1. Trang chủ
  2. » Luận Văn - Báo Cáo

ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm

142 336 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 142
Dung lượng 4,14 MB

Nội dung

ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm

Chương 1: Giới thiệu về kỹ thuật điều chế OFDM 1 Chương 1 GIỚI THIỆU VỀ KỸ THUẬT ĐIỀU CHẾ OFDM 1.1 Lịch sử phát triển FDM là một phương pháp truyền khá phức tạp trên kênh vật lý, nguyên lý cơ bản của phương pháp là sử dụng kỹ thuật đa sóng mang để truyền một lượng lớn ký tự tại cùng một thời điểm. Sử dụng kỹ thuật OFDM có rất nhiều ưu điểm, đó là hiệu quả sử dụng phổ rất cao, khả năng chống giao thoa đa đường tốt (đặ c biệt trong hệ thống không dây) và rất dễ lọc bỏ nhiễu (nếu một kênh tần số bị nhiễu, các tần số lân cận sẽ bị bỏ qua, không sử dụng). Ngoài ra, tốc độ truyền Uplink và Downlink có thể thay đổi dễ dàng bằng việc thay đổi số lượng sóng mang sử dụng. Một ưu điểm quan trọng của hệ thống sử dụng đa sóng mang là các sóng mang riêng có thể hoạt động ở tốc độ bit nhỏ dẫn đến chu kỳ của ký tự tương ứng sẽ được kéo dài . Ví dụ, nếu muốn truyền với tốc độ là hàng triệu bit trên giây bằng một kênh đơn, chu kỳ của một bit phải nhỏ hơn 1 micro giây. Điều này sẽ gây ra khó khăn cho việc đồng bộ và loại bỏ giao thoa đa đường. Nếu cùng lượng thông tin trên được trải ra cho N sóng mang, chu kỳ của m ỗi bit sẽ được tăng lên N lần, lúc đó việc xử lý vấn đề định thời, đa đường sẽ đơn giản hơn. Kỹ thuật OFDM do R.W Chang phát minh năm 1966 ở Mỹ. Trong những thập kỹ vừa qua nhiều công trình khoa học về kỹ thuật này đã được thực hiện ở khắp nơi trên thế giới. Đặc biệt là công trình khoa học của Weistein và Ebert đã chứng minh rằng phép đi ều chế OFDM có thể thực hiện được thông qua các phép biến đổi IDFT và phép giải điều chế OFDM có thể thực hiện được bằng phép biến đổi DFT. Vào đầu những năm 80, đội ngũ kỹ sư phòng thí nghiệm CCETT (Centre Commun d'Etudes en Télédiffusion et Télécommunication) dựa vào các lý thuyết Wienstein và Ebert đã đề xuất phương pháp điều chế số rất hiệu quả trong lĩnh vực phát thanh truyền hình số, đó là OFDM (Orthogonal Frequency Divionsion Multiplex). Phát minh này cùng với sự phát triể n của kỹ thuật số làm cho kỹ thuật điều chế OFDM được sử dụng ngày càng trở nên rộng rãi. Thay vì sử dụng IDFT và DFT người ta có thể sử dụng phép biến đổi nhanh IFFT cho bộ điều chế OFDM, sử dụng FFT cho bộ giải điều chế OFDM. Ngày nay kỹ thuật OFDM còn kết hợp với các phương pháp mã kênh sử dụng trong thông tin vô tuyến. Các hệ thống này còn được gọi với khái niệm là COFDM (Coded OFDM). Trong các hệ thống này tín hiệu trước khi được điều chế OFDM sẽ được mã kênh với các loại mã khác nhau với mục đích chống lại các lỗi đường truyền. Do chất lượng kênh (độ fading và tỷ lệ tín hiệu trên tạp âm) của mỗi sóng mang phụ là khác O Chương 1: Giới thiệu về kỹ thuật điều chế OFDM 2 nhau, người ta thực hiện điều chế tín hiệu trên mỗi sóng mang với các mức điều chế khác nhau. Hệ thống này mở ra khái niệm về hệ thống truyền dẫn sử dụng kỹ thuật OFDM với bộ điều chế tín hiệu thích ứng (adaptive modulation technique). Kỹ thuật này hiện đã được sử dụng trong hệ thống thông tin máy tính băng rộng HiperLAN/2 ở Châu Âu. Trên thế giới hệ th ống này được chuẩn hóa theo tiêu chuẩn IEEE.802.11a. 1.2 Các ưu và nhược điểm Bên cạnh những ưu điểm kể trên của kỹ thuật OFDM, các hệ thống sử dụng kỹ thuật này còn có nhiều ưu điểm cơ bản khác liệt kê sau đây: * Hệ thống OFDM có thể loại bỏ hoàn toàn nhiễu liên ký tự (Intersymbol Interference- ISI) nếu độ dài chuỗi bảo vệ (Guard interval length) lớn hơn trễ truyền dẫn lớn nhất của kênh. * Phù hợp cho việc thiết kế hệ thống truyền dẫn băng rộng ( hệ thống có tốc độ truyền dẫn cao), do ảnh hưởng của sự phân tập về tần số (frequency selectivity) đối với chất lượng hệ thống được giảm nhiều so với hệ thống truyền dẫn đơn sóng mang. * Hệ thống có cấu trúc bộ thu đơn giản. Bên cạnh đó, kỹ thuật OFDM cũng có một vài nhược đi ểm cơ bản đó là: * Một trong những vấn đề của OFDM là nó có công suất đỉnh cao hơn so với công suất trung bình. Khi tín hiệu OFDM được điều chế RF, sự thay đổi này diễn ra tương tự đối với biên độ sóng mang, sau đó tín hiệu được truyền đi trên môi trường tuyến tính, tuy nhiên độ tuyến tính rất khó giữ khi điều chế ở công suất cao, do vậy méo dạng tín hiệu kiểu này hay diễn ra trên b ộ khuyếch đại công suất của bộ phát. Bộ thu thiết kế không tốt có thể gây méo dạng trầm trọng hơn. Méo dạng gây ra hầu hết các vấn đề như trải phổ, gây ra nhiễu giữa các hệ thống khi truyền trên các tần số RF kề nhau. * Việc sử dụng chuỗi bảo vệ có thể tránh được nhiễu ISI nhưng lại làm giảm đi một phần hiệu suất đường truyền, do bản thân chuỗi bảo vệ không mang thông tin có ích. * Do yêu cầu về điều kiện trực giao giữa các sóng mang phụ, hệ thống OFDM rất nhạy cảm với hiệu ứng Doppler cũng như là sự dịch tần (frequency offset) và dịch thời gian (time offset) do sai số đồng bộ. - Ảnh hưởng của sự sai lệch thời gian đồng bộ: OFDM có khả năng chịu đựng tốt các sai số về thờ i gian nhờ các khoảng bảo vệ giữa các symbol. Với một kênh truyền không có delay do hiệu ứng đa đường, time offet có thể bằng khoảng bảo Chương 1: Giới thiệu về kỹ thuật điều chế OFDM 3 vệ mà không mất đi tính trực giao, chỉ gây ra sự xoay pha của các sóng mang con mà thôi. Nếu lỗi time offset lớn hơn khoảng bảo vệ thì hoạt động của hệ thống suy giảm nhanh chóng. Nguyên nhân là do các symbol trước khi đến bộ FFT sẽ bao gồm một phần nội dung của các symbol khác, dẫn đến ISI (Inter-Symbol Interference). - Ảnh hưởng của sự sai lệch đồng bộ tần số: Một trong những vấn đề lớn của OFDM là nó dễ b ị ảnh hưởng bởi offset về tần số. Giải điều chế tín hiệu OFDM có thể gây ra sai về tốc độ bit. Điều này làm cho tính trực giao giữa các subcarrier bị mất đi (kết quả của ICI và sự xoay pha không sửa chữa được ở bộ thu). Sai số về tần số diễn ra chủ yếu theo 2 nguồn chính: lỗi của bộ dao động và hiệu ứng Doppler. Bất kỳ m ột sự bất đồng bộ nào giữa bộ phát và bộ thu đều có thể gây ra offset về tần số. Offset này có thể được bù bằng cách dùng bộ bám tần số, tuy nhiên chỉ khắc phục mà thôi, hoạt động của hệ thống vẫn bị ảnh hưởng. Sự di chuyển tương đối giữa bộ thu và bộ phát gây ra dịch chuyển Doppler của tín hiệu. Điều này có thể hiểu là sự offset tần số trong môi trường truyền tự do, nó có thể khắc phục bằng một bộ bù tại bộ dao động. Một vần đề quan trọng của hiệu ứng Doppler là trải Doppler, nó gây nên bởi sự di chuyển giữa bộ phát và bộ thu trong môi trường đa đường. Trải Doppler gây nên bởi vận tốc tương đối giữa các thành phần tín hiệu phản xạ lại, tạo ra quá trình "điều chế tần số" cho tín hiệu. Quá trình này di ễn ra ngẫu nhiên trên các subcarrier do trong môi trường bình thường, một lượng lớn phản xạ đa đường xảy ra. Trải Doppler khó được bù và làm suy giảm chất lượng tín hiệu. Ngày nay OFDM đã được tiêu chuẩn hóa là phương pháp điều chế cho các hệ thống phát thanh số DAB và DRM, truyền hình mặt đất DVB-T, mạng máy tính không dây tốc độ cao HiperLAN/2 1.3 Sự ứng dụng của kỹ thuật OFDM ở Việt Nam Có thể nói mạng internet băng rộng ADSL (Asymmetric Digital Subscriber Line) rất quen thuộc ở Việt Nam, nhưng ít người biết rằng sự nâng cao tốc độ đường truyền trong hệ thống ADSL chính là nhờ công nghệ OFDM. Nhờ kỹ thuật điều chế đa sóng mang và sự cho phép chồng phổ giữa các sóng mang mà tốc độ truyền dẫn trong hệ thống ADSL tăng lên một cách đáng kể so với các mạng cung cấp dịch vụ internet thông thườ ng. Bên cạnh mạng cung cấp dịch vụ ADSL hiện đang được sử dụng rất rộng rãi ở Việt Nam hiện nay, các hệ thống thông tin vô tuyến như mạng truyền hình số mặt đất DVB- T cũng đang được khai thác sử dụng. Các hệ thống phát thanh số như DAB và DRM chắc chắn sẽ được khai thác sử dụng trong một tương lai không xa. Các mạng về thông Chương 1: Giới thiệu về kỹ thuật điều chế OFDM 4 tin máy tính không dây như HiperLAN/2, IEEE 802.11a, g cũng sẽ được khai thác một cách rộng rãi ở Việt Nam. 1.4 Các hướng phát triển trong tương lai Kỹ thuật OFDM hiện được đề cử làm phương pháp điều chế sử dụng trong mạng thông tin thành thị băng rộng Wimax theo tiêu chuẩn IEEE 802.16a và hệ thống thông tin di động thế hệ thứ tư. Trong hệ thống thông tin di động thế hệ thứ tư, kỹ thuật OFDM còn có thể kết hợp với các kỹ thuật khác như kỹ thuật đa anten phát và thu (MIMO technique) nhằm nâng cao dung lượng kênh vô tuyến và kết hợp v ới công nghệ CDMA nhằm phục vụ dịch vụ đa truy cập của mạng. Một vài hướng nghiên cứu với mục đích thay đổi phép biến đổi FFT trong bộ điều chế OFDM bằng phép biến đổi Wavelet nhằm cải thiện sự nhạy cảm của hệ thống đối với hiệu ứng dịch tần do mất đồng bộ gây ra và giảm độ dài tối thiểu c ủa chuỗi bảo vệ trong hệ thống OFDM. Tuy nhiên khả năng ứng dụng của công nghệ này cần phải được kiểm chứng cụ thể hơn nữa trong tương lai. 1.5 Các cột mốc và ứng dụng quan trọng của OFDM 1957: Kineplex, multi-carrier HF modem 1966: Chang, Bell Labs: thuyết trình và đưa ra mô hình OFDM 1971: Weinstein & Ebert đề nghị sử dụng FFT và khoảng bảo vệ 1985: Cimini mô tả ứng dụng của OFDM trong thông tin di động 1987: Alard & Lasalle: áp dụng OFDM cho digital broadcasting 1995: Chuẩn ETSI DAB: chuẩn OFDM cơ bản đầu tiên 1997: Chuẩn ETSI DVB-T 1998: Dự án Magic WAND trình diễn OFDM modems cho mạng WLAN 1999: Chuẩn IEEE 802.11a và ETSI BRAN HiperLAN/2 cho Wireless LAN 2000: Được dùng trong truy cập vô tuyến cố định (V-OFDM, Flash-OFDM) 2001: OFDM được đề cử cho những chuẩn mới 802.11 và 802.16 2002: Được dùng trong chuẩn IEEE 802.11g chuẩn cho WLAN 2003: OFDM được đề cử cho UWB (802.15.3a) 2004: Đượ c dùng trong chuẩn IEEE 802.16-2004 chuẩn cho mạng WMAN (WiMAX) Được dùng trong chuẩn Chuẩn ETSI DVB-H Được đề cử cho chuẩn IEEE 802.15.3a, mạng WPAN (MB-OFDM) Được đề cử cho chuẩn IEEE 802.11n, thế hệ kế tiếp của mạng WLAN 2005: Được đề cử cho chuẩn di động tế bào 3.75G (3GPP & 3GPP2) Được đề cử cho chuẩn 4G (CJK) Chương 2: Lý thuyết về kỹ thuật điều chế OFDM 5 Chương 2 LÝ THUYẾT VỀ KỸ THUẬT ĐIỀU CHẾ OFDM 2.1 Tính trực giao trong OFDM RTHOGONAL là thuật ngữ đề cập đến một mối quan hệ toán học chính xác giữa các tần số của các sóng mang trong hệ thống OFDM. Trong hệ thống FDM thông thường, nhiều sóng mang được đặt cách nhau một khoảng phù hợp để tín hiệu thu có thể nhận lại bằng cách sử dụng các bộ lọc và các bộ giải điều chế thông thường. Trong các hệ thống như vậy, các khoảng bảo vệ giữa các sóng mang khác nhau c ần được dự liệu trước và việc đưa vào các khoảng bảo vệ này làm giảm hiệu quả sử dụng phổ của hệ thống . Tuy nhiên có thể sắp xếp các sóng mang trong OFDM sao cho các dải biên của chúng che phủ lên nhau mà các tín hiệu vẫn có thể thu được chính xác mà không có sự can nhiễu giữa các sóng mang. Muốn được như vậy các sóng mang phải trực giao về mặt toán học. Máy thu hoạt động như một bộ gồm các b ộ giải điều chế, dịch tần mỗi sóng mang xuống mức DC, tín hiệu nhận được lấy tích phân trên một chu kỳ của symbol để phục hồi dữ liệu gốc. Nếu tất cả các sóng mang khác đều được dịch xuống tần số tích phân của sóng mang này (trong một chu kỳ symbol τ), thì kết quả tính tích phân cho các sóng mang khác sẽ là zero. Do đó các sóng mang độc lập tuyến tính với nhau (trực giao) nếu khoảng cách giữa các sóng là b ội số của 1/τ. Bất kỳ sự phi tuyến nào gây ra bởi can nhiễu giữa các sóng mang ICI (Inter-Carrierinterference) cũng làm mất đi tính trực giao . Việc xử lý (điều chế và giải điều chế) tín hiệu OFDM được thực hiện trong miền tần số, bằng cách sử dụng các thuật toán xử lý tín hiệu số DSP (Digital Signal Processing ). Nguyên tắc của tính trực giao thường được sử dụng trong phạm vi DSP. Trong toán học, số hạng trực giao có được từ việc nghiên cứu các vectơ. Theo định nghĩa, hai vectơ được gọi là trực giao với nhau khi chúng vuông góc với nhau hay là tích của 2 vectơ là bằng 0. Điểm chính ở đây là ý tưởng nhân hai hàm số với nhau, tổng hợp các tích và nhận được kết quả là 0. Hình 2.1 : Tích 2 vectơ trực giao bằng 0 O Chương 2: Lý thuyết về kỹ thuật điều chế OFDM 6 Đầu tiên ta chú ý đến hàm số thông thường có giá trị trung bình bằng không (ví dụ giá trị trung bình của hàm sin dưới đây ). Nếu cộng bán kỳ dương và bán kỳ âm của dạng sóng sin như dưới đây chúng ta sẽ có kết quả là 0. Quá trình tích phân có thể được xem xét khi tìm ra diện tích dưới dạng đường cong. Do đó diện tích của 1 sóng sin có thể được viết như sau: 2 0 sin( ) 0 k tdt π ω = ∫ (2.1) Quá trình tính tích phân có thể được xem như là quá trình tìm ra diện tích bên dưới đường cong tín hiệu. Do đó, diện tích của một sóng sin có thể được viết như sau : Hình 2.2 : Giá trị trung bình của sóng sin bằng 0 Nếu chúng ta nhân và cộng (tích phân) hai dạng sóng sin có tần số khác nhau.Ta nhận thấy quá trình này cũng bằng 0. Hình 2.3 : Tích phân các sóng sin có cùng tần số Chương 2: Lý thuyết về kỹ thuật điều chế OFDM 7 Nếu hai sóng sin có cùng tần số như nhau thì dạng sóng hợp thành luôn dương, giá trị trung bình của nó luôn khác không (hình trên). Đây là cơ cấu rất quan trọng cho quá trình giải điều chế OFDM. Các máy thu OFDM biến đổi tín hiệu thu được sang miền tần số nhờ dùng kỹ thuật xử lý tín hiệu số gọi là biến đổi nhanh Fourier (FFT). Việc giải điều chế chặt chẽ được thực hiện kế tiếp trong miền số (digital domain) b ằng cách nhân từng sóng mang được truyền đến máy thu với từng sóng mang được tạo ra trong máy thu có cùng tần số và pha một cách chính xác. Sau đó phép tích phân được thực hiện, kết quả là tất cả các sóng mang khác sẽ về không ngoại trừ sóng mang được nhân, nó được dịch lên trục x, được tách ra một cách hiệu quả và giá trị symbol của nó khi đó đã được xác định. Toàn bộ quá trình này được lặp lại khá nhanh chóng cho mỗi sóng mang, đến khi tất cả các sóng mang đã đượ c giải điều chế. Nhiều lý thuyết chuyển đổi được thực hiện bằng chuỗi trực giao . 2.1.1 Dạng biểu diễn toán học của sự trực giao Hai hàm thực f(t) và g(t) được gọi là trực giao (orthogonal) với nhau trên đoạn { ,0 t 1 t } nếu: ∫ = 1 0 0)()( t t dttgtf (2.2) Nếu f(t) và g(t) là hai hàm phức, tính chất trên được định nghĩa là : ∫∫ == 1 0 1 0 0)()()()( ** t t t t dttgtfdttgtf (2.3) Trong đó f*(t) là lượng liên hợp phức của f(t) Nhận xét : từ định nghĩa có thể chứng minh rằng: Tập hợp các hàm (cosn t 0 ω ,sinm t 0 ω ) trực giao từng đôi một trên đoạn 0 00 2 . ω π kttt +≤≤ với m, n 0≠ , nm ≠ và k nguyên dương, nghĩa là : ∫ + = 0 0 0 2 . 00 0)cos()cos( ω π ωω kt t tmtn (2.4) ∫ + = 0 0 0 2 . 00 0)sin()cos( ω π ωω kt t tmtn (2.5) Chương 2: Lý thuyết về kỹ thuật điều chế OFDM 8 ∫ + = 0 0 0 2 . 00 0)sin()sin( ω π ωω kt t tmtn (2.6) Hình 2.4 : Cấu trúc của tín hiệu OFDM trong miền thời gian. Do vậy ta có thể dùng tập hợp trên như một tập hàm vectơ cơ sở trực giao. Sóng mang con trong một tín hiệu OFDM được đặt chồng lấp lên nhau mà vẫn duy trì tính trực giao giữa chúng. Tín hiệu OFDM được tạo thành từ tổng các tín hiệu sin, với mỗi tín hiệu sin tương ứng một sóng mang con. Tần số băng gốc của mỗi sóng mang con được chọn là số nguyên lần ngh ịch đảo thời gian ký tự, kết quả là tất cả các sóng mang đều có một số nguyên lần chu kỳ trên một ký tự OFDM. Vậy các sóng mang con trực giao với nhau. Hình 2.4 thể hiện cấu trúc của một tín hiệu OFDM với 4 sóng mang con. 2.1.2 Trực giao trong miền tần số Một cách khác để xem xét tính trực giao của tín hiệu OFDM là xem xét trong miền tần số của nó. Trong miền tần số mỗi sóng mang con có đáp ứng tần số là sinc = xx /)sin( như ta thấy trong hình 2.5. Đó là kết quả của thời gian ký tự tương ứng với nghịch đảo khoảng cách sóng mang. Xa hơn bộ thu là liên quan đến mỗi ký tự OFDM truyền trong một khoảng thời gian cố định ( FFT T ) với việc không bóp nhọn tại đầu cuối của ký tự. Thời gian ký tự này tương ứng với biến đổi ngược của khoảng cách sóng mang con của 1/ FFT T Hz. Tín hiệu có dạng chữ nhật trong miền thời gian thì sẽ có đáp ứng tần số là sinc trong miền tần số. Hình dạng sinc có một búp chính hẹp, với nhiều búp cạnh suy giảm chậm với biên độ của tần số khác nhau từ trung tâm. Mỗi sóng Chương 2: Lý thuyết về kỹ thuật điều chế OFDM 9 mang con có đỉnh tại tần số trung tâm và khoảng cách rỗng với lỗ hổng tần số bằng khoảng cách sóng mang. Bản chất trực giao của việc truyền là kết quả của đỉnh sóng mang con và đáp ứng rỗng với các sóng mang con còn lại. Khi tín hiệu được tách bằng cách sử dụng DFT, phổ không phải liên tục như hình 2.5(a) mà gồm các mẫu rời rạc, điểm lấy mẫu được ký hiệu “o” như trong hình. Nếu DFT được đồng bộ thời gian, tần số lấy mẫu của DFT tương ứng đúng với đỉnh của sóng mang con, vì vậy sự chồng lấp trong miền tần số giữa các sóng mang con không ảnh hưởng đến bộ thu. Giá trị đỉnh của các sóng mang còn lại tương ứng với đáp ứng rỗng, dẫn đến sự trực giao giữa các sóng mang con. Hình 2.5 : Đáp ứng tần số của sóng mang con trong tín hiệu OFDM 5 tone a. chỉ phổ của mỗi sóng mang con, và mẫu tần số rời rạc xem xét bởi bộ thu. Chú ý mỗi sóng mang định dạng trong miền tần số là sinc (sin(x)/x) b. chỉ sự kết hợp toàn bộ đáp ứng 5 sóng mang con ( đường đen dày) 2.2 Biểu thức của tín hiệu OFDM Như đã biết, một sóng mang là một dao động điều hòa có thể được mô tả bởi : [ ] { } )( ).(Re)( ttj cc cc etAtS ϕω + = (2.7) với A c (t) và ϕ c (t) là biên độ và pha của sóng mang trong từng symbol. Chẳng hạn như với điều chế QPSK, symbol thứ p trong khoảng thời gian (p-1) τ < t < p τ , ϕ c (t) sẽ nhận một trong 4 giá trị 0 0 , 90 0 , 180 0 , 270 0 . Trong OFDM có nhiều sóng mang, ví dụ N sóng mang, tín hiệu sẽ có dạng : [] {} ∑ − = + = 1 0 )( ).(Re)( N n ttj ns nn etAtS ϕω (2.8) trong đó : ω n = ω 0 + n Δω . Chương 2: Lý thuyết về kỹ thuật điều chế OFDM 10 Tín hiệu phát ra cho mỗi symbol OFDM từ thời điểm t = Δ đến thời điểm t = T s là : () max min max min ()2 2 2 () Re cu kK K K jt jft T k kK St e Ce π π −− −Δ = ⎧⎫ = ⎨⎬ ⎩⎭ ∑ (2.9) k : hệ số biểu diễn cho sóng mang. K max : chỉ số sóng mang lớn nhất, K max = N carrier - 1. K min : chỉ số sóng mang nhỏ nhất, K min = 0. f c : tần số trung tâm của tín hiệu RF. T u : thời gian symbol tích cực. Δ : khoảng thời gian bảo vệ. C k : biểu thức của sóng mang thứ k ở dạng phức. . e A C k j k k ψ = 2.3 Tạo tín hiệu OFDM Những chòm sao phức cho mỗi sóng mang và cho bước điều chế được cung cấp bởi bộ tiền xử lý LCA (Logic Cell Array) để tạo các sóng mang điều chế. Các symbol điều chế được xác định theo phần thực và phần ảo (tổ hợp của phần thực và ảo này chính là symbol điều chế theo mã Gray). Các sóng mang được tập hợp trong thanh ghi ngõ vào của chip IFFT, khi có đủ N sóng mang thì IFFT hoạt động, biến đổi các sóng mang từ miền tầ n số sang miền thời gian. Các tín hiệu I/Q qua bộ biến đổi D/A, theo sau đó là bộ điều chế I/Q đưa tín hiệu OFDM vào băng thông kênh truyền. Bộ điều chế I/Q gồm có hai bộ điều chế Double-Sideband AM (DSB AM) với sóng mang dịch pha 90 0 , các tín hiệu ngõ ra được tổ hợp tạo ra tín hiệu OFDM ở dạng analog, bộ điều chế I/Q chỉ tạo ra một phổ duy nhất mặc dù sử dụng hai bộ điều chế DSB. Bộ phát OFDM tạo ra N dòng phổ trong băng tần hẹp, mỗi dòng phổ tương ứng được xác định trong thời gian từng chu kỳ symbol, nhằm tạo ra tín hiệu OFDM có N sóng mang với điều chế đã lựa chọ n. Trong suốt chu kỳ symbol, quan hệ biên độ và pha là cố định. Nhờ công nghệ xử lý tín hiệu số thực hiện phép biến đổi Fourier nhanh IFFT, tính toán các mẫu tín hiệu thời gian là thành phần thực và ảo, sau đó cung cấp lại dạng nhị phân tại ngõ ra. Các hệ số Fourier phức được thiết lập bằng giá trị phức của các sóng mang phụ điều chế, chỉ có một số của N giá trị ngõ vào tương ứ ng với số sóng mang OFDM được sử dụng, vì thế có thể sử dụng các bộ lọc thông thấp có độ dốc giới hạn phía sau bộ biến đổi D/A. [...]... tuyến nào, tín hiệu trước khi được truyền đi đều được nhân với xung cơ bản Mục đích của phép nhân này là giới hạn phổ của tín hiệu phát sao cho phù hợp với bề rộng cho phép của kênh truyền Trong trường hợp bề rộng phổ của tín hiệu phát lớn hơn bề rộng kênh truyền cho phép thì tín hiệu phát này sẽ gây ra nhiễu xuyên kênh đối với các hệ thống khác Trong hệ thống OFDM, tín hiệu trước khi phát đi được nhân... ra trong hệ thống truyền dẫn thông tin số Những ảnh hưởng của truyền sóng vô tuyến như suy hao đường truyền, fading phẳng, fading chọn lọc tần số, trải Doppler, trải trễ đa đường (multipath) … làm giới hạn hiệu quả của truyền thông vô tuyến Do đó, việc thiết lập mô hình kênh truyền và xác định các ảnh hưởng bị gây ra trong một kênh truyền cụ thể là vấn đề rất quan trọng 3.1 Suy hao đường truyền và. .. Với truyền dẫn OFDM thì dữ liệu được truyền trong nhiều sóng mang con, nên tại tần số bị fading thì chỉ một tập hợp nhỏ dữ liệu phát bị mất Hình 3.2 cho ta thấy phổ của tín hiệu, đường đen đậm là đáp ứng kênh truyền Có thể tưởng tượng đáp ứng kênh truyền như một cánh cửa để cho tín hiệu có thể truyền qua Nếu cánh cửa đủ lớn thì tín hiệu truyền qua mà không hề bị uốn cong hay méo dạng Đáp ứng kênh truyền. .. vệ Hình 2.22 minh họa khái niệm chèn khoảng thời gian bảo vệ trong hệ thống OFDM và hình 2.23 minh họa ý tưởng dùng khoảng bảo vệ để loại bỏ khoảng ISI giữa những ký tự OFDM, ở hình 2.23 (a) thì ký tự OFDM thu được bị can nhiễu bởi ký tự OFDM trước nó, ở hình 2.23 (b) thì ký tự OFDM thu được không còn bị ảnh hưởng của ký tự OFDM trước đó Trong khoảng thời gian bảo vệ, máy thu bỏ qua tất cả các tín... thuyết về kỹ thuật điều chế OFDM DSB AM Gross I D/A LPF data I Re rate Pre-proc Re F 0 IF Clock 90 BPF + (LCA) Im F Q T D/A LPF Im fZF 12-16 bit 1 BPF N RF fRF - fIF Synthesizer REF Hình 2.6 : Điều chế OFDM 2.4 Mô hình hệ thống Hình 2.7: Mô hình hệ thống OFDM 2.4.1 Mã hoá kênh truyền Kỹ thuật mã hoá kiểm soát lỗi có thể tách và sửa lỗi xảy ra khi thông điệp được truyền trên hệ thống thông tin số Để thực... nhớ cũng như độ trễ cho hệ thống so với dạng khối 13 Chương 2: Lý thuyết về kỹ thuật điều chế OFDM 2.4.3 Chuyển đổi Serial/Parallel và Parallel/Serial Hình 2.10: a) Hệ thống đơn sóng mang b) OFDM với Δf = 1 3TB Theo Shanon tốc độ dữ liệu cao nhất cho một kênh truyền chỉ có nhiễu trắng AWGN (không có fading) là: S⎞ ⎛ Cmax = B log 2 ⎜ 1 + ⎟ [bps ] ⎝ N⎠ (2.10) B là băng thông của kênh truyền [Hz] S/N là... mang như ở hình 2.21 Việc ước lượng kênh ở máy thu sẽ khắc phục sự dịch pha này 24 Chương 2: Lý thuyết về kỹ thuật điều chế OFDM Hình 2.22: Các thành phần của ký tự OFDM thu được sau khi truyền qua kênh truyền multipath: a) không có khoảng bảo vệ; b) có khoảng bảo vệ 25 Chương 2: Lý thuyết về kỹ thuật điều chế OFDM Hình 2.23: Những ký tự OFDM thu được sau khi truyền qua kênh truyền multipath: a) không... tốc độ cao duy nhất 2.4.4 Điều chế các sóng mang con Hình 2.11: Cho ta thấy quan hệ giữa tốc độ symbol và tốc độ bit phụ thuộc vào số bit trong một symbol Mỗi một symbol b bit trong một frame sẽ được đưa vào bộ mapping, mục đích là để nâng cao dung lượng kênh truyền Một symbol b bit sẽ tương ứng một trong M= 2 trạng thái hay một vị trí trong constellation (giản đồ chòm sao) b * BPSK sử dụng 1 symbol... hoá chập và giải mã Viterbi Với hệ thống OFDM để sửa sai bit khi sóng mang con của hệ thống bị ảnh hưởng của fading chọn lọc tần số và ICI gây ra bởi fading nhanh thường sử dụng FEC là mã hóa khối Reed-Solomon và mã hóa chập 2.4.2 Kỹ thuật phân tán dữ liệu Do fading chọn lọc tần số của các kênh truyền vô tuyến điển hình, các sóng mang con OFDM nhìn chung có biên độ rất khác nhau Suy hao nhiều trong phổ... một vài tần số trong dải tần thì kênh truyền sẽ không cho phép truyền thông tin đi qua, vì thế những tần số này được gọi là tần số fading sâu (deep fades frequency) Dạng đáp ứng tần số kênh truyền này được gọi là fading chọn lọc tần số (frequency selective fading) bởi vì 35 Chương 3: Môi trường truyền dẫn vô tuyến nó không xảy ra đều trên toàn dải tần mà chỉ xảy ra ở tại một vài tần số mà kênh truyền . chế OFDM. Ngày nay kỹ thuật OFDM còn kết hợp với các phương pháp mã kênh sử dụng trong thông tin vô tuyến. Các hệ thống này còn được gọi với khái niệm là COFDM (Coded OFDM) . Trong các hệ thống. 2.4 Mô hình hệ thống Hình 2.7: Mô hình hệ thống OFDM 2.4.1 Mã hoá kênh truyền Kỹ thuật mã hoá kiểm soát lỗi có thể tách và sửa lỗi xảy ra khi thông điệp được truyền trên hệ thống thông. dụng trong mạng thông tin thành thị băng rộng Wimax theo tiêu chuẩn IEEE 802.16a và hệ thống thông tin di động thế hệ thứ tư. Trong hệ thống thông tin di động thế hệ thứ tư, kỹ thuật OFDM

Ngày đăng: 02/11/2014, 22:59

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] Kamran Arshad, Channel estimation in OFDM systems, Department of Electrical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, Master Thesis, August 2002 Sách, tạp chí
Tiêu đề: Channel estimation in OFDM systems
[2] Eric Lawrey Be, Adaptive Techniques for Multiuser OFDM, Ph.D Thesis, 2001 Sách, tạp chí
Tiêu đề: Adaptive Techniques for Multiuser OFDM
[3] Cheng-Xiang Wang, Nguyễn Văn Đức.(2006). Bộ sách kỹ thuật thông tin số (Tập 1), Các bài tập Matlab về thông tin vô tuyến. Nhà Xuất Bản Khoa Học và Kỹ Thuật Sách, tạp chí
Tiêu đề: Bộ sách kỹ thuật thông tin số (Tập 1), Các bài tập Matlab về thông tin vô tuyến
Tác giả: Cheng-Xiang Wang, Nguyễn Văn Đức
Nhà XB: Nhà Xuất Bản Khoa Học và Kỹ Thuật
Năm: 2006
[4] Nguyễn Văn Đức. (2006). Bộ sách kỹ thuật thông tin số (Tập 2), Lý thuyết và các ứng dụng của kỹ thuật OFDM. Nhà Xuất Bản Khoa Học và Kỹ Thuật Sách, tạp chí
Tiêu đề: ). Bộ sách kỹ thuật thông tin số (Tập 2), Lý thuyết và các ứng dụng của kỹ thuật OFDM
Tác giả: Nguyễn Văn Đức
Nhà XB: Nhà Xuất Bản Khoa Học và Kỹ Thuật
Năm: 2006
[6] Ben Fellows, Channel Estimation Techniques for OFDM, University of California, Riverside, March, 2007 Sách, tạp chí
Tiêu đề: Channel Estimation Techniques for OFDM
[7] Alan C. Brooks, Stephen J. Hoelzer.(2001). Design and Simulation of Orthogonal Frequency Division Multiplexing (OFDM) Signaling. Final Report Sách, tạp chí
Tiêu đề: Design and Simulation of Orthogonal Frequency Division Multiplexing (OFDM) Signaling
Tác giả: Alan C. Brooks, Stephen J. Hoelzer
Năm: 2001
[8] Ramjee Prasad. (2004). OFDM for Wireless Communications Systems. Universal personal communications, Artech House, Boston, London Sách, tạp chí
Tiêu đề: OFDM for Wireless Communications Systems
Tác giả: Ramjee Prasad
Năm: 2004
[9] Shinsuke Hara, Ramjee Prasad. (2003). Multicarrier Techniques for 4G Mobile Communications. Universal personal communications, Artech House, Boston, London Sách, tạp chí
Tiêu đề: Multicarrier Techniques for 4G Mobile Communications
Tác giả: Shinsuke Hara, Ramjee Prasad
Năm: 2003
[10] Ahmad R. S. Bahai, Burton. R. Saltzberg. Multi-Carrier Digital Communications Theory and Applications of OFDM. Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow Sách, tạp chí
Tiêu đề: Multi-Carrier Digital Communications Theory and Applications of OFDM
[11] Alfonso Luis Troya Chinchilla. Synchronization and Channel Estimation in OFDM: Algorithms for Efficient Implementation of WLAN Systems. Ph.D Thesis, Faculty of Informatics at the Brandenburgische Technische Universitat (BTU) Cottbus Sách, tạp chí
Tiêu đề: Synchronization and Channel Estimation in OFDM: Algorithms for Efficient Implementation of WLAN Systems
[12] Sebastian Prot, Kent Palmkvist. TSTE91 System Design, Communications System Simulation Using Simulink, Part V OFDM by IFFT Modulation. Electronic Systems, Department of Electrical Electronic, LiTH Sách, tạp chí
Tiêu đề: TSTE91 System Design, Communications System Simulation Using Simulink, Part V OFDM by IFFT Modulation
[5] Sinem Coleri, Mustafa Ergen, Anuj Puri, Ahmad Bahai. A Study of Channel Estimation in OFDM Systems Khác

HÌNH ẢNH LIÊN QUAN

Hình 2.4 : Cấu trúc của tín hiệu OFDM trong miền thời gian. - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 2.4 Cấu trúc của tín hiệu OFDM trong miền thời gian (Trang 8)
Hình 2.9 : Sơ đồ khối bộ convolutional interleaver/ Deinterleaver - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 2.9 Sơ đồ khối bộ convolutional interleaver/ Deinterleaver (Trang 13)
Hình 2.10: a) Hệ thống đơn sóng mang - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 2.10 a) Hệ thống đơn sóng mang (Trang 14)
Hình 2.12: Giản đồ chòm sao M-PSK - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 2.12 Giản đồ chòm sao M-PSK (Trang 17)
Hình 2.17: Ví dụ về phổ phức thay thế cho tín hiệu miền thời gian hoàn toàn thực. - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 2.17 Ví dụ về phổ phức thay thế cho tín hiệu miền thời gian hoàn toàn thực (Trang 20)
Hình 2.19: Mô tả ứng dụng của chuỗi bảo vệ trong việc chống nhiễu ISI - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 2.19 Mô tả ứng dụng của chuỗi bảo vệ trong việc chống nhiễu ISI (Trang 23)
Hình 2.23: Những ký tự OFDM thu được sau khi truyền qua kênh truyền multipath: - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 2.23 Những ký tự OFDM thu được sau khi truyền qua kênh truyền multipath: (Trang 26)
Hình 2.24: Xung cơ sở - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 2.24 Xung cơ sở (Trang 27)
Hình 2.26: Lý thuyết lấy mẫu. Nhân tín hiệu trong miền thời gian tương ứng với lấy - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 2.26 Lý thuyết lấy mẫu. Nhân tín hiệu trong miền thời gian tương ứng với lấy (Trang 30)
Hình 2.27: So sánh phổ tín hiệu được lấy mẫu theo chuỗi xung và giữ bậc zero - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 2.27 So sánh phổ tín hiệu được lấy mẫu theo chuỗi xung và giữ bậc zero (Trang 31)
Hình 3.9: Kênh truyền chọn lọc tần số và biến đổi theo thời gian. - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 3.9 Kênh truyền chọn lọc tần số và biến đổi theo thời gian (Trang 38)
Hình 3.10 (b):  Đáp ứng tần số của kênh truyền phẳng. - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 3.10 (b): Đáp ứng tần số của kênh truyền phẳng (Trang 40)
Hình 3.11: Tín hiệu tới phía thu theo L đường - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 3.11 Tín hiệu tới phía thu theo L đường (Trang 40)
Hình 4.2: Ví dụ về việc truyền pilot liên tục và phân tán ở những vị trí sóng mang biết - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 4.2 Ví dụ về việc truyền pilot liên tục và phân tán ở những vị trí sóng mang biết (Trang 52)
Hình 4.7: Nội suy tuyến tính - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 4.7 Nội suy tuyến tính (Trang 59)
Hình 4.8: Nội suy SI và nội suy đa thức - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 4.8 Nội suy SI và nội suy đa thức (Trang 60)
Hình 4.9 : Sơ đồ khối của giải thuật ước lượng kênh truyền dựa trên kiểu sắp xếp pilot - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 4.9 Sơ đồ khối của giải thuật ước lượng kênh truyền dựa trên kiểu sắp xếp pilot (Trang 61)
Hình 4.12 : Sơ đồ khối hệ thống thông tin sử dụng bộ cân bằng thích ứng ở máy thu - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 4.12 Sơ đồ khối hệ thống thông tin sử dụng bộ cân bằng thích ứng ở máy thu (Trang 69)
Hình 4.14 : Bộ cân bằng tuyến tính cơ  bản - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 4.14 Bộ cân bằng tuyến tính cơ bản (Trang 72)
Hình 5.1: Môi trường truyền sóng của hệ thống DRM - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 5.1 Môi trường truyền sóng của hệ thống DRM (Trang 81)
Hình 5.4: Mô hình truyền thông của WiMax - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 5.4 Mô hình truyền thông của WiMax (Trang 91)
Hình 6.4 : Sơ đồ khối phát thu OFDM khi sử dụng cân bằng thích nghi One-Tap - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 6.4 Sơ đồ khối phát thu OFDM khi sử dụng cân bằng thích nghi One-Tap (Trang 99)
Hình 6.6: Lưu đồ giải thuật kênh truyền - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 6.6 Lưu đồ giải thuật kênh truyền (Trang 103)
Hình 6.8 : Lưu đồ giải thuật bên thu khi dùng cân bằng - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 6.8 Lưu đồ giải thuật bên thu khi dùng cân bằng (Trang 105)
Hình 6.9 : Đồ thị BER vơi khoảng bảo vệ khác nhau. - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 6.9 Đồ thị BER vơi khoảng bảo vệ khác nhau (Trang 132)
Hình 6.10 : Đồ thị BER với phương pháp điều chế khác nhau  Nhận xét : - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 6.10 Đồ thị BER với phương pháp điều chế khác nhau Nhận xét : (Trang 133)
Hình 6.11 : Đồ thị BER với số sóng mang con mang dữ liệu khác nhau. - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 6.11 Đồ thị BER với số sóng mang con mang dữ liệu khác nhau (Trang 134)
Hình 6.12 : Đồ thị BER theo SNR với các giải thuật ước lượng khác nhau trong môi - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 6.12 Đồ thị BER theo SNR với các giải thuật ước lượng khác nhau trong môi (Trang 135)
Hình 6.13 : Đồ thị BER theo SNR với các giải thuật ước lượng khác nhau trong môi - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 6.13 Đồ thị BER theo SNR với các giải thuật ước lượng khác nhau trong môi (Trang 136)
Hình 6.14 : Đồ thị BER theo SNR với các giải thuật ước lượng khác nhau trong môi - ước lượng và cân bằng thích nghi cho kênh truyền trong hệ thống ofdm
Hình 6.14 Đồ thị BER theo SNR với các giải thuật ước lượng khác nhau trong môi (Trang 137)

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w