t t t t t , với t R . Ta có: 2 2 1 2 1 2 2 2 t t f t t t . Khi đó, 2 2 2 1 ' 0 1 2 2 2 t t f t t t (*). Xét hàm số 2 2 u g u u , với u R . Ta có: 2 2 2 3 2 1 2 2 . . 0 2 2 2 u g u u u u u u , với mọi u R . Do đó, (*) 3 1 2 1 2 2 g t g t t t t . Bảng biến thiên: 6 t 3 2 f t 0 f t 3 Từ bảng biến thiên, suy ra GTNN của P bằng 3 3 . Đạt được tại 3 2 t . Khi đó 3 3 3 ; ; 2 2 2 M . Nhận xét. 1. Việc tìm GTNN của P có thể sử dụng bất đẳng thức sau: 2 2 2 2 2 2 2 0 a b c d a c b d ad bc Ta có: 2 2 2 2 2 2 1 2 2 2 1 2 2 f t t t . 2. Bài toán trên có thể phát biểu dưới một hình thức khác như sau: Bài toán 2.1 Trong không gian Oxyz , cho hai điểm 1;5;0 A , 3;3;6 B và đường thẳng 1 1 : 2 1 2 x y z . Tìm tọa độ điểm C thuộc đường thẳng sao cho tam giác ABC có chu vi nhỏ nhất. Gợi ý. Chu vi tam giác ABC nhỏ nhất khi và chỉ khi P CA CB đạt giá trị nhỏ nhất. 2 2 9 20 9 36 56 P t t t Bài toán 2.2 Trong không gian Oxyz , cho hai điểm 1;5;0 A , 3;3;6 B và đường thẳng 1 1 : 2 1 2 x y z . Tìm tọa độ điểm M thuộc đường thẳng sao cho 2 29 MA MB . Bài toán 2.2 có bề ngoài không phải là bài toán cực trị. Nếu chúng ta giải quyết theo cách thông thường thì việc giải phương trình: 2 2 9 20 9 36 56 2 29 t t t không hề dễ. Ở đây, để ý giá trị 2 29 là giá trị nhỏ nhất của biểu thức MA MB thì ta sẽ có ngay 1 t nhờ việc giải bài toán cực trị trong bài toán 2.2. 7 Ví dụ 3.(ĐH – A 2008) Trong không gian Oxyz , cho đường thẳng 1 2 : 2 1 2 x y z d và điểm (2;5;3) A . Lập phương trình mặt phẳng chứa đường thẳng d sao cho khoảng cách từ điểm A đến mặt phẳng là lớn nhất. Lời giải. Lấy điểm 1;0;2 M thuộc đường thẳng d . Do mặt phẳng chứa đường thẳng d nên điểm M thuộc mặt phẳng . Phương trình mặt phẳng đi qua điểm 1;0;2 M và có VTPT 2 2 2 ( ; ; ), 0 n A B C A B C có dạng : ( 1) ( 2) 0 A x By C z Ta có : ( ) . 0 2 2 d d u n B A C . Khi đó, khoảng cách từ điểm A đến mặt phẳng là: 2 2 2 2 2 9 ( ) ( ,( )) 9. 5 8 5 5 8 5 A C A C d A A AC C A AC C Xét hai trường hợp: TH1: 0 C . Khi đó 2 2 9 ( ,( )) 9. 5 5 A d A A . TH2: 0 C . Đặt A t C . Khi đó, 2 2 ( 1) ( ,( )) 9. 5 8 5 t d A t t . Xét hàm số 2 2 ( 1) ( ) 5 8 5 t f t t t , với t R . Ta có: 2 2 2 2 ' 5 8 5 t f t t t và '( ) 0 1 f t t . Bảng biến thiên: t 1 1 ' f t 0 0 ' f t 1 5 2 9 0 1 5 8 Từ bảng biến thiên, suy ra ,d A lớn nhất bằng 3 2 khi 1 t . Khi đó, A C 4 B A . So sánh TH1 và TH2 ta thấy ,d A lớn nhất rơi vào trường hợp 2. Do đó, phương trình mặt phẳng cần tìm là : 4 3 0 x y z . Nhận xét. 1. Phương pháp giải bài toán trên có thể áp dụng cho các bài toán viết phương trình mặt phẳng thỏa mãn các điều kiện cho trước: Bài toán 3.1 Trong không gian Oxyz , cho đường thẳng 1 2 : 2 1 2 x y z d và điểm (2;5;3) A . Lập phương trình mặt phẳng chứa đường thẳng d sao cho khoảng cách từ điểm A đến mặt phẳng bằng 9 5 . Bài toán 3.2 Trong không gian Oxyz , cho mặt phẳng : 0 P x y z và điểm 1;2; 1 A . Viết phương trình mặt phẳng Q đi qua gốc tọa độ O , vuông góc với mặt phẳng P và cách điểm A một khoảng bằng 2 . 2. Trong bài toán này, biểu thức khoảng cách từ điểm đến mặt phẳng mặc dù có ba biến là , , A B C nhưng biểu thức trong căn lại có dạng đẳng cấp bậc hai, nhờ phép đổi biến A t C chúng ta thu được hàm số chỉ còn một biến là t . Điều này thuận lợi cho việc khảo sát hàm số. Các bài toán tiếp theo trong chuyên đề đều sử dụng được phương pháp này. Ví dụ 4. (ĐH – B 2009) Trong không gian Oxyz , cho hai điểm 3;0;1 A , 1; 1;3 B và mặt phẳng : 2 2 5 0 P x y z . Trong các đường thẳng đi qua điểm A và song song với mặt phẳng P , hãy viết phương trình đường thẳng mà khoảng cách từ điểm B đến đường thẳng là nhỏ nhất. Lời giải. Giả sử VTCP của đường thẳng là ; : u A B C . Điều kiện: 2 2 2 0 A B C . Do đường thẳng song song với mặt phẳng P nên 2 2 0 2 2 A B C A B C . Ta có: 4; 1;2 AB . Khi đó, , 2 ;2 4 ;4 AB u C B A C B A . Khoảng cách từ điểm B đến đường thẳng là: 2 2 2 2 2 2 2 2 2 2 , 2 2 4 4 56 84 69 , 5 8 5 AB u C B A C A B B BC C d B A B C B BC C u Xét hai trường hợp: 9 TH1: 0 C . Khi đó, 56 , 5 d B . TH2: 0 C . Đặt B t C . Khi đó, 2 2 56 84 69 , 5 8 5 t t d B t t . Xét hàm số: 2 2 56 84 69 5 8 5 t t f t t t , với t R . Ta có: 2 2 2 28 130 132 ' 5 8 5 t t f t t t và 6 7 ' 0 11 2 t f t t . Bảng biến thiên: t 11 2 6 7 ' f t 0 0 ' f t 56 5 21 100 9 56 5 Từ bảng biến thiên, suy ra , d B nhỏ nhất bằng 10 3 , đạt được tại 11 2 t . Khi đó, 11 2 B C . So sánh hai trường hợp, ta thu được phương trình đường thẳng cần tìm là: 3 1 26 11 2 x y z . Nhận xét. 1. Trong đáp án của Bộ GD – ĐT, bài này được giải bằng phương pháp sử dụng tính chất hình học: “Độ dài đường xiên không nhỏ hơn độ dài đoạn hình chiếu của nó”. Lời giải tương đối ngắn gọn. Tuy nhiên, việc phát hiện ra điều này không hề dễ. Hơn nữa, nếu thay giả thiết “khoảng cách từ điểm B đến đường thẳng là nhỏ nhất” thành giả thiết “khoảng cách từ điểm B đến đường thẳng là lớn nhất” thì phương pháp trên sẽ tỏ rõ hiệu quả. 10 Bài toán 4.1 Trong không gian Oxyz , cho hai điểm 3;0;1 A , 1; 1;3 B và mặt phẳng : 2 2 5 0 P x y z . Trong các đường thẳng đi qua điểm A và song song với mặt phẳng P , hãy viết phương trình đường thẳng mà khoảng cách từ điểm B đến đường thẳng là lớn nhất. 2. Phương pháp giải bài toán trên có thể áp dụng vào bài toán viết phương trình đường thẳng thỏa mãn điều kiện cho trước: Bài toán 4.2 Trong không gian Oxyz , cho mặt phẳng : 2 3 4 0 P x y z và điểm 0; 2;0 M . Viết phương trình đường thẳng d nằm trong mặt phẳng P , đi qua điểm M sao cho khoảng cách từ điểm 1;2;3 N đến d bằng 14 3 . Ví dụ 5. Trong không gian Oxyz , cho điểm 0; 1;2 A và hai đường thẳng 1 1 2 : 2 1 1 x y z , 2 5 : 2 2 1 x y z . Viết phương trình đường thẳng d đi qua điểm A , cắt 1 tại điểm B , đồng thời khoảng cách giữa hai đường thẳng d và 2 là lớn nhất. Lời giải. Điểm B thuộc đường thẳng 1 nên tọa độ điểm B có dạng: 1 2 ; ;2 B t t t . VTCP của đường thẳng d là 1 2 ;1 ; AB t t t . VTCP của đường thẳng 2 là 2; 2;1 u . Ta có: , 1 ;1 4 ; 6 AB u t t t . Lấy điểm 5;0;0 C 5;1; 2 AC . Khoảng cách giữa hai đường thẳng d và 2 là: 2 2 2 2 2 2 , . 3 2 2 , 3 53 10 2 , 1 1 4 36 AB u AC t t d d t t AB u t t t . Xét hàm số 2 2 ( 2) ( ) 53 10 2 t f t t t , với t R . Ta có: 2 2 2 222 420 48 ' 53 10 2 t t f t t t và 2 ' 0 4 37 t f t t . Bảng biến thiên: [...]... bài toán cực trị bằng phương pháp sử dụng đạo hàm là thế nào? Qua các ví dụ cụ thể trong chuyên đề, chúng ta có thể trình bày qui trình của việc giải bài toán cực trị bằng cách sử dụng đạo hàm như sau: Bước 1 Dựa vào gia thiết bài toán thiết lập các điều kiện tương đương Từ đó, dẫn đến hàm số cần khảo sát để tìm cực trị Bước 2 Khảo sát hàm số tìm được trong bước 1 để tìm cực trị Bước 3 Chuyển bài toán. .. Bước 3 Chuyển bài toán cực trị của hàm số đã xét trở lại bài toán cực trị trong hình học IV HƯỚNG PHÁT TRIỂN CỦA CHUYÊN ĐỀ Trong chuyên đề chỉ mới đề cập đến các biểu thức thường gặp trong bài toán cực trị Chuyên đề có thể nghiên cứu để mở rộng theo hướng thay đổi các biểu thức để tìm cực trị, thay đổi các giả thiết khi viết phương trình đường thẳng, mặt phẳng thỏa mãn tính chất cực trị nào đó 19 C KIỂM... hết các bài toán cực trị của hình học giải tích không? Còn dạng toán nào mà phương pháp hàm số chưa giải quyết được? Mỗi bài toán đều có nhiều cách giải quyết khác nhau Phương pháp sử dụng đạo hàm chỉ cung cấp cho chúng ta một phương pháp có hiệu quả để giải quyết bài toán cực trị Trong chuyên đề còn chưa xét tới các bài toán tìm điểm thuộc mặt phẳng, điểm thuộc mặt cầu thỏa mãn tính chất cực trị nào... tham khảo nhằm rèn luyện cho học sinh kĩ năng giải quyết các bài toán nói chung và kĩ năng giải bài toán cực trị trong hình học Oxyz nói riêng Xin chân thành cảm ơn! Hà Tĩnh, tháng 4 năm 2013 21 MỤC LỤC A MỞ ĐẦU ………………………………………………………………1 B NỘI DUNG ……………………………………………………………3 I BÀI TOÁN CỰC TRỊ LIÊN QUAN ĐẾN KHOẢNG CÁCH………3 II BÀI TOÁN CỰC TRỊ LIÊN QUAN ĐẾN GÓC……………………13 III MỘT SỐ CHÚ Ý KHI ÁP DỤNG CHUYÊN... số khi xét bài toán cực trị liên quan đến góc so với phương pháp sử dụng tính chất của hình học không gian để giải quyết 3.3 Một số bài toán tương tự Bài 1 Trong không gian Oxyz , cho hai điểm A 2;0;5 , B 1; 2;3 và đường thẳng x t : y 2 t Viết phương trình mặt phẳng P đi qua hai điểm A, B và tạo với đường z 2t thẳng một góc lớn nhất Bài 2 Trong không gian Oxyz , cho... trình đường thẳng d1 nằm trong mặt phẳng P , vuông góc với đường thẳng d và cách M một khoảng nhỏ nhất Bài 1 Trong không gian Oxyz , cho đường thẳng : 11 Bài 5 Trong không gian Oxyz , cho hai điểm A 1;2;0 , B 1;2; 5 và đường thẳng x 1 2t : y 3 2t Tìm tọa độ điểm M trên đường thẳng sao cho tổng MA 3MB nhỏ z t nhất 12 II BÀI TOÁN CỰC TRỊ LIÊN QUAN ĐẾN GÓC... toán 7/42 học sinh tính được diện tích tam giác MAB theo công thức 1 S MAB d M , AB AB 2 Nhưng không đưa được về bài toán tìm giá trị nhỏ nhất của d M , AB 35/42 học sinh chuyển được về bài toán tìm giá trị nhỏ nhất của d M , AB 30/42 học sinh giải quyết trọn vẹn bài toán nhờ xét hàm số f t 46t 2 212t 686 D KẾT LUẬN Chuyên đề được hoàn thành với sự tổng hợp, tham khảo tài liệu... đường thẳng d : y 1 41t z 2 4t Nhận xét Với bài toán này, phương pháp khảo sát hàm số có lẽ là tối ưu nhất 1.3 Một số bài toán tương tự x y 1 z 2 và hai điểm 1 2 3 A 2; 1;1 , B 1; 1;0 Tìm tọa độ điểm M thuộc đường thẳng sao cho diện tích tam giác MAB đạt giá trị nhỏ nhất x 1 y 2 z 1 Bài 2 Trong không gian Oxyz , cho đường thẳng : và điểm 1 1 2 M 2;1;4 ... thẳng sao cho đoạn MH có độ dài nhỏ nhất x 2 y 1 z Bài 3 Trong không gian Oxyz , cho đường thẳng : và mặt phẳng 2 1 1 P : x 2 y z 1 0 Viết phương trình đường thẳng d song song với mặt phẳng P , đồng thời d cắt trục Ox và đường thẳng lần lượt tại A và B sao cho AB ngắn nhất x 1 y 2 z 3 Bài 4 Trong không gian Oxyz , cho điểm M 4;3;1 , đường thẳng d : 2 3 1... thỏa mãn tính chất cực trị nào đó 19 C KIỂM NGHIỆM QUA THỰC TẾ GIẢNG DẠY Trong quá trình giảng dạy, tôi đã đem vấn đề trên áp dụng vào một buổi dạy tăng cường dành cho các học sinh ôn thi ĐH – CĐ Kết quả cụ thể như sau: Lớp 12B9 (Chưa được học tăng cường) Trong không gian Oxyz , cho Không có học sinh nào giải quyết trọn vẹn bài toán x 1 t đường thẳng : y 2 t 25/40 học sinh tính được . phương pháp để giải quyết bài toán cực trị trong hình học Oxyz, rèn luyện cho học sinh kĩ năng chuyển đổi bài toàn toán cực trị trong hình học sang bài toán cực trị trong giải tích. Từ đó, với. sinh trong quá trình giải quyết bài toán cực trị trong hình học giải tích Oxyz. Từ đó, đề xuất phương án giải quyết, tổng kết thành kinh nghiệm. 4. Phạm vi nghiên cứu Trong bài toán cực trị. quyết bài toán cực trị trong hình học Oxyz. + Đặc biệt, chuyên đề đã xây dựng một phương pháp giải toán hiệu quả đối với một lượng lớn các bài toán cực trị và giải quyết hầu hết các dạng toán