1. Trang chủ
  2. » Giáo án - Bài giảng

GIÁO ÁN HH 8-HKI

144 284 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 144
Dung lượng 5,09 MB

Nội dung

Tit :1 Ngày soạn: Ngày giảng: Chơng I: Tứ giác $ 1 Tứ giác I/ Mục tiêu 1. Kiến thức: - HS nắm vững các định nghĩa về tứ giác, tứ giác lồi, các khái niệm : Hai đỉnh kề nhau, hai cạnh kề nhau, hai cạnh đối nhau, điểm trong, điểm ngoài của tứ giác & các tính chất của tứ giác. Tổng bốn góc của tứ giác là 360 0 . 2. Kỹ năng: - HS tính đợc số đo của một góc khi biết ba góc còn lại, vẽ đợc tứ giác khi biết số đo 4 cạnh & 1 đờng chéo. 3. Thái độ: - Rèn t duy suy luận ra đợc 4 góc ngoài của tứ giác là 360 0 II/Ph ơng tiện thực hiện : - GV: com pa, thớc, 2 tranh vẽ hình 1( sgk ) v Hình 5 (sgk) bảng phụ - HS: Thớc, com pa, bảng nhóm III/ Tiến trình bài dạy: A)Ôn định tổ chức: B) Kiểm tra bài cũ:- GV: kiểm tra đồ dùng học tập của học sinh và nhắc nhở dụng cụ học tập cần thiết: thớc kẻ, ê ke, com pa, thớc đo góc C) Bài mới : Hoạt động của GV v HS Ni dung * Hoạt động 1: Hình thành định nghĩa - GV: treo tranh (bảng phụ) B B . N Q . P C A M A C D H1(b) H1 (a) D - HS: Quan sát hình & trả lời - Các HS khác nhận xét -GV: Trong các hình trên mỗi hình gồm 4 đoạn thẳng: AB, BC, CD & DA. Hình nào có 2 đoạn thẳng cùng nằm trên một đờng thẳng? - Ta có H1 là tứ giác, hình 2 không phải là tứ giác. Vậy tứ giác là gì ? - GV: Chốt lại & ghi định nghĩa - GVgiải thích : 4 đoạn thẳng AB, BC, CD, DA trong đó điểm đầu của đoạn thẳng thứ nhất trùng với điểm cuối của đoạn thẳng thứ 4. 1) Định nghĩa B A C D H1(c) A B D C H2 - Hình 2 có 2 đoạn thẳng BC & CD cùng nằm trên 1 đờng thẳng. * Định nghĩa: Tứ giác ABCD là hình gồm 4 đoạn thẳng AB, BC, CD, DA trong đó bất kỳ 2 đoạn thẳng nào + 4 đoạn thẳng AB, BC, CD, DA trong đó không có bất cứ 2 đoạn thẳng nào cùng nằm trên 1 đờng thẳng. + Cách đọc tên tứ giác phải đọc hoặc viết theo thứ tự các đnh nh: ABCD, BCDA, ADBC +Các điểm A, B, C, D gọi là các đỉnh của tứ giác. + Các đoạn thẳng AB, BC, CD, DA gọi là các cạnh của tứ giác. * Hoạt động 2: Định nghĩa tứ giác lồi -GV: Hãy lấy mép thớc kẻ lần lợt đặt trùng lên mỗi cạch của tứ giác ở H1 rồi quan sát - H1(a) luôn có hiện tợng gì xảy ra ? - H1(b) (c) có hiện tợng gì xảy ra ? - GV: Bất cứ đơng thẳng nào chứa 1 cạnh của hình H1(a) cũng không phân chia tứ giác thành 2 phần nằm ở 2 nửa mặt phẳng có bờ là đờng thẳng đó gọi là tứ giác lồi. - Vậy tứ giác lồi là tứ giác nh thế nào ? + Trờng hợp H1(b) & H1 (c) không phải là tứ giác lồi * Hoạt động 3: Nêu các khái niệm cạnh kề đối, góc kề, đối điểm trong , ngoài. GV: Vẽ H3 và giải thích khái niệm: GV: Không cần tính số mỗi góc hãy tính tổng 4 góc à A + à B + à C + à D = ? (độ) - Gv: ( gợi ý hỏi) + Tổng 3 góc của 1 là bao nhiêu độ? + Muốn tính tổng à A + à B + à C + à D = ? (độ) ( mà không cần đo từng góc ) ta làm ntn? + Gv chốt lại cách làm: - Chia tứ giác thành 2 có cạnh là đờng chéo - Tổng 4 góc tứ giác = tổng các góc của 2 ABC & ADC Tổng các góc của tứ giác bằng 360 0 - GV: Vẽ hình & ghi bảng cũng không cùng nằm trên một đờng thẳng. * Tên tứ giác phải đợc đọc hoặc viết theo thứ tự của các đỉnh. *Định nghĩa tứ giác lồi * Định nghĩa: (sgk) * Chú ý: Khi nói đến 1 tứ giác mà không giải thích gì thêm ta hiểu đó là tứ giác lồi + Hai đỉnh thuộc cùng một cạnh gọi là hai đỉnh kề nhau + Hai đỉnh không kề nhau gọi là hai đỉnh đối nhau + Hai cạnh cùng xuất phát từ một đỉnh gọi là hai cạnh kề nhau + Hai cạnh không kề nhau gọi là hai cạnh đối nhau - Điểm nằm trong M, P - Điểm nằm ngoài N, Q 2/ Tổng các góc của một tứ giác ( HD4) B 1 A 1 2 C 2 D Â 1 + à B + à C 1 = 180 0 à A 2 + à D + à C 2 = 180 0 ( à A 1 + à A 2 )+ à B +( à C 1 + à C 2 ) + à D = 360 0 Hay à A + à B + à C + à D = 360 0 * Định lý: SGK D- Củng cố - GV: cho HS làm bài tập trang 66. Hãy tính các góc còn lại E- H ớng dẫn HS học tập ở nhà - Nêu sự khác nhau giữa tứ giác lồi & tứ giác không phải là tứ giác lồi ? - Làm các bài tập : 2, 3, 4 (sgk) * Chú ý : T/c các đờng phân giác của tam giác cân * HD bài 4: Dùng com pa & thớc thẳng chia khoảng cách vẽ tam giác có 1 cạnh là đờng chéo trớc rồi vẽ 2 cạnh còn lại * Bài tập cho HSG: Cho tứ giác lồi ABCD.Chứng minh rằng: đoạn thẳng MN nối trung điểm của 2 cạnh đối diện nhỏ hơn hoặc bằng nửa tổng 2 cạnh còn lại (Gợi ý: Nối trung điểm đờng chéo). Rút kinh nghiệm bài dạy: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tiết 2 Ngày soạn: Ngày giảng: $ 2 HINH THANG I/Mục tiêu 1. Kiến thức: - HS nắm vững các định nghĩa về hình thang , hình thang vuông, các khái niệm : cạnh bên, đáy , đờng cao của hình thang 2. Kỹ năng: - Nhận biết hình thang, hình thang vuông, tính đợc các góc còn lại của hình thang khi biết một số yếu tố về góc. 3. Thái độ: - Rèn t duy suy luận, sáng tạo ii- ph ơng tiện thực hiện : - GV: com pa, thớc, tranh vẽ bảng phụ, thớc đo góc - HS: Thớc, com pa, bảng nhóm iii- Tiến trình bài dạy A) Ôn định tổ chức: B) Kiểm tra bài cũ:- GV: (dùng bảng phụ ) * HS1: Thế nào là tứ giác lồi ? Phát biểu ĐL về tổng 4 góc của 1 tứ giác ? * HS 2: Góc ngoài của tứ giác là góc nh thế nào ?Tính các góc ngoài của tứ giác A B 1 1 1 B 90 0 C 1 75 0 120 0 1 C A 1 D D 1 C Bài mới: Hoạt động của giáo viên Hoạt động của học sinh * Hoạt động 1: ( Giới thiệu hình thang) - GV: Tứ giác có tính chất chung là + Tổng 4 góc trong là 360 0 + Tổng 4 góc ngoài là 360 0 Ta sẽ nghiên cứu sâu hơn về tứ giác. - GV: đa ra hình ảnh cái thang & hỏi + Hình trên mô tả cái gì ? + Mỗi bậc của thang là một tứ giác, các tứ giác đó có đặc điểm gì ? & giống nhau ở điểm nào ? - GV: Chốt lại + Các tứ giác đó đều có 2 cạnh đối // 1) Định nghĩa Hình thang là tứ giác có hai cạnh đối song song A B Ta gọi đó là hình thang ta sẽ nghiên cứu trong bài hôm nay. * Hoạt động 2: Định nghĩa hình thang - GV: Em hãy nêu định nghĩa thế nào là hình thang - GV: Tứ giác ở hình 13 có phải là hình thang không ? vì sao ? - GV: nêu cách vẽ hình thang ABCD + B1: Vẽ AB // CD + B2: Vẽ cạnh AD & BC & đơng cao AH - GV: giới thiệu cạnh. đáy, đờng cao * Hoạt động 3: Bài tập áp dụng - GV: dùng bảng phụ hoặc đèn chiếu B C 60 0 60 0 A D (H. a) E I N F 120 0 G 105 0 M 115 0 75 0 H K 1 (H.b) (H.c) - Qua đó em hình thang có tính chất gì ? * Hoạt động 4: ( Bài tập áp dụng) GV: đa ra bài tập HS làm việc theo nhóm nhỏ Cho hình thang ABCD có 2 đáy AB & CD biết: AD // BC. CMR: AD = BC; AB = CD A B ABCD là hình thang GT đáy AB & CD AD// BC KL AB=CD: AD= BC D C Bài toán 2: A B ABCD là hình thang GT đáy AB & CD AB = CD KL AD// BC; AD = BC D C - GV: qua bài 1 & bài 2 em có nhận xét gì ? * Hoạt động 5: Hình thang vuông D H C * Hình thang ABCD : + Hai cạnh đối // là 2 đáy + AB đáy nhỏ; CD đáy lớn + Hai cạnh bên AD & BC + Đờng cao AH ?1 (H.a) à A = à C = 60 0 AD// BC Hình thang - (H.b)Tứ giác EFGH có: à H = 75 0 ả 1 H = 105 0 (Kề bù) ả 1 H = à G = 105 0 GF// EH Hình thang - (H.c) Tứ giác IMKN có: à N = 120 0 à K = 120 0 IN không song song với MK đó không phải là hình thang * Nhận xét: + Trong hình thang 2 góc kề một cạnh bù nhau (có tổng = 180 0 ) + Trong tứ giác nếu 2 góc kề một cạnh nào đó bù nhau Hình thang. * Bài toán 1 ? 2 - Hình thang ABCD có 2 đáy AB & CD theo (gt) AB // CD (đn)(1) mà AD // BC (gt) (2) Từ (1) & (2) AD = BC; AB = CD ( 2 cắp đoạn thẳng // chắn bởi đ- ơng thẳng //.) * Bài toán 2: (cách 2) ABC = ADC (g.c.g) * Nhận xét 2: (sgk)/70. 2) Hình thang vuông Là hình thang có một góc vuông. A B D C D.Củng cố :- GV: đa bài tập 7 ( Bằng bảng phụ) . Tìm x, y ở hình 21 E. H ớng dẫn HS học tập ở nhà : - Học bài. Làm các bài tập 6,8,9 - Trả lời các câu hỏi sau:+ Khi nào một tứ giác đợc gọi là hình thang. + Khi nào một tứ giác đợc gọi là hình thang vuông. Ngày soạn: Ngày giảng: Tiết 3 Hình thang cân I- mục tiêu 1. Kiến thức: - HS nắm vững các đ/n, các t/c của hình thang cân 2. Kỹ năng: - Nhận biết hình thang hình thang cân, biết vẽ hình thang cân, biết sử dụng định nghĩa, các tính chất vào chứng minh, biết chứng minh 1 tứ giác là hình thang cân 3. Thái độ: - Rèn t duy suy luận, sáng tạo II-ph ơng tiện thực hiện : - GV: com pa, thớc, tranh vẽ bảng phụ, thớc đo góc - HS: Thớc, com pa, bảng nhóm Iii- Tiến trình bài dạy A- Ôn định tổ chức: B- Kiểm tra bài cũ:- HS1: GV dùng bảng phụ Cho biết ABCD là hình thang có đáy là AB, & CD. Tính x, y của các góc D, B - HS2: Phát biểu định nghĩa hình thang & nêu rõ các khái niệm cạnh đáy, cạnh bên, đờng cao của hình thang - HS3: Muốn chứng minh một tứ giác là hình thang ta phải chứng minh nh thế nào? C- Bài mới: Hoạt động của giáo viên Hoạt động của học sinh Hoạt động 1: Định nghĩa Yêu cầu HS làm ?1 ? Nêu định nghĩa hình thang cân. ? 2 GV: dùng bảng phụ a) Tìm các hình thang cân ? b) Tính các góc còn lại của mỗi HTC đó c) Có NX gì về 2 góc đối của HTC? A B E F 80 0 80 0 100 0 D C 80 0 80 0 (a) G (b) H ( Hình (b) không phải vì à F + à H 180 0 * Nhận xét: Trong hình thang cân 2 góc đối bù nhau. 1) Định nghĩa Hình thang cân là hình thang có 2 góc kề một đáy bằng nhau Tứ giác ABCD Tứ giác ABCD là H. thang cân AB // CD ( Đáy AB; CD) à C = à D hoặc à A = à B ? 2 I 70 0 N P Q K 110 0 70 0 T S (c) M (d) A D C B x y 120 0 60 0 * Hoạt động 2:Hình thành T/c, Định lý 1 Trong hình thang cân 2 góc đối bù nhau. Còn 2 cạnh bên liệu có bằng nhau không ? - GV: cho các nhóm CM & gợi ý AD không // BC ta kéo dài nh thế nào ? - Hãy giải thích vì sao AD = BC ? ABCD là hình thang cân GT ( AB // DC) KL AD = BC O - Các nhóm CM: A 2 2 B 1 1 D C + AD // BC ? khi đó hình thang ABCD có dạng nh thế nào ? * Hoạt động 3: Giới thiệu địmh lí 2 - GV: Với hình vẽ sau 2 đoạn thẳng nào bằng nhau ? Vì sao ? - GV: Em có dự đoán gì về 2 đờng chéo AC & BD ? GT ABCD là hình thang cân ( AB // CD) KL AC = BD GV: Muốn chứng minh AC = BD ta phải chứng minh 2 tam giác nào bằng nhau ? a) Hình a,c,d là hình thang cân b) Hình (a): à C = 100 0 Hình (c) : à N = 70 0 Hình (d) : $ S = 90 0 c)Tổng 2 góc đối của HTC là 180 0 2) Tính chất * Định lí 1: Trong hình thang cân 2 cạnh bên bằng nhau. Chứng minh: AD cắt BC ở O ( Giả sử AB < DC) ABCD là hình thang cân nên ^ ^ C D = à 1 A = à 1 B ta có ^ C = à D nên ODC cân ( 2 góc ở đáy bằng nhau) OD = OC (1) à 1 A = à 1 B nên ả 2 A = ả 2 B OAB cân (2 góc ở đáy bằng nhau) OA = OB (2) Từ (1) &(2) OD - OA = OC - OB Vậy AD = BC b) AD // BC khi đó AD = BC * Chú ý: SGK * Định lí 2: Trong hình thang cân 2 đờng chéo bằng nhau. Chứng minh: ADC & BCD có: + CD cạnh chung + ã ADC = ã BCD ( Đ/ N hình thang cân ) + AD = BC ( cạnh của hình thang cân) ADC = BCD ( c.g.c) AC = BD D) Củng cố: GV: Dùng bảng phụ HS trả lời a) Trong hình vẽ có những cặp đoạn thẳng nào bằng nhau ? Vì sao ? b) Có những góc nào bằng nhau ? Vì sao ? c) Có những tam giác nào bằng nhau ? Vì sao ? E) H ớng dẫn HS học tập ở nhà: - Học bài.Xem lại chứng minh các định lí - Làm các bài tập: 11,12,15 (sgk) * Vẽ hình thang cân ABCD (AB // CD ) có AB = 3cm; CD = 5cm; đờng cao IK = 3cm Ngày soạn: 22/08/2010 Ngày giảng: Tiết 4 Hình thang cân I- mục tiêu 1. Kiến thức: - HS ôn lai các đ/n, các t/c của hình thang, các dấu hiệu nhận biết về hình thang cân 2. Kỹ năng: - Nhận biết hình thang hình thang cân, biết vẽ hình thang cân, biết sử dụng định nghĩa, các tính chất vào chứng minh, biết chứng minh 1 tứ giác là hình thang cân 3. Thái độ: - Rèn t duy suy luận, sáng tạo II-ph ơng tiện thực hiện : - GV: com pa, thớc, tranh vẽ bảng phụ, thớc đo góc - HS: Thớc, com pa, bảng nhóm Iii- Tiến trình bài dạy A- Ôn định tổ chức: B- Kiểm tra bài cũ C- Bài mới Nêu định nghĩa và tính chất của hình thang cân Hoạt động của giáo viên Hoạt động của học sinh * Hoạt động 1: Giới thiệu các phơng pháp nhận biết hình thang cân. - GV: Muốn chứng minh 1 tứ giác là hình thang cân ta có mấy cách để chứng minh ? là những cách nào ? Đó chính là các dấu hiệu nhận biết hình thang cân . + Đờng thẳng m // CD+ Vẽ điểm A; B m : ABCD là hình thang có AC = BD Giải+ Vẽ (D; Đủ lớn) cắt m tại A + Vẽ (C; Đủ lớn) cắt m tại B ( có cùng bán kính) Hoạt động 2 luyện tập: GV: Cho HS đọc kĩ đầu bài & ghi (gt) (kl) - HS lên bảng trình bày Hình thang ABCD cân (AB//CD) GT AB < CD; AE DC; BF DC KL DE = CF GV: Hớng dẫn theo phơng pháp đi lên: - DE = CF AED = BFC BC = AD ; à D = à C ; à E = à F (gt) - Ngoài ra AED = BFC theo trờng hợp nào ? vì sao ? - GV: Nhận xét cách làm của HS GT ABC cân tại A; D AD E AE sao cho AD = AE; à A = 90 0 3) Dấu hiệu nhận biết hình thang cân ?3 A B m D C + Vẽ (D; Đủ lớn) cắt m tại A + Vẽ (C; Đủ lớn) cắt m tại B * Định lí 3: Hình thang có 2 đờng chéo bằng nhau là hình thang cân. + Dấu hiệu nhận biết hình thang cân: SGK/74 Chữa bài 12/74 (sgk) A B D E F C Kẻ AH DC ; BF DC ( E,F DC) => ADE vuông tại E BCF vuông tại F AD = BC ( cạnh bên của hình thang cân) ã ADE = ã BCF ( Đ/N) AED = BFC ( Cạnh huyền & góc nhọn) A 2.Chữa bài 15/75 (sgk) a) BDEC là hình thang cân KL b) Tính các góc của hình thang. HS lên bảng chữa bài b) à A = 50 0 (gt) à B = à C = 0 0 180 50 2 = 65 0 ả 2 D = ả 2 E = 180 0 - 65 0 = 115 0 GV: Cho HS làm việc theo nhóm -GV: Muốn chứng minh tứ giác BEDC là hình thang cân đáy nhỏ bằng cạnh bên ( DE = BE) thì phải chứng minh nh thế nào ? - Chứng minh : DE // BC (1) B ED cân (2) - HS trình bày bảng D 1 1 E ) ( B C a) ABC cân tại A (gt) à B = à C (1)AD = AE (gt) ADE cân tại A ả 1 D = à 1 E ABC cân & ADE cân ả 1 D = à 0 180 2 A ; à B = à 0 180 2 A ả 1 D = à B (vị trí đồng vị) DE // BC Hay BDEC là hình thang (2) Từ (1) & (2) BDEC là hình thang cân . 3. Chữa bài 16/ 75 ABC cân tại A, BD & CE GT Là các đờng phân giác KL a) BEDC là hình thang cân b) DE = BE = DC A Chứng minh a) ABC cân tại A ta có: AB = AC ; à B = à C E D (1) 2 2 B 1 1 C BD & CE là các đờng phân giác nên có: à 1 B = ả 2 B = à 2 B (2); ả 1 C = ả 2 C = à 2 C (3) Từ (1) (2) &(3) à 1 B = ả 1 C BDC & CBE có à B = à C ; à 1 B = ả 1 C ; BC chung BDC = CBE (g.c.g) BE = DC mà AE = AB - BE AD = AB DC=>AE = AD Vậy AED cân tại A à 1 E = ả 1 D Ta có à B = à 1 E ( = à 0 180 2 A ) ED// BC ( 2 góc đồng vị bằng nhau) Vậy BEDC là hình thang có đáy BC &ED mà à B = à C BEDC là hình thang cân. b) Từ ả 2 D = à 1 B ; à 1 B = ả 2 B (gt) ả 2 D = ả 2 B BED cân tại E ED = BE = DC. D) Củng cố: Gv nhắc lại phơng pháp chứng minh, vẽ 1 tứ giác là hình thang cân. - CM các đoạn thẳng bằng nhau, tính số đo các góc tứ giác qua chứng minh hình thang. E- H ớng dẫn HS học tập ở nhà - Làm các bài tập 14, 18, 19 /75 (sgk)- Xem lại bài đã chữa - Tập vẽ hình thang cân 1 cách nhanh nhất * BTNC: B5/93 Ngày soạn: 22/08/2010 Ngày giảng: Tiết 5 đờng trung bình của tam giác, của hình thang I. Mục tiêu: 1. Kiến thức: - H/s nắm vững đ/n đờng trung bình của tam giác, ND ĐL 1 và ĐL 2. 1. Kỹ năng: - H/s biết vẽ đờng trung bình của tam giác, vận dụng định lý để tính độ dài đoạn thẳng, chứng minh 2 đoạn thẳng bằng nhau, 2 đờng thẳng song song. 3. Thái độ: - H/s thấy đợc ứng dụng của ĐTB vào thực tế yêu thích môn học. II. ph ơng tiện thực hiện GV: Bảng phụ - HS: Ôn lại phần tam giác ở lớp 7. III. Tiến trình bài dạy A.ổn định tổ chức: B. Kiểm tra bài cũ:- GV: ( Dùng bảng phụ hoặc đèn chiếu ) Các câu sau đây câu nào đúng , câu nào sai? hãy giải thích rõ hoặc chứng minh ? 1- Hình thang có hai góc kề hai đáy bằng nhau là một hình thang cân? 2- Tứ giác có hai đờng chéo bằng nhau là hình thang cân ? 3- Tứ giác có hai góc kề 1 cạnh bù nhau và hai đờng chéo bằng nhau là HT cân. 4- Tứ giác có hai góc kề 1 cạnh bằng nhau là hình thang cân. 5- Tứ giác có hai góc kề 1 cạnh bù nhau và có hai góc đối bù nhau là hình thang cân. Đáp án: + 1- Đúng: theo đ/n; 2- Sai: HS vẽ hình minh hoạ 3- Đúng: Theo đ/lý 4- Sai: HS giải thích bằng hình vẽ 5- Đúng: theo t/c C- Bài mới: Hoạt động của giáo viên Hoạt động của học sinh * Hoạt động 1: Qua định lý hình thành đ/n đ- ờng trung bình của tam giác. - GV: cho HS thực hiện bài tập ?1 + Vẽ ABC bất kì rồi lấy trung điểm D của AB + Qua D vẽ đờng thẳng // BC đờng thẳng này cắt AC ở E + Bằng quan sát nêu dự đoán về vị trí của điểm E trên canh AC. - GV: Nói & ghi GT, KL của đ/lí - HS: ghi gt & kl của đ/lí + Để có thể khẳng định đợc E là điểm nh thế nào I. Đ ờng trung bình của tam giác Định lý 1: (sgk) GT ABC có: AD = DB DE // BC KL AE = EC A D 1 E 1 B 1 C F trên cạnh AC ta chứng minh đ/ lí nh sau: - GV: Làm thế nào để chứng minh đợc AE = AC - GV: Từ đ/lí 1 ta có D là trung điểm của AB E là trung điểm của AC Ta nói DE là đờng trung bình của ABC. HS có thể chứng minh theo cách khác GV: Em hãy phát biểu đ/n đờng trung bình của tam giác ? * Hoạt động 2: Hình thành đ/ lí 2 - GV: Qua cách chứng minh đ/ lí 1 em có dự đoán kết quả nh thế nào khi so sánh độ lớn của 2 đoạn thẳng DE & BC ? ( GV gợi ý: đoạn DF = BC ? vì sao vậy DE = 1 2 DF) - GV: DE là đờng trung bình của ABC thì DE // BC & DE = 1 2 BC. - GV: Bằng kiểm nghiệm thực tế hãy dùng thớc đo góc đo số đo của góc ã ADE & số đo của à B . Dùng thớc thẳng chia khoảng cách đo độ dài DE & đoạn BC rồi nhận xét - GV: Ta sẽ làm rõ điều này bằng chứng minh toán học. - GV: Cách 1 nh (sgk) Cách 2 sử dụng định lí 1 để chứng minh - GV: gợi ý cách chứng minh: + Muốn chứng minh DE // BC ta phải làm gì ? + Vẽ thêm đờng phụ để chứng minh định lý - GV: Tính độ dài BC trên hình 33 Biết DE = 50 - GV: Để tính khoảng cách giữa 2 điểm B & C ngời ta làm nh thế nào ? + Chọn điểm A để xác định AB, AC + Xác định trung điểm D & E + Đo độ dài đoạn DE + Dựa vào định lý + Qua E kẻ đờng thẳng // AB cắt BC ở F Hình thang DEFB có 2 cạnh bên // ( DB // EF) nên DB = EF DB = AB (gt) AD = EF (1) à 1 A = à 1 E ( vì EF // AB ) (2) ả 1 D = à 1 F = à B (3).Từ (1),(2) &(3) ADE = EFC (gcg) AE= EC E là trung điểm của AC. + Kéo dài DE + Kẻ CF // BD cắt DE tại F A // D 1 E F // 1 B F C * Định nghĩa: Đờng trung bình của tam giác là đoạn thẳng nối trung điểm 2 cạnh của tam giác. * Định lý 2: (sgk) GT ABC: AD = DB AE = EC KL DE // BC, DE = 1 2 BC Chứng minh a) DE // BC - Qua trung điểm D của AB vẽ đ- ờng thẳng a // BC cắt AC tại A' - Theo đlý 1 : Ta có E' là trung điểm của AC (gt), E cũng là trung điểm của AC vậy E trùng với E' DE DE' DE // BC b) DE = 1 2 BCVẽ EF // AB (F BC ) Theo đlí 1 ta lại có F là trung điểm của BC hay BF = 1 2 BC. Hình thang BDEF có 2 cạnh bên BD// EF 2 đáy DE = BF Vậy DE = BF = 1 2 BC II- áp dụng luyện tập Để tính DE = 1 2 BC , BC = 2DE BC= 2 DE= 2.50= 100 [...]... = = = 8(cm) 2 2 2 2 2 2 C Bài mới Hoạt động của GV * HĐ1: Bài toán dựng hình - GV: Ta phân biệt rõ các khái niệm sau + Bài toán vẽ hình + Bài toán dựng hình + Vẽ hình + Dựng hình - GV: Thớc thẳng dùng để làm gì? Hoạt động của HS 1) Bài toán dựng hình - Các bài toán vẽ hình mà chỉ sử dụng 2 dụng cụ là thớc thẳng và compa gọi là các bài toán dựng hình - " Vẽ hình" và " Dựng hình" là 2 khái Compa dùng... yêu cầu - ADC dựng đợc 1 cách duy nhất bài toán? Vì sao? - Trong nửa mặt phẳng bờ DC chỉ có 1 - GV: Chốt lại: điểm B thoả mãn Bài toán có một Một bài toán dựng hình có thể có nghiệm ( là nghiệm hình dựng đợc thoả mãn yêu cầu bài toán) Có thể không có nghiệm ( tức là không dựng đợc) Vậy khi giải bài toán dựng hình ta phải biết: Với điều kiện cho trớc bài toán có nghiệm hay không? Nếu có thì có bao nhiêu... bài toán b) Dựng một góc = một góc cho trớc + GV: Chốt lại Gv hớng dẫn các thao tác sử dụng thớc và compa & nói: 6 bài toán dựng c) Dựng đờng trung trực của đoạn thẳng cho trớc, trung điểm của đoạn thẳng hình trên đây và 3 bài toán dựng hình tam d) Dựng tia phân giác cuả 1 góc cho trớc giác là 9 bài toán đợc coi nh đã biết e) Qua 1 điểm cho trớc dựng 1 đờng Vậy khi trình bày lời giải của bài toán dựng... BC=4cm, ABC vuông ở A HS2: Muốn giải bài toán dựng hình ta phải làm những công việc gì? Nội dung lời giải 1 bài toán dựng hình gồm mấy phần? Muốn giải 1 bài toán dựng hình ta phải làm những công việc sau: - Phân tích bài toán thông qua hình vẽ, giả sử đã dựng đợc thoả mãn yêu cầu đề ra - Chỉ ra cách dựng hình đó là thứ tự 1 số các phép dựng hình cơ bản hoặc các bài toán dựng hình cơ bản - CMR: Với cách dựng... Ngày soạn: 28/08/2010 Ngày giảng: Tiết 8: dựng hình bằng thớc Và compa - dựng hình thang I Mục tiêu : 1 Kiến thức: - HS hiểu đợc khái niệm " Bài toán dựng hình" đó là bài toán vẽ hình chỉ sử dụng 2 dụng cụ là thớc thẳng và compa + HS hiểu, giải 1 bài toán dựng hình là chỉ ra 1 hệ thống các phép dựng hình cơ bản, liên tiếp nhau để xác định đợc hình đó và chỉ ra rằng hình dựng đợc theo phơng pháp đã... GV: Ra đề kiểm tra trên bảng phụ - HS1: Tính x trên hình vẽ sau 5cm x P K Q - HS2: Phát biểu T/c đờng TB trong tam giác, trong hình thang? So sánh 2 T/c - HS3: Phát biểu định nghĩa đờng TB của tam giác, của hình thang? So sánh 2 đ/n C.Bài mới: Hoạt động của giáo viên *HĐ1: Kim tra bi c *HĐ2: Luyện tập Chữa bài 22/80 Chữa bài 25/80 - GV: Cho hs nhận xét cách làm của bạn & sửa chữa những chỗ sai - Gv:... đợc đoạn thẳng khi biết 2 đầu mút của nó *HĐ2: Các bài toán dựng hình đã biết + Vẽ đợc 1 tia khi biết gốc và 1 điểm của ( GV đa ra bảng phụ và biểu thị bằng lời) - Cho biết các hình vẽ trong bảng, mỗi hình vẽ tia * Với compa:Vẽ đợc đtròn cung tròn khi biểu thị nội dung và lời giải của bài toán biết tâm và bkính của nó dựng hình nào? 2 Các bài toán dựng hình đã biết - Hãy mô tả thứ tự sử dụng các thao... Ngày soạn: 26/08/2010 Ngày giảng: Tiết 7 luyện tập I Mục tiêu : 1 Kiến thức: - HS vận dụng đợc lí thuyết để giải toán nhiều trờng hợp khác nhau Hiểu sâu và nhớ lâu kiến thức cơ bản 2 Kỹ năng: - Rèn luyện các thao tác t duy phân tích, tổng hợp qua việc luyện tập phân tích & CM các bài toán 3 Thái độ: - Tính cẩn thận, say mê môn hoc II Phơng tiện thực hiện - GV: Bảng phụ, thớc thẳng có chia khoảng compa... bày - HS theo dõi so sánh bài làm của mình, nhận xét - HS phát biểu GV: Nếu chuyển số đo của EF thành x& CD =16 thì kq sẽ ntn? (x=24;y=32) - HS đọc đầu bài rồi cho biết GT, KL - Các nhóm HS thảo luận cách chứng minh - Đại diện nhóm trình bày - HS nhận xét GV Cho HS làm việc theo nhóm Chữa bài 27/80: E G Y H - CD là đờng TB của hình thang ABFE(AB//CD//EF) CD = GT AK = KC KL a) So sánh EK&CD; KF&AB AB+... cho trớc bài toán có nghiệm hay không? Nếu có thì có bao nhiêu nghiệm? đó là biện luận D Củng cố: - Bài toán dựng hình gồm 4 phần: Phân tích - Cách dựng - Chứng minh - Biện luận + Phân tích: Thao tác t duy để tìm ra cách dựng + Cách dựng: Ghi hệ thống các phép dựng hình cơ bản hoặc các bài toán dựng hình cơ bản trên hình vẽ cần thể hiện + Chứng minh: Dựa vào cách dựng để chỉ ra các yếu tố của hình . Bài toán dựng hình - GV: Ta phân biệt rõ các khái niệm sau + Bài toán vẽ hình + Bài toán dựng hình + Vẽ hình + Dựng hình. - GV: Thớc thẳng dùng để làm gì? 1) Bài toán dựng hình Các bài toán vẽ. bài toán dựng hình trên đây và 3 bài toán dựng hình tam giác là 9 bài toán đợc coi nh đã biết. Vậy khi trình bày lời giải của bài toán dựng hình khác nếu phải thực hiện 1 trong 9 bài toán trên. bài toán? Vì sao? - GV: Chốt lại: Một bài toán dựng hình có thể có nghiệm ( là dựng đợc thoả mãn yêu cầu bài toán). Có thể không có nghiệm ( tức là không dựng đợc). Vậy khi giải bài toán dựng

Ngày đăng: 25/10/2014, 08:00

Xem thêm

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w