Tuyển tập đề thi HSG Toán 8 Năm học: 2012-2013 ĐỀ THI SỐ 1 Câu 1: (4,0 điểm) Phân tích các đa thức sau thành nhân tử : a) 3x 2 – 7x + 2; b) a(x 2 + 1) – x(a 2 + 1). Câu 2: (5,0 điểm) Cho biểu thức : 2 2 2 2 3 2 4 2 3 ( ) : ( ) 2 4 2 2 x x x x x A x x x x x + − − = − − − − + − a) Tìm ĐKXĐ rồi rút gọn biểu thức A ? b) Tìm giá trị của x để A > 0? c) Tính giá trị của A trong trường hợp : |x - 7| = 4. Câu 3: (5,0 điểm) a) Tìm x,y,z thỏa mãn phương trình sau : 9x 2 + y 2 + 2z 2 – 18x + 4z - 6y + 20 = 0. b) Cho 1 x y z a b c + + = và 0 a b c x y z + + = . Chứng minh rằng : 2 2 2 2 2 2 1 x y z a b c + + = . Câu 4: (6,0 điểm) Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD. a) Tứ giác BEDF là hình gì ? Hãy chứng minh điều đó ? b) Chứng minh rằng : CH.CD = CB.CK c) Chứng minh rằng : AB.AH + AD.AK = AC 2 . HƯỚNG DẪN CHẤM THI Nội dung đáp án Điểm Bài 1 a 2,0 3x 2 – 7x + 2 = 3x 2 – 6x – x + 2 = 1,0 = 3x(x -2) – (x - 2) 0,5 = (x - 2)(3x - 1). 0,5 b 2,0 a(x 2 + 1) – x(a 2 + 1) = ax 2 + a – a 2 x – x = 1,0 = ax(x - a) – (x - a) = 0,5 NguyÔn H¶i @Gmai.com 1 Tuyển tập đề thi HSG Toán 8 Năm học: 2012-2013 = (x - a)(ax - 1). 0,5 Bài 2: 5,0 a 3,0 ĐKXĐ : 2 2 2 3 2 0 4 0 0 2 0 2 3 3 0 2 0 x x x x x x x x x x − ≠ − ≠ ≠ + ≠ ⇔ ≠ ± ≠ − ≠ − ≠ 1,0 2 2 2 2 2 2 2 2 3 2 4 2 3 (2 ) 4 (2 ) (2 ) ( ) :( ) . 2 4 2 2 (2 )(2 ) ( 3) x x x x x x x x x x A x x x x x x x x x + − − + + − − − = − − = = − − + − − + − 1,0 2 4 8 (2 ) . (2 )(2 ) 3 x x x x x x x + − = − + − 0,5 2 4 ( 2) (2 ) 4 (2 )(2 )( 3) 3 x x x x x x x x x + − = = − + − − 0,25 Vậy với 0, 2, 3x x x≠ ≠ ± ≠ thì 2 4x 3 A x = − . 0,25 b 1,0 Với 2 4 0, 3, 2 : 0 0 3 x x x x A x ≠ ≠ ≠ ± > ⇔ > − 0,25 3 0x⇔ − > 0,25 3( )x TMDKXD⇔ > 0,25 Vậy với x > 3 thì A > 0. 0,25 c 1,0 7 4 7 4 7 4 x x x − = − = ⇔ − = − 0,5 11( ) 3( ) x TMDKXD x KTMDKXD = ⇔ = 0,25 Với x = 11 thì A = 121 2 0,25 Bài 3 5,0 a 2,5 9x 2 + y 2 + 2z 2 – 18x + 4z - 6y + 20 = 0 ⇔ (9x 2 – 18x + 9) + (y 2 – 6y + 9) + 2(z 2 + 2z + 1) = 0 1,0 ⇔ 9(x - 1) 2 + (y - 3) 2 + 2 (z + 1) 2 = 0 (*) 0,5 Do : 2 2 2 ( 1) 0;( 3) 0;( 1) 0x y z− ≥ − ≥ + ≥ 0,5 Nên : (*) ⇔ x = 1; y = 3; z = -1 0,25 Vậy (x,y,z) = (1,3,-1). 0,25 b 2,5 Từ : ayz+bxz+cxy 0 0 a b c x y z xyz + + = ⇔ = 0,5 ⇔ ayz + bxz + cxy = 0 0,25 NguyÔn H¶i @Gmai.com 2 Tuyển tập đề thi HSG Toán 8 Năm học: 2012-2013 Ta có : 2 1 ( ) 1 x y z x y z a b c a b c + + = ⇔ + + = 0,5 2 2 2 2 2 2 2( ) 1 x y z xy xz yz a b c ab ac bc ⇔ + + + + + = 0,5 2 2 2 2 2 2 2 1 x y z cxy bxz ayz a b c abc + + ⇔ + + + = 0,5 2 2 2 2 2 2 1( ) x y z dfcm a b c ⇔ + + = 0,25 Bài 4 6,0 O F E K H C A D B 0,25 a 2,0 Ta có : BE ⊥ AC (gt); DF ⊥ AC (gt) => BE // DF 0,5 Chứng minh : ( )BEO DFO g c g∆ = ∆ − − 0,5 => BE = DF 0,25 Suy ra : Tứ giác : BEDF là hình bình hành. 0,25 b 2,0 Ta có: · · · · ABC ADC HBC KDC= ⇒ = 0,5 Chứng minh : ( )CBH CDK g g∆ ∆ −: 1,0 . . CH CK CH CD CK CB CB CD ⇒ = ⇒ = 0,5 b, 1,75 Chứng minh : AF ( )D AKC g g∆ ∆ −: 0,25 AF . A . AK AD AK F AC AD AC ⇒ = ⇒ = 0,25 Chứng minh : ( )CFD AHC g g∆ ∆ −: 0,25 CF AH CD AC ⇒ = 0,25 Mà : CD = AB . . CF AH AB AH CF AC AB AC ⇒ = ⇒ = 0,5 Suy ra : AB.AH + AB.AH = CF.AC + AF.AC = (CF + AF)AC = AC 2 (đfcm). 0,25 ĐỀ SỐ 2 NguyÔn H¶i @Gmai.com 3 Tuyển tập đề thi HSG Toán 8 Năm học: 2012-2013 Câu1. a. Phân tích các đa thức sau ra thừa số: 4 x 4+ ( ) ( ) ( ) ( ) x 2 x 3 x 4 x 5 24+ + + + − b. Giải phương trình: 4 2 x 30x 31x 30 0− + − = c. Cho a b c 1 b c c a a b + + = + + + . Chứng minh rằng: 2 2 2 a b c 0 b c c a a b + + = + + + Câu2. Cho biểu thức: 2 2 x 2 1 10 x A : x 2 x 4 2 x x 2 x 2 − = + + − + ÷ ÷ − − + + a. Rút gọn biểu thức A. b. Tính giá trị của A , Biết |x| = 1 2 . c. Tìm giá trị của x để A < 0. d. Tìm các giá trị nguyên của x để A có giá trị nguyên. Câu 3. Cho hình vuông ABCD, M là một điểm tuỳ ý trên đường chéo BD. Kẻ ME ⊥ AB, MF ⊥ AD. a. Chứng minh: DE CF= b. Chứng minh ba đường thẳng: DE, BF, CM đồng quy. c. Xác định vị trí của điểm M để diện tích tứ giác AEMF lớn nhất. Câu 4. a. Cho 3 số dương a, b, c có tổng bằng 1. Chứng minh rằng: 1 1 1 9 a b c + + ≥ b. Cho a, b d¬ng vµ a 2000 + b 2000 = a 2001 + b 2001 = a 2002 + b 2002 Tinh: a 2011 + b 2011 HƯỚNG DẪN CHẤM THI HỌC SINH GIỎI LỚP 8 Câu Đáp án Điểm Câu 1 (6 điểm) a. x 4 + 4 = x 4 + 4x 2 + 4 - 4x 2 = (x 4 + 4x 2 + 4) - (2x) 2 = (x 2 + 2 + 2x)(x 2 + 2 - 2x) ( x + 2)( x + 3)( x + 4)( x + 5) - 24 = (x 2 + 7x + 11 - 1)( x 2 + 7x + 11 + 1) - 24 = [(x 2 + 7x + 11) 2 - 1] - 24 = (x 2 + 7x + 11) 2 - 5 2 = (x 2 + 7x + 6)( x 2 + 7x + 16) = (x + 1)(x + 6) )( x 2 + 7x + 16) (2 điểm) b. 4 2 x 30x 31x 30 0− + − = <=> ( ) ( ) ( ) 2 x x 1 x 5 x 6 0− + − + = (*) Vì x 2 - x + 1 = (x - 1 2 ) 2 + 3 4 > 0 x∀ (*) <=> (x - 5)(x + 6) = 0 x 5 0 x 5 x 6 0 x 6 − = = ⇔ + = = − (2 điểm) NguyÔn H¶i @Gmai.com 4 Tuyển tập đề thi HSG Toán 8 Năm học: 2012-2013 HƯỚNG DẪN CHẤM THI HỌC SINH GIỎI LỚP 8 c. Nhân cả 2 vế của: a b c 1 b c c a a b + + = + + + với a + b + c; rút gọn ⇒ đpcm (2 điểm) Câu 2 (6 điểm) Biểu thức: 2 2 x 2 1 10 x A : x 2 x 4 2 x x 2 x 2 − = + + − + ÷ ÷ − − + + a. Rút gọn được kq: 1 A x 2 − = − (1.5 điểm) b. 1 x 2 = 1 x 2 ⇒ = hoặc 1 x 2 − = 4 A 3 ⇒ = hoặc 4 A 5 = (1.5 điểm) c. A 0 x 2< ⇔ > (1.5 điểm) d. { } 1 A Z Z x 1;3 x 2 − ∈ ⇔ ∈ ⇒ ∈ − (1.5 điểm) Câu 3 (6 điểm) HV + GT + KL (1 điểm) a. Chứng minh: AE FM DF= = ⇒ AED DFC∆ = ∆ ⇒ đpcm (2 điểm) b. DE, BF, CM là ba đường cao của EFC∆ ⇒ đpcm (2 điểm) c. Có Chu vi hình chữ nhật AEMF = 2a không đổi ME MF a⇒ + = không đổi AEMF S ME.MF⇒ = lớn nhất ⇔ ME MF= (AEMF là hình vuông) M⇒ là trung điểm của BD. (1 điểm) Câu 4: (2 điểm) a. Từ: a + b + c = 1 ⇒ 1 b c 1 a a a 1 a c 1 b b b 1 a b 1 c c c = + + = + + = + + 1 1 1 a b a c b c 3 a b c b a c a c b 3 2 2 2 9 ⇒ + + = + + + + + + ÷ ÷ ÷ ≥ + + + = (1 điểm) NguyÔn H¶i @Gmai.com 5 Tuyn tp thi HSG Toỏn 8 Nm hc: 2012-2013 HNG DN CHM THI HC SINH GII LP 8 Du bng xy ra a = b = c = 1 3 b. (a 2001 + b 2001 ).(a+ b) - (a 2000 + b 2000 ).ab = a 2002 + b 2002 (a+ b) ab = 1 (a 1).(b 1) = 0 a = 1 hoặc b = 1 Với a = 1 => b 2000 = b 2001 => b = 1 hoặc b = 0 (loại) Với b = 1 => a 2000 = a 2001 => a = 1 hoặc a = 0 (loại) Vậy a = 1; b = 1 => a 2011 + b 2011 = 2 (1 im) Đề thi S 3 Câu 1 : (2 điểm) Cho P= 8147 44 23 23 + + aaa aaa a) Rút gọn P b) Tìm giá trị nguyên của a để P nhận giá trị nguyên Câu 2 : (2 điểm) a) Chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phơng của chúng chia hết cho 3. b) Tìm các giá trị của x để biểu thức : P=(x-1)(x+2)(x+3)(x+6) có giá trị nhỏ nhất . Tìm giá trị nhỏ nhất đó . Câu 3 : (2 điểm) a) Giải phơng trình : 18 1 4213 1 3011 1 209 1 222 = ++ + ++ + ++ xxxxxx b) Cho a , b , c là 3 cạnh của một tam giác . Chứng minh rằng : A = 3 + + + + + cba c bca b acb a Câu 4 : (3 điểm) Cho tam giác đều ABC , gọi M là trung điểm của BC . Một góc xMy bằng 60 0 quay quanh điểm M sao cho 2 cạnh Mx , My luôn cắt cạnh AB và AC lần lợt tại D và E . Chứng minh : a) BD.CE= 4 2 BC b) DM,EM lần lợt là tia phân giác của các góc BDE và CED. c) Chu vi tam giác ADE không đổi. Câu 5 : (1 điểm) Tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dơng và số đo diện tích bằng số đo chu vi . đáp án đề thi học sinh giỏi Câu 1 : (2 đ) a) (1,5) a 3 - 4a 2 - a + 4 = a( a 2 - 1 ) - 4(a 2 - 1 ) =( a 2 - 1)(a-4) =(a-1)(a+1)(a-4) 0,5 a 3 -7a 2 + 14a - 8 =( a 3 -8 ) - 7a( a-2 ) =( a -2 )(a 2 + 2a + 4) - 7a( a-2 ) =( a -2 )(a 2 - 5a + 4) = (a-2)(a-1)(a-4) 0,5 Nêu ĐKXĐ : a 4;2;1 aa 0,25 Nguyễn Hải @Gmai.com 6 Tuyn tp thi HSG Toỏn 8 Nm hc: 2012-2013 Rút gọn P= 2 1 + a a 0,25 b) (0,5đ) P= 2 3 1 2 32 += + aa a ; ta thấy P nguyên khi a-2 là ớc của 3, mà Ư(3)= { } 3;3;1;1 0,25 Từ đó tìm đợc a { } 5;3;1 0,25 Câu 2 : (2đ) a)(1đ) Gọi 2 số phải tìm là a và b , ta có a+b chia hết cho 3 . 0,25 Ta có a 3 +b 3 =(a+b)(a 2 -ab+b 2 )=(a+b) [ ] abbaba 3)2( 22 ++ = =(a+b) [ ] abba 3)( 2 + 0,5 Vì a+b chia hết cho 3 nên (a+b) 2 -3ab chia hết cho 3 ; Do vậy (a+b) [ ] abba 3)( 2 + chia hết cho 9 0,25 b) (1đ) P=(x-1)(x+6)(x+2)(x+3)=(x 2 +5x-6)(x 2 +5x+6)=(x 2 +5x) 2 -36 0,5 Ta thấy (x 2 +5x) 2 0 nên P=(x 2 +5x) 2 -36 -36 0,25 Do đó Min P=-36 khi (x 2 +5x) 2 =0 Từ đó ta tìm đợc x=0 hoặc x=-5 thì Min P=-36 0,25 Câu 3 : (2đ) a) (1đ) x 2 +9x+20 =(x+4)(x+5) ; x 2 +11x+30 =(x+6)(x+5) ; x 2 +13x+42 =(x+6)(x+7) ; 0,25 ĐKXĐ : 7;6;5;4 xxxx 0,25 Phơng trình trở thành : 18 1 )7)(6( 1 )6)(5( 1 )5)(4( 1 = ++ + ++ + ++ xxxxxx 18 1 7 1 6 1 6 1 5 1 5 1 4 1 = + + + + + + + + xxxxxx 18 1 7 1 4 1 = + + xx 0,25 18(x+7)-18(x+4)=(x+7)(x+4) (x+13)(x-2)=0 Từ đó tìm đợc x=-13; x=2; 0,25 b) (1đ) Đặt b+c-a=x >0; c+a-b=y >0; a+b-c=z >0 Từ đó suy ra a= 2 ; 2 ; 2 yx c zx b zy + = + = + ; 0,5 Thay vào ta đợc A= +++++= + + + + + )()()( 2 1 222 y z z y x z z x y x x y z yx y zx x zy 0,25 Từ đó suy ra A )222( 2 1 ++ hay A 3 0,25 Câu 4 : (3 đ) a) (1đ) Nguyễn Hải @Gmai.com 7 Tuyển tập đề thi HSG Tốn 8 Năm học: 2012-2013 Trong tam gi¸c BDM ta cã : 1 0 1 ˆ 120 ˆ MD −= V× 2 ˆ M =60 0 nªn ta cã : 1 0 3 ˆ 120 ˆ MM −= Suy ra 31 ˆˆ MD = Chøng minh BMD ∆ ∾ CEM ∆ (1) 0,5 Suy ra CE CM BM BD = , tõ ®ã BD.CE=BM.CM V× BM=CM= 2 BC , nªn ta cã BD.CE= 4 2 BC 0,5 b) (1®) Tõ (1) suy ra EM MD CM BD = mµ BM=CM nªn ta cã EM MD BM BD = Chøng minh BMD∆ ∾ MED∆ 0,5 Tõ ®ã suy ra 21 ˆˆ DD = , do ®ã DM lµ tia ph©n gi¸c cđa gãc BDE Chøng minh t¬ng tù ta cã EM lµ tia ph©n gi¸c cđa gãc CED 0,5 c) (1®) Gäi H, I, K lµ h×nh chiÕu cđa M trªn AB, DE, AC Chøng minh DH = DI, EI = EK 0,5 TÝnh chu vi tam gi¸c b»ng 2AH; KÕt ln. 0,5 C©u 5 : (1®) Gäi c¸c c¹nh cđa tam gi¸c vu«ng lµ x , y , z ; trong ®ã c¹nh hun lµ z (x, y, z lµ c¸c sè nguyªn d¬ng ) Ta cã xy = 2(x+y+z) (1) vµ x 2 + y 2 = z 2 (2) 0,25 Tõ (2) suy ra z 2 = (x+y) 2 -2xy , thay (1) vµo ta cã : z 2 = (x+y) 2 - 4(x+y+z) z 2 +4z =(x+y) 2 - 4(x+y) z 2 +4z +4=(x+y) 2 - 4(x+y)+4 (z+2) 2 =(x+y-2) 2 , suy ra z+2 = x+y-2 0,25 z=x+y-4 ; thay vµo (1) ta ®ỵc : xy=2(x+y+x+y-4) xy-4x-4y=-8 (x-4)(y-4)=8=1.8=2.4 0,25 Tõ ®ã ta t×m ®ỵc c¸c gi¸ trÞ cđa x , y , z lµ : (x=5,y=12,z=13) ; (x=12,y=5,z=13) ; (x=6,y=8,z=10) ; (x=8,y=6,z=10) 0,25 ĐỀ THI SỐ 4 Câu1( 2 đ): Phân tích đa thức sau thành nhân tử ( ) ( ) ( ) ( ) 1 3 5 7 15A a a a a= + + + + + Câu 2( 2 đ): Với giá trò nào của a và b thì đa thức: Ngun H¶i @Gmai.com 8 3 2 1 2 1 x y E D M C B A Tuyển tập đề thi HSG Tốn 8 Năm học: 2012-2013 ( ) ( ) 10 1x a x− − + phân tích thành tích của một đa thức bậc nhất có các hệ số nguyên Câu 3( 1 đ): tìm các số nguyên a và b để đa thức A(x) = 4 3 3x x ax b− + + chia hết cho đa thức 2 ( ) 3 4B x x x= − + Câu 4( 3 đ): Cho tam giác ABC, đường cao AH,vẽ phân giác Hx của góc AHB và phân giác Hy của góc AHC. Kẻ AD vuông góc với Hx, AE vuông góc Hy. Chứng minh rằngtứ giác ADHE là hình vuông Câu 5( 2 đ): Chứng minh rằng 2 2 4 2 1 1 1 1 1 2 3 4 100 P = + + + + < Đáp án và biểu điểm Câu Đáp án Biểu điểm 1 2 đ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 1 3 5 7 15 8 7 8 15 15 8 22 8 120 8 11 1 8 12 8 10 2 6 8 10 A a a a a a a a a a a a a a a a a a a a a a a = + + + + + = + + + + + = + + + + = + + − = + + + + = + + + + 0,5 đ 0,5 đ 0,5 đ 0,5 đ 2 2 đ Giả sử: ( ) ( ) ( ) ( ) 10 1 ;( , )x a x x m x n m n Z− − + = − − ∈ ( ) ( ) { 2 2 10 . 10 1 10 10 1 m n a m n a x a x a x m n x mn + = + = + ⇔ − + + + = − + + ⇔ Khử a ta có : mn = 10( m + n – 10) + 1 10 10 100 1 ( 10) 10 10) 1 mn m n m n n ⇔ − − + = ⇔ − − + = vì m,n nguyên ta có: { { 10 1 10 1 10 1 10 1 m m n n v − = − =− − = − =− suy ra a = 12 hoặc a =8 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 3 1 đ Ta có: A(x) =B(x).(x 2 -1) + ( a – 3)x + b + 4 Để ( ) ( )A x B xM thì { { 3 0 3 4 0 4 a a b b − = = + = =− ⇔ 0,5 đ 0,5 đ Ngun H¶i @Gmai.com 9 Tuyển tập đề thi HSG Tốn 8 Năm học: 2012-2013 4 3 đ Tứ giác ADHE là hình vuông Hx là phân giác của góc · AHB ; Hy phân giác của góc · AHC mà · AHB và · AHC là hai góc kề bù nên Hx và Hy vuông góc Hay · DHE = 90 0 mặt khác · · ADH AEH = = 90 0 Nên tứ giác ADHE là hình chữ nhật ( 1) Do · · · · · · 0 0 0 0 90 45 2 2 90 45 2 2 AHB AHD AHC AHE AHD AHE = = = = = = ⇒ = Hay HA là phân giác · DHE (2) Từ (1) và (2) ta có tứ giác ADHE là hình vuông 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,5 đ 0,5 đ 0,25 đ 0,25 đ 0,25 đ 5 2 đ 2 2 4 2 1 1 1 1 2 3 4 100 1 1 1 1 2.2 3.3 4.4 100.100 1 1 1 1 1.2 2.3 3.4 99.100 1 1 1 1 1 1 2 2 3 99 100 1 99 1 1 100 100 P = + + + + = + + + + < + + + + = − + − + + − = − = < 0,5 đ 0,5 đ 0,5 đ 0,5 đ ĐỀ THI SỐ 5 Bài 1: (4 điểm) Phân tích các đa thức sau thành nhân tử: a) (x + y + z) 3 – x 3 – y 3 – z 3 . b) x 4 + 2010x 2 + 2009x + 2010. Bài 2: (2 điểm) Ngun H¶i @Gmai.com 10 [...]... 0 x(x + 2) (x + 2) = 0 (x + 2)(x - 1) = 0 x = - 2; x = 1 Vy nghim ca phng trỡnh x = - 2 ; x =1 b) (1,75) (0,25) (0,25) (0,25) (0,25) (0,25) (0,25) x+1 x+2 x+3 x+4 x+5 x+6 x +1 x + 2 x + 3 x + 4 x + 5 x + 6 ( + 1) + ( + 1) + ( + 1) = ( + 1) + ( + 1) + ( + 1) + + = + + 2008 2007 2006 2005 2004 2003 2008 2007 2006 2005 2004 2003 x + 2009 x + 2009 x + 2009 x + 2009 x + 2009 x + 2009 + + = + + 2008... AH + HC Điểm 2,0 (0,75 điểm) Nguyễn Hải25 @Gmai.com Tuyn tp thi HSG Toỏn 8 Nm hc: 2012-2013 0.5 x + 7 x + 6 = x + x + 6 x + 6 = x ( x + 1) + 6 ( x + 1) 2 1.2 2 = ( x + 1) ( x + 6 ) 0,5 (1,25 điểm) x 4 + 2008 x 2 + 2007 x + 2008 = x 4 + x 2 + 2007 x 2 + 2007 x + 2007 + 1 0,25 = x 4 + x 2 + 1 + 2007 ( x 2 + x + 1) = ( x 2 + 1) x 2 + 2007 ( x 2 + x + 1) 2 2 0,25 = ( x + x + 1) ( x x + 1) + 2007 ( x +. .. ) = 1 + + + + 1 + + + + 1 a b c b c a c a b a b a c c b =3 + ( + ) + ( + ) + ( + ) b a c a b c x y Mà: + 2 (BĐT Cô-Si) y x Do đó A 3 + 2 + 2 + 2 = 9 Vậy A 9 Ta có: P ( x ) = ( x + 2 ) ( x + 4 ) ( x + 6 ) ( x + 8 ) + 2008 = ( x 2 + 10 x + 16 ) ( x 2 + 10 x + 24 ) + 2008 Đặt t = x 2 + 10 x + 21 (t 3; t 7) , biểu thức P(x) đợc viết lại: 4 0,5 P( x) = ( t 5 ) ( t + 3) + 2008 = t 2 2t + 1993 Do đó... ) ( y yz + z ) 2 = ( y + z ) ( 3x + 3xy + 3yz + 3zx ) = 3 ( y + z ) x ( x + y ) + z ( x + y ) = 3 ( x + y) ( y + z) ( z + x ) b) 4 2 x4 + 2010x2 + 2009x + 2010 = ( x x ) + ( 2010x + 2010x + 2010 ) 2 2 2 2 = x ( x 1) ( x + x + 1) + 2010 ( x + x + 1) = ( x + x + 1) ( x x + 2010 ) Bi 2: Nguyễn Hải11 @Gmai.com Tuyn tp thi HSG Toỏn 8 x 241 x 220 x 195 x 166 + + + = 10 17 19 21 23 Nm hc:... 4 x y x xy +y 3 c) (1,5) Bin i 3 = 3 y 1 x 1 (y 1)(x 3 1) ( x 4 y4 ) (x y) ( do x + y = 1 y - 1= -x v x - 1= - y) (0,25) = xy(y 2 + y + 1)(x 2 + x + 1) ( x y ) ( x + y ) ( x 2 + y 2 ) (x y) = (0,25) xy(x 2 y 2 + y 2 x + y 2 + yx 2 + xy + y + x 2 + x + 1) ( x y ) (x 2 + y 2 1) = (0,25) xy x 2 y 2 + xy(x + y) + x 2 + y 2 + xy + 2 ( x y ) (x x + y 2 y) ( x y ) [ x(x 1) + y(y 1)... trờn BC Bi 5: (1 im) x 6 + 3x 2 + 1 = y 4 Tỡm nghim nguyờn ca phng trỡnh: S 12 Bi 1: Phõn tớch thnh nhõn t: a, (x2 x +2 )2 + (x-2)2 b, 6x5 +1 5x4 + 20x3 +1 5x2 + 6x +1 Bi 2: a, Cho a, b, c tho món: a+b+c = 0 v a2 + b2 + c2= 14 Tớnh giỏ tr ca A = a 4+ b 4+ c4 b, Cho a, b, c 0 Tớnh giỏ tr ca D = x2011 + y2011 + z2011 Bit x,y,z tho món: Bi 3: x2 + y 2 + z 2 x2 y 2 z 2 = 2+ 2+ 2 a2 + b2 + c2 a b c a, Cho a,b... tử: 1 x 2 + 7 x + 6 2 x 4 + 2008 x 2 + 2007 x + 2008 Bài 2: (2điểm) Giải phơng trình: 1 x 2 3x + 2 + x 1 = 0 2 2 2 2 1 1 1 1 2 8 x + ữ + 4 x 2 + 2 ữ 4 x 2 + 2 ữ x + ữ = ( x + 4 ) x x x x Nguyễn Hải24 @Gmai.com Tuyn tp thi HSG Toỏn 8 Nm hc: 2012-2013 Bài 3: (2điểm) 1 CMR với a,b,c,là các số dơng ,ta có: (a+b+c)( 1 + 1 + 1 ) 9 a b c ( x + 2 ) ( x + 4 ) ( x + 6 ) ( x + 8) + 2008 Tìm... ( a + 1) + ( a + 1) a + a 2 49 3a 2 + 3a + 1 49 49a 2 + 49a + 49 = 57a 2 + 57a + 19 8a 2 + 8a 30 = 0 3 a= 2 2 ( 2a + 1) 42 = 0 ( 2a 3) ( 2a + 5 ) = 0 (tho K) a = 5 2 402 3 401 5 Suy ra x = hoc x = (tho K) 2 2 402 3 401 5 Vy x = v x = l giỏ tr cn tỡm 2 2 Bi 4: 2010x + 2680 A= x2 + 1 335x 2 335 + 335x 2 + 2010x + 3015 335(x + 3) 2 = = 335 + 335 x2 +1 x2 +1 Vy giỏ tr nh nht ca A l 335 khi... x y + (x + y) + 2 xy(x 2 y 2 + 3) = = 2 ( x y ) [ x( y) + y( x) ] = xy(x y + 3) 2 2 = ( x y ) (2xy) (0,25) xy(x 2 y 2 + 3) 2(x y) Suy ra iu cn chng minh x 2 y2 + 3 (0,25) Bi 2: (3 )a) (1,25) (x2 + x )2 + 4(x2 + x) = 12 t y = x2 + x y2 + 4y - 12 = 0 y2 + 6y - 2y -12 = 0 (y + 6)(y - 2) = 0 y = - 6; y = 2 * x2 + x = - 6 vụ nghim vỡ x2 + x + 6 > 0 vi mi x * x2 + x = 2 x2 + x - 2 = 0 x2 + 2x... 166 1+ 2+ 3+ 4=0 17 19 21 23 x 258 x 258 x 258 x 258 + + + =0 17 19 21 23 1 1 1 1 ( x 258 ) + + + ữ = 0 17 19 21 23 x = 258 Bi 3: 2 2 ( 2009 x ) + ( 2009 x ) ( x 2010 ) + ( x 2010 ) ( 2009 x ) 2 ( 2009 x ) ( x 2010 ) + ( x 2010 ) 2 = 19 49 KX: x 2009; x 2010 t a = x 2010 (a 0), ta cú h thc: 2 ( a + 1) ( a + 1) a + a 2 = 19 a 2 + a + 1 19 = 2 ( a + 1) + ( a + 1) a + a 2 . a a a a a a a a a a a = + + + + + = + + + + + = + + + + = + + − = + + + + = + + + + 0,5 đ 0,5 đ 0,5 đ 0,5 đ 2 2 đ Giả sử: ( ) ( ) ( ) ( ) 10 1 ;( , )x a x x m x n m n Z− − + = − − ∈ ( ) ( ) { 2. x 2 +9 x+20 =(x+4)(x+5) ; x 2 +1 1x+30 =(x+6)(x+5) ; x 2 +1 3x+42 =(x+6)(x+7) ; 0,25 ĐKXĐ : 7;6;5;4 xxxx 0,25 Phơng trình trở thành : 18 1 )7)(6( 1 )6)(5( 1 )5)(4( 1 = ++ + ++ + ++ xxxxxx . 99 1 1 100 100 P = + + + + = + + + + < + + + + = − + − + + − = − = < 0,5 đ 0,5 đ 0,5 đ 0,5 đ ĐỀ THI SỐ 5 Bài 1: (4 điểm) Phân tích các đa thức sau thành nhân tử: a) (x + y + z) 3 – x 3