0

hướng dẫn thực hành vật lí bằng máy tính cầm tay

27 546 0
  • hướng dẫn thực hành vật lí bằng máy tính cầm tay

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Tài liệu liên quan

Thông tin tài liệu

Ngày đăng: 01/02/2015, 16:14

NGUYỄN TRỌNG SỬU (Chủ biên) - NGUYỄN VĂN PHÁN HƯỚNG DẪN THỰC HÀNH VẬT LÍ BẰNG MÁY TÍNH CẦM TAY CÁC DẠNG CÂU HỎI VÀ BÀI TẬP (tài liệu dành cho lớp tập huấn GV) THÁNG 10/2010 1 Phần một GIỚI THIỆU MÁY TÍNH CẦM TAY Trước khi tính toán, bạn phải chọn đúng Mode theo bảng dưới đây: 2 PHÉP TÍNH ẤN VÀO MODE Tính thông thường COMP Giải phương trình EQN Chú ý: Để trở lại cài đặt ban đầu, ta ấn Khi ấy: Tính toán: COMP Đơn vị đo góc: Deg Dạng a +10 n : Norm 1 Dạng phân số: a b/c Dấu cách phần lẽ: chấm (Dot) 1. Giai Thừa: Tính X! (X ≥ 0) Ví dụ: Tính 12! Nhập 12 Ấn Kết quả: 479’001’600. 2. Căn bậc hai, căn bậc ba: Ví dụ: 3 12549 + Ta ghi vào mà hình hệt như đề và ấn “=” 49 125 Kết quả: 12. 3. Logarit thập – Logarit tự nhiên: Máy kí hiệu: Log: Logarit thập Ln: Logarit Nepe Ví dụ: Tính log 10 100, Ln e 4/7 Ấn 100 Kết quả: 2 Ấn 4 7 KQ: 4/7 4. Giải phương trình mũ: Ví dụ: 6 x + 8 x = 10 x Ấn 6 8 10 Ấn Máy hỏi X? nhập 3 ấn Thao tác thành công máy hiện Processing… Kết quả:2 Ghi chú: Chức năng SOLVE giải gần đúng theo phương pháp Newton. Vài biểu thức hay giá tri ban đầu không cho ra kết quả. Khi đang tìm nghiệm màn hình hiên Processing… 5. Hệ phương trình bậc nhất hai ẩn Tìm nghiệm hệ phương trình bậc nhất hai ẩn    =+ =+ 222 111 cybxa cybxa Ví dụ: 3 SHIFT X! SHIFT X! = √ + 3√ = SHIFT log = Ln ALPHA e ^ ( a b/c ) = a b/c ^ ALPHA x + ^ ALPHA x = ^ ALPHA x SHIFT CALC = SHIFT CALC Mode 1 Mode Mode Mode 1 SHIFT CLR 2 =    =−− −=− 1035 24512 yx yx Ta vào chương trinh giải hệ phương trình bậc nhất hai ẩn bằng cách sau: Ấn phím 3 lần bấm 1 để vào chức năng EQN máy hỏi UnKnowns? bấm 2 để thực hiện giải phương trình bậc nhất 2 ẩn Máy hỏi a 1 ấn 12 Máy hỏi b 1 ấn -5 Máy hỏi c 1 ấn -24 Máy hỏi a 2 ấn -5 Máy hỏi b 2 ấn -3 Máy hỏi c 2 ấn 10 Kết quả: X = -2, Ấn cho kết quả Y = 0. 6. Hệ phương trình bậc nhất ba ẩn Tìm nghiệm hệ phương trình bậc nhất ba ẩn      =++ =++ =++ 3333 2222 1111 dzcybxa dzcybxa dzcybxa Ví dụ:      −=+− −=−+ −=+− 962 7352 954 zy zyx zyx Ta vào chương trinh giải hệ phương trình bậc nhất hai ẩn bằng cách sau: Ấn phím 3 lần bấm 1 để vào chức năng EQN máy hỏi UnKnowns? bấm 3 để thực hiện giải phương trình bậc nhất 3 ẩn Máy hỏi a 1 ấn 1 Máy hỏi b 1 ấn -4 Máy hỏi c 1 ấn 5 Máy hỏi d 1 ấn 9 Máy hỏi a 2 ấn 2 Máy hỏi b 2 ấn 5 Máy hỏi c 2 ấn -3 Máy hỏi d 2 ấn -7 Máy hỏi a 3 ấn 0 Máy hỏi b 3 ấn -2 Máy hỏi c 3 ấn 6 4 MODE = = = = = = = MODE = = = = = = = = = = = = Máy hỏi d 3 ấn -9 Kết quả: X = 4.5192, Ấn cho kết quả Y = -5.1346 Ấn cho kết quả Z = -3.2115 7. Hệ phương trình bậc nhất bốn ẩn Muốn tìm nghiệm của hệ phương trình        =+++ =+++ =+++ =+++ 44444 33333 22222 11111 etdzcybxa etdzcybxa etdzcybxa etdzcybxa Ví dụ 1. Giải hệ phương trình        =−+− =+−− =−+−+ =++− 5472372 80384 34825 30024 tzyx tzyx tzyx tzyx Ta vào chương trinh giải hệ phương trình bậc nhất hai ẩn bằng cách sau: Ấn phím 3 lần bấm 1 để vào chức năng EQN máy hỏi UnKnowns? bấm 4 để thực hiện giải phương trình bậc nhất 4 ẩn Nhập vào các hệ số của hệ phương trình: 1 4 1 2 300 1 5 2 1 348 4 8 1 3 80 2 7 3 2 547 Kết quả: x = 77, ấn y = 20, ấn z = 209, ấn t = 47 8. Phương trình bậc hai một ẩn Tìm nghiệm của phương trình bậc hai ax 2 + bx + c = 0 Ví dụ: Giải phương trình x 2 + 9x + 8 = 0 Ta vào chương trinh giải hệ phương trình bậc hai một ẩn bằng cách sau: Ấn phím 3 lần bấm 1 để vào chức năng EQN máy hiện UnKnowns? bấm màn hình xuất hiện Degree? bấm 2 để thực hiện giải phương trình bậc hai Nhập vào các hệ số của phương trình trên: 1 9 8 Kết quả: x 1 = -1 ấn x 2 = -8. 5 = = MODE = (-) = = = = (-) = = (-) = (-) = (-) = = = (-) = (-) = = = = = = MODE ► = = = = = = = 9. Phương trình bậc ba một ẩn Tìm nghiệm của phương trình bậc hai ax 3 + bx 2 + cx + d = 0 Ví dụ: Giải phương trình 2x 3 + x 2 – 8x - 4 = 0 Ta vào chương trinh giải hệ phương trình bậc nhất hai ẩn bằng cách sau: Ấn phím 3 lần bấm 1 để vào chức năng EQN máy hiện UnKnowns? bấm màn hình xuất hiện Degree? bấm 3 để thực hiện giải phương trình bậc ba Nhập vào các hệ số của phương trình trên: 2 1 8 4 Kết quả: x 1 = 2 ấn x 2 = -2 ấn x 3 = -0.5 10. FIX, SCI, RND ( Chọn số chữ số lẽ, dạng chuẩn a+10 n , tính tròn) Ấn Mode 5 lần để vào các chức năng F IX, SCI, NORM a) Fix:ấn định chữ số lẽ Ví dụ 1. Tính 200 : 7 = 28.57142857142857 Để màn hình chỉ hiển thị 4 số sau dấu phẩy thập phân ta làm như sau Ấn Mode 5 lần chọn 1 vào chế độ Fix màn hình xuất hiện Fix 0~9 ta nhập số 4 vào Kết quả: 200 : 7 = 28.5714 b) Sci: ấn định số chữ số của a Ví dụ 1. Tính 200 : 7 = 28.57142857142857 Để màn hình chỉ hiển thị k ết quả với 5 số ta làm như sau Ấn Mode 5 lần chọn 2 vào chế độ Sci màn hình xuất hiện Sci 0~9 ta nhập số 5 vào Kết quả: 200 : 7 = 28.571 c) Norm Ấn Mode 5 lần chọn3 vào chế độ Norm màn hình xuất hiện Norm 1~2 Để xóa cài đặt Fix và Sci ta chọn Norm 1 hoặc Norm 1 6 MODE ► = = (-) = = (-) = = Phần hai CÁC DẠNG CÂU HỎI VÀ BÀI TẬP §1. BỐN PHÉP TÍNH CƠ BẢN, LUỸ THỪA VÀ KHAI CĂN. Những điểm cần lưu ý Trong việc giải các bài toán Vật lí sau khi vận dụng các kiến thức cơ bản về Vật lí, muốn tính ra đến kết quả cuối cùng chúng ta rất hay dùng tới các phép tính cộng, trừ, nhân, chia, luỹ thừa và khai căn. Các phép tính cộng, trừ, nhân, chia, luỹ thừa và khai căn là các phép tính cơ bản chúng ta không thể bỏ qua được. Khi thực hiện thành thạo các phép tính cơ bản này sẽ giúp ta tìm được kết quả của bài toán một cách mau lẹ và chính xác. Trong việc thực hiện các phép tính cơ bản nói trên cần phân biệt phép “trừ” – và “dấu trừ” (-); Exp và 10 ^ , đôi khi chúng cho kết quả như nhau, nhưng nói chung là khác nhau. Muốn tính chính xác chúng ta không nên ghi các kết quả trung gian ra giấy rồi nhập lại vào máy mà nên nhớ các kết quả đó vào ô nhớ độc lập (Shift Sto) hoặc ô nhớ mặc định Ans, mà chỉ ghi kết quả cuối cùng. Các ví dụ minh hoạ Bài 1: Một người bơi dọc theo chiều dài 50m của một bể bơi hết 20,18s rồi quay lại về chỗ xuất phát trong 21,34s. Hãy xác định tốc độ trung bình của người đó trong các trường hợp sau: a) Trong khoảng thời gian bơi đi. b) Trong khoảng thời gian bơi về. c) Trong suốt cả thời gian bơi đi và bơi về. Cách giải Hướng dẫn bấm máy và kết quả Theo định nghĩa về tốc độ trung bình t S v TB = a) Trong khoảng thời gian bơi đi: s/m,v TB 47772 ≈ . b) Trong khoảng thời gian bơi về: s/m,v TB 34302 ≈ . c) Trong suốt cả thời gian bơi đi và bơi về: s/m,v TB 40852 ≈ 50 ÷ 20.18 = KQ: 2.477700694 50 ÷ 21.34 = KQ: 2.343017807 100 ÷ ( 20.18 + 21.34 ) = KQ: 2.408477842 7 Bài 2: Lúc 7h một ôtô chạy từ Hải Phòng về Hà Nội với tốc độ không đổi 45km/h. Cùng lúc đó một ôtô chạy từ Hà Nội đi Hải Phòng với tốc độ không đổi 65km/h. Biết khoảng cách Hà Nội - Hải Phòng là 105km. a) Hãy lập phương trình chuyển động của hai xe trên cùng một trục toạ độ, lấy gốc toạ độ tại Hà Nội, chiều dương hướng từ Hà Nội tới Hải Phòng, gốc thời gian là lúc 7h. b) Xác định thời điểm và vị trí hai xe gặp nhau. Cách giải Hướng dẫn bấm máy và kết quả a) Lập phương trình chuyển động của mỗi xe: - Xe từ Hải Phòng về Hà nội có hướng chuyển động ngược với trục toạ độ, vị trí ban đầu tại Hải Phòng nên phương trình chuyển động là: )h,km(tx 45105 2 −= . - Xe từ Hà nội đi Hải Phòng có hướng chuyển động cùng chiều trục toạ độ, vị trí ban đầu tại Hà Nội nên phương trình chuyển động là: )h,km(tx 65 2 = . b) Khi hai xe gặp nhau thì chúng phải có cùng toạ độ, tức là 21 xx = ↔ 105 – 45t = 65t ↔ 110t = 105 ↔ h,t 95450 ≈ . Thời điểm hai xe gặp nhau là 7,9545 h. Hai xe gặp nhau tại vị trí cách Hà Nội km,x 0454562 2 ≈ 105 ÷ 110 = KQ: 0.954545454 Ans + 7 = KQ: 7.954545455 ▲ = Ans x 65 = KQ: 62.04545455 Bài tập vận dụng 1.1. Một người chạy trên một đường đoạn đường đất dài 200m hết thời gian 30s. Sau đó người này chạy thêm trên một đoạn đường nhựa dài 150m hết thời gian 20s. Hãy xác định tốc độ trung bình của người đó trong các trường hợp sau: a) Trong khoảng thời gian chạy trên đường đất. b) Trong khoảng thời gian chạy trên đường nhựa. c) Trong cả đoạn đường đất và đường nhựa. Đáp số: a)6,6667 m/s. b) 7,5m/s. c) 7m/s. 1.2. Lúc 10h một ôtô chạy từ Hải Phòng về Hà Nội với tốc độ không đổi 55km/h. Cùng lúc đó một ôtô chạy từ Hà Nội đi Hải Phòng với tốc độ không đổi 40km/h. Biết khoảng cách Hà Nội - Hải Phòng là 105km. a) Hãy lập phương trình chuyển động của hai xe trên cùng một trục toạ độ, lấy gốc toạ độ tại Hải Phòng, chiều dương hướng từ Hà Nội tới Hải Phòng, gốc thời gian là lúc 10h. b) Xác định thời điểm và vị trí hai xe gặp nhau. Đáp số: a) x 1 = - 55t km, x 2 = -105 + 40t (km). b) t = 11h6phút19s; x 1 = x 2 = 60,7895km. 8 1.3. Trong nửa thời gian đầu, một xe ôtô chuyển động thẳng với tốc độ trung bình là h/kmv 35 1 = , trong nửa thời gian còn lại xe chuyển động thẳng với tốc độ trung bình là h/kmv 45 2 = . Hãy tính tốc độ trung bình của xe trên toàn thời gian chuyển động. Đáp số: 40 km/h. 1.4. Một xe lăn khối lượng m = 2kg được kéo chuyển động trên mặt phẳng ngang bởi lực kéo F = 8N hướng theo phương ngang. Sau thời gian 3s kể từ lúc bắt đầu chuyển động xe đi được 10m. Hãy tính hệ số ma sát giữa xe lăn và mặt đất. Lấy 2 89 s/m,g = . Đáp số: 0,1814. §2. GIẢI HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN, BA ẨN. Những điểm cần lưu ý Các hệ phương trình bậc nhất hai ẩn, ba ẩn, bốn ẩn với số phương trình bằng số ẩn thì máy tính cầm tay VN 570MS có thể giải được một cách dễ dàng. Đặc biệt với các hệ phương trình bậc nhất có các hệ số không nguyên dẫn đến việc tính toán thông thường gặp nhiều khó khăn thì máy tính cầm tay lại thực hiện dễ dàng. Muốn giải các hệ phương trình bậc nhất hai ẩn, ba ẩn, bốn ẩn ta đưa máy về chế độ giải hệ phương trình bậc nhất bằng cách bấm như sau: - Giải hệ phương trình bậc nhất 2 ẩn: Mode (3 lần) 1 2 - Giải hệ phương trình bậc nhất 3 ẩn: Mode (3 lần) 1 3 - Giải hệ phương trình bậc nhất 4 ẩn: Mode (3 lần) 1 4 Nhập các hệ số cho hệ phương trình, trong khi nhập các hệ số có thể thực hiện các phép tính thông thường, đến khi bấm = thì giá trị của hệ số được gán. Trong khi nhập các hệ số ta phải nhập đủ tất cả các hệ số, cần đặc biệt chú ý đến các hệ số có giá trị bằng 0 và nhầm thứ tự các hệ số. Muốn tránh nhầm lẫn tốt nhất ta lập một ma trận gồm m hàng và (m + 1) cột (với m là số phương trình). Các ví dụ minh hoạ Bài 1: Treo lần lượt các vật khối lượng m 1 = 100g và m 2 = 150g vào đầu dưới của một lò xo (đầu trên của lò xo cố định), thì chiều dài của lò xo khi vật cân bằng lần lượt là l 1 = 35cm và l 2 = 37cm. Hãy tính độ cứng và chiều dài tự nhiên của lò xo. Lấy g = 9,8067 m/s 2 . Cách giải Hướng dẫn bấm máy và kết quả Khi vật cân bằng, lực đàn hồi của lò xo cân bằng với trọng lực của vật. Từ đó ta có hệ phương trình    =− =− ⇔    =− =− gmklkl gmklkl gm)ll(k gm)ll(k 202 101 202 101 Giải hệ phương trình ta được Mode (3 lần) 1 2 0.35 = (-) 1 = 0.1 x 9.8067 = 0.37 = (-) 1 = 0.15 x 9.8067 = KQ: 49.0335 = KQ: 16.181055 Mode 1 16.181055 ÷ 49.0335 = KQ: 0.33 9    = = ⇔    = = )m(,l )m/N(,k ,kl ,k 330 033549 181116 033549 00 Bài 2: Hai ôtô chuyển động thẳng đều trên cùng một đường thẳng, xuất phát từ hai điểm A, B cách nhau một khoảng S = 100km với vận tốc v 1 = 36km/h, v 2 = 72km/h ngược chiều nhau. Xác định thời điểm và vị trí hai xe gặp nhau chọn A làm gốc toạ độ, thời điểm ban đầu là lúc hai xe xuất phát. Cách giải Hướng dẫn bấm máy và kết quả Chọn chiều dương là chiều chuyển động của xe một xuất phát từ A. Phương trình chuyển động của xe xuất phát từ A là x 1 = v 1 .t = 36t Phương trình chuyển động của xe xuất phát từ B là x 2 = S - v 2 .t = 100 - 72t Thời điểm và vị trí hai xe gặp nhau khi x 1 = x 2 = x là nghiệm của hệ phương trình    =+ =− 10072 036 tx tx Giải hệ phương trình ta được    = = )h(,t )km(,x 92590 333333 Mode (3 lần) 1 2 1 = (-) 36 = 0 = 1 = 72 = 100 = KQ: 33.33333333 = KQ: 0.9259259259 Bài tập vận dụng 3.1. Một vật rơi tự do không vận tốc ban đầu từ độ cao h = 50m. Hãy tính thời gian từ lúc thả vật đến lúc vật chuyển động qua độ cao h’ = 13m. Lấy g = 9,81m/s 2 . Đáp số: 2,7465 (s). 3.2. Tại hai bến xe A, B (AB = 80km) có hai xe cùng khởi hành chuyển động ngược chiều nhau hướng về phía nhau. Xe xuất phát từ A chuyển động đều với tốc độ 40km/h, xe xuất phát từ B chuyển động nhanh dần đều với tốc độ ban đầu 20km/h và gia tốc 0,5km/h 2 . Hãy xác định thời điểm và vị trí hai xe gặp nhau. Đáp số: 1,3260 (h), cách A 53,0403 (km). 3.3. Vật khối lượng m = 5kg chịu tác dụng của một lực không đổi F = 50N, bắt đầu chuyển động thừ trạng thái đứng yên. Hãy xác định khoảng thời gian cần thiết để vật chuyển động được quãng đường 400m kể từ khi vật có tốc độ 5m/s. Đáp số: 8,4582 (s). 3.4. Một ôtô đang chuyển động thì đột ngột hãm phanh, lực hãm không đổi và bằng 25% trọng lực của xe. Hãy tính thời gian từ lúc bắt đầu hãm phanh đến lúc xe dừng hẳn. Biết rằng ngay sau khi hãm phanh xe còn đi được đoạn đường 32m mới dừng lại. Lấy g = 9,81m/s 2 . 10 [...]... cht Chu kỡ bỏn ró ca 6 ỏp s: 4541,4106 nm 4500 nm Đ5 HM S LNG GIC Nhng im cn lu ý Mỏy tớnh cm tay ó giỳp vic tớnh cỏc hm sụ lng giỏc (sin, cos, tan v ctan) cựng cỏc hm ngc ca chỳng tr lờn d dng, vic khụng cũn phi dựng thc tớnh giỏ tr ca hm lng giỏc hoc bn s tra cỏc giỏ tr ca hm lng giỏc Vi mỏy tớnh cm tay cú th tớnh giỏ tr ca mt hm s lng giỏc vi n v ca bin s l radian (rad) hoc ( 0) Vi hm ngc acrsinx... 9,87m/s2 Tớnh lc cng cc tiu ca si dõy ỏp s: 0,9869 N Đ6 O HM, VI PHN V TCH PHN Nhng im cn lu ý Cỏc phộp tớnh o hm bc nht, vi phõn bc nht v tớch phõn mt lp cú th dựng mỏy tớnh cm tay tớnh toỏn mt cỏch d dng Vic dựng mỏy tớnh cm tay s a chỳng ta n kt qu bng s cui cựng ch khụng a ra cụng thc tng quỏt, nờn cỏc bi toỏn cn ly o hm t bc hai tr lờn, cỏc bi toỏn cú s dng tớch phõn nhiu lp ta vn phi dựng cỏc cụng... ca mi vt sau khi t dõy ni gia m1 v m2 Cỏch gii m2 m3 m1 Hỡnh 3 Kt qu 19 Bi 4: Hỡnh 4 l th chu trỡnh ca 1,5 mol khớ lớ tng trong mt phng to p, T Bit p1 = 1,5 atm, T1 = 320K, T2 = 600K Hãy tính công mà khí đã thực hiện trong chu trình p p2 (2) p1 (1) (3) T T1 T2 Hỡnh 4 Cỏch gii Bi 5: Cho mch in cú s nh hỡnh 5, b qua in tr ca cỏc ngun in v cỏc dõy ni Hóy xỏc nh cng dũng in qua cỏc in tr Bit E1 =... 10s ỏp s: 75m/s 6.4 Mt vt c nộm ngang vi tc ban u v 0 = 20m/s Hóy tớnh quóng ng m vt chuyn ng c sau khi nộm 3s Ly g = 9,81m/s2 ỏp s: 77,408 m Đ7 HNG S VT L - I N V VT L Nhng im cn lu ý Vi mỏy tớnh cm tay, ngoi cỏc tin ớch nh tớnh toỏn thun li, thc hin cỏc phộp tớnh nhanh, n gin v chớnh xỏc thỡ phi k ti tin ớch tra cu mt s hng s vt lớ v i mt s n v trong vt lớ Cỏc hng s vt lớ ó c ghi trong b nh ca mỏy... cm 3 KQ: -3.4414 v v2 = A cos( t 1 + ) = .A.cos(t1).cos 3 3 .A sin (t1).sin = -3,4414 cm/s 3 A cos (t1).sin 17 Phn ba GII THIU THI NM 2008 B GIO DC V O TO Kè THI KHU VC GII TON VT L TRấN MY TNH CM TAY NM 2008 Lp 12 Thi gian: 150 phỳt Khụng k thi gian giao Chỳ ý: - thi ny gm 3 trang, 10 bi, mi bi 5 im - Thớ sinh lm bi trc tip vo bn thi ny im ton bi thi Cỏc giỏm kho (H tờn v ch kớ) Bng s Bng ch...ỏp s: 2,1159 (s) Đ4 HM M V LễGARIT Nhng im cn lu ý Mỏy tớnh cm tay ó giỳp rỳt ngn thi gian tớnh toỏn núi chung v c bit nú ó thay th hon ton cỏc bng tra giỏ tr lụgarớt thp phõn Giỳp chỳng ta gii cỏc bi toỏn cú liờn quan ti hm s m v hm s lụgarớt Mỏy tớnh b tỳi cú th... lớ lp 12 (tp 1, tp 2) Bựi Quang Hõn 8 Gii toỏn vt lớ lp 11 (tp 1, tp 2) Bựi Quang Hõn 9 Gii toỏn vt lớ lp 12 (tp 1, tp 2, tp 3) Bựi Quang Hõn 10 Hng dn thc hnh Toỏn Lớ Hoỏ Sinh trờn mỏy tớnh cm tay - Nguyn Hi Chõu (Ch biờn) 26 Cỏc tỏc gi chõn thnh cm n cỏc thy cụ giỏo v cỏc bn c úng gúp ý kin cho ti liu ny Ch biờn: Nguyn Trng Su a ch: V Giỏo dc Trung hc, B Giỏo dc v o to, 49 i C Vit, H Ni in . VĂN PHÁN HƯỚNG DẪN THỰC HÀNH VẬT LÍ BẰNG MÁY TÍNH CẦM TAY CÁC DẠNG CÂU HỎI VÀ BÀI TẬP (tài liệu dành cho lớp tập huấn GV) THÁNG 10/2010 1 Phần một GIỚI THIỆU MÁY TÍNH CẦM TAY Trước khi tính toán,. ý Các phép tính đạo hàm bậc nhất, vi phân bậc nhất và tích phân một lớp có thể dùng máy tính cầm tay để tính toán một cách dễ dàng. Việc dùng máy tính cầm tay sẽ đưa chúng ta đến kết quả bằng số. cần lưu ý Với máy tính cầm tay, ngoài các tiện ích như tính toán thuận lợi, thực hiện các phép tính nhanh, đơn giản và chính xác thì phải kể tới tiện ích tra cứu một số hằng số vật lí và đổi một
- Xem thêm -

Xem thêm: hướng dẫn thực hành vật lí bằng máy tính cầm tay, hướng dẫn thực hành vật lí bằng máy tính cầm tay, hướng dẫn thực hành vật lí bằng máy tính cầm tay