Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 44 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
44
Dung lượng
1,71 MB
Nội dung
A. C hc 1. ng hc Bài 1: Cho cơ hệ nh hình vẽ. B chuyển động sang phải với gia tốc a , còn vật nhỏ A đợc nối với điểm C bằng một sợi dây không dãn đợc nâng lên theo đờng dốc chính của một mặt trụ của vật B. Mặt này có bán kính R. Giả sử tại thời điểm ban đầu vật A nằm trên sàn và đang đứng yên, sợi dây luôn căng. Hãy tính vận tốc trung bình của vật A trong quá trình A đi từ sàn lên đến điểm cao nhất của trụ B (điểm D). Giải: Khi A đi từ sàn lên đến điểm cao nhất của trụ thì độ dời của nó sẽ là AI : cos 2 22 DIADDIADIAIA +== ( 4 = ) ( ) 2 2 .2. 2 .22 2 2 2 RRRRIAIA + == 84 2 2 += R IA Ta có thời gian để trụ dịch chuyển từ E đến F là: 2 2 1 atEF = Thời gian để trụ đi từ E đến F cũng chính là thời gian chuyển dời của vật nhỏ khi đi từ I đến A : Suy ra: a R a R a AD a EF t ==== 2 .2 .2.2 Vận tốc trung bình của vật nhỏ A: t IA v = =v aR)84( 2 1 2 + Bài 2: Môt chiếc ca nô xuất phát từ điểm A trên đờng cái, ô tô này cần đến điểm D (trên đồng cỏ) trong thời gian ngắn nhất. Biết lCDdAC == ; . Vận tốc ô tô chạy trên đờng cái (v 1 )lớn hơn vận tốc ô tô trên 1 đồng cỏ (v 2 ) n lần. Hỏi ô tô phải rời đờng cái tại một điểm B cách C một đoạn x là bao nhiêu? Giải: Thời gian ô tô chạy trên đờng cái từ A đến B: 1 1 v xd t = Thời gian ô tô chạy trên đồng cỏ từ B đến D: 2 22 2 v lx t + = . Tổng thời gian chạy từ A đến D của ô tô : 21 ttt += = 1 v xd 2 22 v lx + + . + = 1 v xd 1 22 . v lx n + . Đặt: ( ) 1 22 v lxnxd xf ++ = ( ) 1 1 ' v xf = 22 1 lxv nx + + 22 1 22 . lxv lxnx + + = . f(x) = 0 x= 1 2 n l . Bảng biến thiên: Vậy ô tô phải rời đờng cái tại B cách C một đoạn =x 1 2 n l , lúc đó thời gian ngắn nhất cần thiết của ô tô sẽ là: 1 2 min 1 v nld t + = . 2 Bài 3: Trên mặt phẳng nằm ngang có một cột trụ bán kính R thẳng đứng, ngời ta dùng một sợi dây chỉ mảnh không dãn, khối lợng không đáng kể để nối một vật nhỏ với một điểm trên vành trụ, điểm này sát mặt phẳng ngang. Ban đầu vật nhỏ nằm yên trên mặt phẳng và dây ở t thế căng, lúc này chiều dài dây là L. Truyền cho vật vận tốc v 0 hớng vuông góc với dây và vật chuyển động trên mặt phẳng ngang cuốn dây vào trụ. Hỏi sau bao lâu dây cuốn hết trụ? Giả thiết trong khi chuyển động dây luôn nằm ngang. Bỏ qua ma sát và bề dày của dây. Giải: Ta nhận thấy ngay không có lực nào tác dụng vào vật sinh công, do vậy động năng của vật đợc bảo toàn do vậy nó có vận tốc không đổi v 0 . Tại một thời điểm nào đó dây có chiều dài l, xét một thời gian vô cùng bé dt vật đi đợc cung AB: =ld=v 0 dt. Do Rdl = d = R dl thế vào phơng trình trên ta đợc: R dl l = dtv 0 Lấy tích phân hai vế: L R ldl 0 = t dtv 0 0 R 1 . 2 2 l L 0 tv 0 = t 0 R L 2 2 tv 0 = Rv L t 0 2 2 = . Vậy thời gian để dây cuốn hết trụ sẽ là: Rv L t 0 2 2 = . Bài 4: Có hai vật m 1 và m 2 chuyển động thẳng đều với vận tốc lần lợt là 1 v và 2 v . Vật m 2 xuất phát từ B. Tìm khoảng cách ngắn nhất giữa chúng trong quá trình chuyển động và thời gian đạt đợc khoảng cách đó? Biết khoảng cách ban đầu giữa chúng là l và góc giữa hai đờng thẳng là . Giải: Giả sử sau thời gian t khoảng cách giữa hai vật là ngắn nhất. Khoảng cách đó sẽ là: cos' '2'' 22 BBBABBBAd += 3 cos)(2)()( 21 2 2 2 1 tvtvltvtvld += = 2 21 2 2 221 2 1 )cos(2)cos2( ltvvltvvvv ++++ Ta xem biểu thức trong căn là một tam thức bậc hai ẩn số t , với 22 2 2 sin4 vl= , d sẽ đạt giá trị nhỏ nhất khi tam thức đó nhận giá trị nhỏ nhất, hay = min dd 2 221 2 1 21 cos2 )cos( vvvv vvl t ++ + = Và khoảng cách bé nhất giữa chúng lúc đó sẽ là: a d 4 min = = min d 2 221 2 1 2 cos2 sin vvvv lv ++ Bài 5: Có hai tàu A và B cách nhau một khoảng a đồng thời tàu A và B chuyển động với vận tốc không đổi lần lợt là v và u ( ) uv > . Tàu B chuyển động trên một đờng thẳng (đờng thẳng này vuông góc với đoạn thẳng nối các vị trí ban đầu của hai tàu, còn tàu A luôn hớng về tầu B. Hỏi sau bao lâu tàu A đuổi kịp tàu B ? Giải: Ta gắn hệ trục xy0 trùng với mặt phẳng nớc và trục 0x cùng phơng chiều với chuyển động của tàu B , còn tàu A nằm trên phần dơng của trục 0y ở vị trí ban đầu có toạ độ là ( ) a,0 . Tàu A chuyển động với vận tốc v luôn hớng về phía tàu B với vận tốc gồm hai thành phần: == == sin cos v dt dy v v dt dx v y x Lấy vế chia vế hai phơng trình trên và ta rút ra: dt dy dt dy dt dx cot tan 1 == (1) Ta lại có: cottan yxut xut y = = (2) Đạo hàm 2 vế của (2) ta đợc: dt dy dt dy dt dx u 2 sin cot = (3) Thay (1) vào (3) ta suy ra: dt dy u 2 sin = (4) Mặt khác: sin sin v dy dtv dt dy == (5) 4 Thay dt từ (5) vào (4): sin d dy y vu = hay sin d y dy v u = Lấy tích phân 2 vế: = 2 sin d y dy v u y a = 2 tanlnln a y v u Suy ra v u a y = 2 tan Mặt khác ta lại có: = + = 2 tan1 2 tan2 sin 2 v u v u a y a y + = + 2 2 tan 2 tan 2 1 và sinv dy dt = nên + = a y d a y a y v a dt v u v u 2 (*) Lấy tích phân 2 vế phơng trình (*): + = 0 0 2 a v u v u t a y d a y a y v a dt + + = v u v u v a t 1 1 1 1 2 hay =t 22 uv av Vậy sau thời gian 22 uv av tàu A sẽ đuổi kịp tầu B. Bài toán đuổi bắt có nhiều dạng khác nhau, phơng pháp đa năng để giải các loại bài toán này chính là phơng pháp vi phân . Tuy nhiên còn có những ph ơng pháp đặc biệt để giải chúng, các bạn có thể tham khảo cuốn Lãng mạn toán học của giáo s Hoàng Quý có nêu ra một trong những phơng pháp đặc biệt đó để giải bài toán sau: 5 Có hai tàu A và B cách nhau một khoảng a đồng thời tàu A và B chuyển động cùng vận tốc. Tàu B chuyển động trên một đờng thẳng (đờng thẳng này vuông góc với đoạn thẳng nối các vị trí ban đầu của hai tàu), còn tàu A luôn hớng về tầu B. Hỏi sau một thời gian đủ lâu thì hai tàu chuyển động trên cùng một đờng thẳng và khoảng cách giữa chúng không đổi. Tính khoảng cách này ? Đáp số: 2 a . Bài 6: Vật m 2 đang đứng yên trên mặt sàn nằm ngang nhẳn cách bờ tờng một khoảng d. Vật m 1 chuyển động tới va chạm hoàn toàn đàn hồi với vật m 2 (m 1 > m 2 ), vật m 2 lại va chạm đàn hồi với bờ tờng và gặp m 1 lần 2. Va chạm lần 2 xảy ra cách bờ tờng một khoảng là bao nhiêu? Tìm điều kiện để điểm va chạm lần 2 cách điểm va chạm lần 1 một khoảng là d/2 ? Giải : Chọn trục toạ độ nh hình vẽ. Gọi v 1 ,v 1 lần lợt là vận tốc của vật 1 trớc và sau khi va chạm. Gọi v 2 và v 2 là vận tốc của vật 2 trớc và sau khi va chạm (các vận tốc v 1 ,v 2 ,v 1 ,v 2 mang giá trị đại số). Sau va chạm : ( ) 21 22121 ' 1 2 mm vmvmm v + + = = 1 21 21 v mm mm + ( ) 1 21 1 21 11212 ' 2 22 v mm m mm vmvmm v + = + + = (do v 2 = 0) Nhận thấy v 1 ,v 2 đều dơng, chứng tỏ sau va cham chúng chuyển động cùng chiều ox. Gọi điểm va chạm lần 2 cách tờng một đoạn x, thời gian giữa 2 lần va cham là : ' ' 2 1 v xd v xd t + = = (1) (do sau va chạm vào tờng của m 2 thì nó vẫn có vận tốc nh cũ nhng đã đổi hớng ' 1 '' 2 vv = . Thế v 1 và v 2 từ trên vào (1) ta suy ra : 6 =x d mm mm 21 21 3 + Để va chạm lần 2 cách lần 1 một đoạn 2 d thì: 22 dd dx == hay 23 21 21 d d mm mm = + 21 3mm = . Bài 7: Một hạt chuyển động theo chiều dơng của trục ox với vận tốc sao cho xav = (a là hằng số dơng). Biết lúc t = 0 hạt ở vị trí x=0. Hãy xác định : a. Vận tốc và gia tốc của hạt theo thời gian. b. Vận tốc trung bình trong khoảng thời gian từ vị trí x = 0 đến vị trí x. Giải: a. Theo đề bài : xa dt dx xav == hay adt x dx = Nguyên hàm hai vế : +== catxdta x dx 2 Do 0=t thì 0=x 0= c Do vậy 2 2 4 2 t a xatx == Vận tốc của vật 'x dt dx v == t a v 2 2 = Gia tốc của vật : 7 '' 2 2 x dt xd w == 2 2 a w = b. Vận tốc trung bình t a t x v 4 2 == 2 xa v = Bài 8: Ném một viên đá từ điểm A trên mặt phẳng nghiêng với vận tốc 0 v hợp với mặt phẳng ngang một góc =60 0 , biết 0 30= . Bỏ qua sức cản của không khí. a. Tính khoảng cách AB từ điểm ném đến điểm viên đá rơi. b. Tìm góc hợp bởi phơng véc tơ vận tốc và phơng ngang ngay sau viên đá chạm mặt phăng nghiêng và bán kính quỹ đạo của viên đá tại B. Giải: a. Chọn hệ trục oxy gắn o vào điểm A và trục ox song song với phơng ngang Trong quá trình chuyển động lực tác dụng duy nhất là trọng lực P . Theo định luật II Newton: amP = Chiếu lên: 0x: x ma=0 0= x a 0y: y maP = ga y = Phơng trình chuyển động của vật theo hai trục ox và oy: = = )2( 2 1 .sin )1(.cos 2 0 0 gttvy tvx Khi viên đá rơi xuống mặt phẳng nghiêng: 8 = = )4(sin )3(cos ly lx T hế (3) vào (1) ta rút ra t thế vào (2) và đồng thời thế (4) vào (2) ta rút ra : 2 2 0 cos. )cos.sincos (sincos2 g v l = 2 2 0 cos )sin(.cos2 g v l = = l g v 3 2 2 0 b. Tại B vận tốc của vật theo phơng ox là: cos 0 vv x = 2 0 v = Khi vật chạm mặt phẳng nghiêng : cos 3 2 cos 2 0 g v lx == hay cos 3 2 .cos 2 0 0 g v tv = ; Suy ra thời gian chuyển động trên không của viên đá: cos3 cos2 0 g v t = = 3 2 0 g v Vận tốc theo phơng oy tại B: gtvv y = sin 0 323 2 sin 00 0 vv vv y == tan = 3 1 2 32 0 0 = = v v v v x y 0 30 = do <= 32 0 V v y 0 nên lúc chạm mặt phẳng nghiêng v hớng xuống. Lực hớng tâm tại B: R v mmgF ht 2 cos == cos 2 g v R = 9 Với: 3124 2 0 22 222 v vv vvv yx =+=+= =R g v .33 2 2 0 Bài 9: Một ngời đứng ở sân ga nhìn ngang đầu toa thứ nhất của một đoàn tàu bắt đầu chuyển động nhanh dần đều. Toa thứ nhất vợt qua ngời ấy sau thời gian 1 t . Hỏi toa thứ n đi qua ngời ấy trong thời gian bao lâu? Biết các toa có cùng độ dài là S, bỏ qua khoảng nối các toa. Giải: Toa thứ nhất vợt qua ngời ấy sau thời gian t 1 : 2 2 1 at s = a S t 2 1 = n toa đầu tiên vợt qua ngời ấy mất thời gian n t : 2 . 2 n ta ns = a nS t n 2 = ; 1n toa đầu tiên vợt qua ngời ấy mất thời gian 1n t : ( ) 2 1 2 1 = n at sn a Sn t n )1(2 1 = Toa thứ n vợt qua ngời ấy trong thời gian t : )1( 2 1 == nn a S ttt nn . = t 1 )1( tnn Bài 10: Một chất điểm chuyển động từ A đến B cách A một đoạn s. Cứ chuyển động đợc 3 giây thì chất điểm lại nghỉ 1 giây. Trong 3 giây đầu chất điểm chuyển động với vận tốc s m v 5 0 = . Trong các khoảng 3 giây tiếp theo chất điểm chuyển động với vận tốc 2v o , 3v 0 , , nv 0 . Tìm vận tốc trung bình của chất điểm trên quảng đờng AB trong các trờng hợp : a. s = 315 m ; b. s = 325 m . Giải: Đặt: )(3 1 st = Gọi quảng đờng mà chất điểm đi đợc sau 1 nt giây là s: n ssss +++= 21 Trong đó s 1 là quảng đờng đi đợc của chất điểm trong 3 giây đầu tiên. s 2 ,s 3 , ,s n là các quảng đ- ờng mà chất điểm đi đợc trong các khoảng 3 giây kế tiếp. Suy ra: ) 21( 2 1010101.0 ntvtnvtvtvS +++=+++= 10 [...]... lực quán tính v , không có lực nào sinh công có độ lớn bằng nhau nhng ngợc chiều, lực căng vuông góc với nên động năng đợc bảo toàn Do vậy vật sẽ chuyển động tròn đều đối với thang máy nên nó sẽ lên đến điểm cao nhất b Chiếu (1) lên chiều hớng tâm : mv 2 m T = ma = = 2 gl (1 cos 0 ) T = 2mg (1 cos ) Nhận xét: Đối với thang máy vật sẽ chuyển động tròn đều bất kể 0 < 0 và không phụ thuộc vào 2... vuông góc với vận tốc, nó không thực hiện công, do vậy vật sẽ chuyển động có vận tốc không đổi wd = 0 Hay nói cách khác đối với hệ quy chiếu gắn với thang máy vật sẽ chuyển động tròn đều với vận tốc: v = 2 gl (1 cos 0 ) Sỡ dĩ ta có lập luận nh thế là vì T luôn dơng Thật vậy khi thang máy rơi tự do thì đồng thời lúc theo phơng thẳng đứng vật cũng rơi tự do và đều đó với 29 v =0 vận tốc ban đầu là 0... hàng vẫn trợt mà không bị lật khi : N A 0 b Hay: 1 àn 0 n 1 à Bài 26: Một vật nhỏ đang nằm yên trên mặt phẳng nằm ngang nhẳn, lúc t = 0 vật đó chịu tá dụng của một lực phụ thuộc thời gian F = t ( là hằng số) Lực hợp với mặt nghang góc không đổi a Tính vận tốc của vật lúc rời mặt phẳng ngang b Quảng đờng vật đi đợc trong khoảng thời gian đó Giải: 25 a Xét các lực tác dụng vào vật: F + p +... không? vì sao? b Tính lực căng của sợi dây ở vị trí vật có độ cao cực đại so c với sàn thang máy? Nêu nhận xét Giải: a Xét vật trong hệ quy chiếu gắn với thang máy Vật chịu tác dụng của trọng lực p ,lực quán tính Fdt và lực căng T của sợi dây - Theo định luật II Newton : p + Fqt + T = ma - Thang máy rơi tự do: p + Fqt = 0 T = ma (1) Lực căng T luôn có phơng vuông góc với vận tốc, nó không... v= 23 + 0,29 + 1 S= v= 13,38( m / s ) Bài 11: Hai vật chuyển động với vận tốc không đổi trên hai đờng thẳng vuông góc với nhau cho v1 = 30m/s , v2 = 20m/s Tại thời điểm khoảng cách giữa hai vật nhỏ nhất thì vật một giao điểm của quỹ đạo đoạn S1 = 500m, hỏi lúc đó vật hai cách giao điểm trên một đoạn S2 là bao nhiêu? Giải: Gọi khoảng cách trên đầu của vật (1) và (2) tới vị trí giao nhau của hai quỹ đạo... 2 t ) 2 2 = (v12 + v 2 )t 2 2(v1 d 1 + v 2 d 2 )t + d 12 + d 22 v1 d 1 + v 2 d 2 d = d min t = 2 v12 + v 2 Khi đạt đợc khoảng cách ngắn nhất giữa hai vật thì : v d +v d v (v d v d ) S1 = d1 v1 1 1 22 2 = 2 2 2 1 21 2 2 v1 + v2 v1 + v2 S 2 = d 2 v2t Lúc đó: v1 d 1 + v 2 d 2 v1 (v1 d 2 v 2 d 1 ) = S 2 = d 2 v2 2 2 v12 + v 2 v12 + v 2 v1 S 1 30 500 = = 750(m) v2 20 Vậy lúc hai vật có khoảng... ca vt (1) i vi mc vt (2) l: v12 = v1 v 2 v12 = v1 + v 2 = 10 (m/s) Thi gian t ban u n lỳc vt (1) v vt (2) AB 100 t= = = 10 (s) gp nhau l: v12 10 Quóng ng vt nh i c tng cng cho n lỳc vt (1) v vt (2) gp nhau l: s = t = 10 = v 30 300 (m) 2 Động lực học chất điểm: Bài 19: ở mép đĩa nằm ngang bán kinh R có đặt một đồng tiền Đĩa quay với vận tốc = t ( là gia tốc góc không đổi) Tại thời điểm nào đồng... Vậy lúc hai vật có khoảng cách ngắn nhất thì vật thứ hai cách giao điểm trên một đoạn S 2 = 750m S2 = 11 Bài 12: Một chiếc côngtenơ đặt sao cho mặt trên nằm ngang đợc cần cẩu cẩu lên thẳng đứng lên cao với gia tốc a = 0,5m/s2 Bốn giây sau khi rời mặt đất ngời ngồi trên mặt côngtenơ ném một hòn đá với vận tốc v0 = 5,4m/s theo phơng làm với mặt phẳng ngang côngtenơ góc = 30 0 a Tính thời gian từ lúc... một khoảng R Mặt nón quay đều với vận tốc góc Tính giá trị nhỏ nhất của hệ số ma sát trợt ( à ) giữa vật và mặt nón để vật vẫn đứng yên trên mặt nón Giải: Chọn hệ quy chiếu oxy gắn vào hình nón và quay đều cùng mặt nón nh hình vẽ Trong hệ quy chiếu này các lực tác dụng vào vật: P, N , Fms , Fqt Vật đứng yên, do vậy: P + N + Fms + Fqt = o Chiếu lên 0x: P sin + Fms Fqt cos = 0 (1) Chiếu... 1 cos = ma1 y (2) Phơng trình chuyển động của M: P2 + N 2 + N 1 ' = Ma 2 Chiếu lên ox: N 1 sin = Ma 2 (3) Mặt khác theo công thức cộng gia tốc: a1 = a12 + a 2 (4) ( a12 là gia tốc của m đối với M) Chiếu (4) lên ox và oy ta có: a1x = a12 cos a 2 a1 y = a12 sin Từ đó suy ra: a1 y = ( a1x + a 2 ) tan (5) Giải hệ (1), (2), (3) và (5) ta đợc: mM cos N 1 = M + m sin 2 g a = M sin cos . trục oxy gắn o vào điểm A và trục ox song song với phơng ngang Trong quá trình chuyển động lực tác dụng duy nhất là trọng lực P . Theo định luật II Newton: amP = Chiếu lên: 0x: x ma=0 . giây là s: n ssss +++= 21 Trong đó s 1 là quảng đờng đi đợc của chất điểm trong 3 giây đầu tiên. s 2 ,s 3 , ,s n là các quảng đ- ờng mà chất điểm đi đợc trong các khoảng 3 giây kế tiếp phỏp tuyn luụn cú ln bng nhau. Ti thi im ban u t=o, vn tc ca cht im ú l 0 v . Hóy xỏc nh: a. Vn tc ca cht im theo thi gian v theo quóng ng i c. b. Gia tc ton phn theo vn tc v quóng ng i c. Gii: a.