1. Trang chủ
  2. » Giáo án - Bài giảng

MŨ VÀ LOGARIT

15 181 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 1,17 MB

Nội dung

LE TIEN DUAT - K42A A/ Ph ¬ng tr×nh loga rit: D¹ng 1: log a f(x)=m ⇔    = ≠< m axf a )( 10 D¹ng 2: log a f(x)=log a g(x) ⇔             > > = ≠< 0)( 0)( )()( 10 xg xf xgxf a A) Gi¶i c¸c ph ¬ng tr×nh sau: 1) 2) 1 (log 3 1 =− x ⇒ x=-9 2) log 2 (2x-5) 2 =2 ⇒ x=1,5;x=3,5 3) 2 1 32 1 log2,0 −= x ⇒ x=4 4) 23log 3 log = x ⇒ x= 3 3 5) 1 2 log 10 2 log 55 + = + x x ⇒ x=3 6) )4(log)3(log)542(log 3 3 1 2 3 −=++− xxx ⇒ x=6 7) 3log3log 1 1 3 5 + −+ = x x ⇒ x=-4 8) 32log8log 2 2 =− x x ⇒ x=16, x=0,5 9) 01lg20lg 32 =+− xx ⇒ x=10, x= 9 10 . 10) 2 2 log4log 4 4 2 =+ x x ⇒ x=2 11) 09log42log 2 4 =++ x x ⇒ x=1/4, x=1/ 4 2 12) 3 4 1 3 4 1 2 4 1 )6(log)4(log3)2(log 2 3 ++−=−+ xxx ⇒ x=2, x=1- 33 13) log 2 (x 2 -3) - log 2 (6x-10) + 1 = 0 ⇒ x=2 14) log 3 (x 2 -6) = log 3 (x-2) + 1 ⇒ x=3 15) log x (2x 2 -3x-4) = 2 ⇒ x=4 16) log x+1 (x 2 -3x+1) = 1 ⇒ x=4 17) log 2 (9 x +5.3 x+1 ) = 4 ⇒ x=.? 18) log 2 (4 x +1)=log 2 (2 x+3 -6) + x ⇒ x=0 19) log 4 log 2 x+log 2 log 4 x = 2 ⇒ x=16 20) )1(log)1(log)1(log 2 6 2 3 2 2 −−=−+−− xxxxxx ⇒ x=1, x= )33( 2 1 2log2log 66 − + . 21) )1(log)1(log)1(log 2 20 2 5 2 4 −−=−+−− xxxxxx ⇒ x=1, x= )55( 2 1 4log4log 2020 − + . §HSPVinh:AB.2002 22) 0)1434(log 2 1 )1(log 33 =−+−−−+ xxxx ⇒ x=4 vµ 0 ≤ x ≤ 1 23) log 2 (x+1)(x-4)=1+log 2 (4-x) 24) )344(log 4 2 2 2 cot 22 +− = + xx xygxytg ⇒       Π+ Π = = ky x 2 2 1 víi: k ∈ Z TRANG 1/15 cutrongxoay@hotmail.com LE TIEN DUAT - K42A 25) 3loglog 2 9log 222 3. xxx x = x=2 26) xx 32 log)1(log =+ x=9 27) lg(x 2 -x-6) + x =lg(x+2) + 4 x=4 28) )2(log2)2(log5log)1(log 25 15 5 1 2 5 +=++ xxx x= 21 /2 29) 016)1(log)1(4)1(log)2( 3 2 3 =+++++ xxxx x=2, x= 81 80 . 30) 5,1l g)1(log =+x x x 31) 2 1 )213(log 2 3 =+ + xx x x 2 53 + = và x = 2 299 32) x x = 3)29(log 2 x=0 và x =3 33) x x x x 2 3 323 log 2 1 3 loglog 3 log += x=1 và x = 8 3 34) log 2 x + 2log 7 x = 2 + log 2 xlog 7 x x=7 và x = 4 35) 2log)2(log 2 2 =++ + xx x x x=2 ĐHNNghiệp I: B 2002 36) )32(log)44(log 1 2 12 =+ +xx x x=2 ĐHCĐoàn: 2002 37) 4)21236(log)4129(log 2 32 2 73 =+++++ ++ xxxx xx x= -1/4 ĐHKTQD: 2002 38) )1(log2 2log 1 )13(log 2 3 2 ++=+ + xx x x=1 ĐHAn Ninh: 2002 39) 1)69(loglog 3 = x x x ĐHDLĐông Đô: 2002 40) 13)23.49(log 1 3 += + x xx x=0 và x= 1)153(log 3 + ĐHDLPhơng Đông: 2002 41) 2 22 4log6log 2 3.22log4 x xx = x= 1/4 ĐHSP & ĐHLuật HCM: A 2002 42) 2 9 3 32 27 )3(log 2 1 log 2 1 )65(log + =+ x x xx x=5/3 HViện Ctrị QG-Pviện báo chí: 2002 43) 3 8 2 2 4 )4(log4l og2)1(log xxx ++=++ x=2 và x= 242 ĐHBKHNội: A 2002 44) )2(loglog 37 += xx x=49 ĐHKTrúcHNội: 2002 45) 2 3 2 3 2log)1(log xxxxx =++ x=1 ĐHNghoại ThơngHN: 2002 46) log 2 (x 2 +x+1)+log 2 (x 2 -x+1)=log 2 (x 4 +x 2 +1)+log 2 (x 4 -x 2 +1) x=0 và x= 1 Hviện QHQtế: 2002 47) 3)29(l og 2 =+ x x x=0 và x=3 ĐHHuế: A-B 2002 48) )93.11(log)33(log3log)1( 5 1 55 =++ + xx x x=0 và x=2 ĐHSPVinh: D-G-M 2002 49) 3log 2 1 log 2 1 )65(log 3 3 22 9 + =+ x x xx x=5/3 ĐHCNghệ BCVThông: 2002 50) )4ln()32ln()4ln()32ln( 22 xxxx +=+ x=? ĐHAnGiang: A-B 2002 51) 0log40log14log 4 3 16 2 2 =+ xxx xxx x=? ĐHCảnh sát : 2002 52) 2log) 2 log 2 (loglog)2log2(log 2 442 2 242 =+++ x x x xxx x=? ĐHthuỷ sản : 2002 53) 0)2cos 2 (sinlog)sin 2 (sinlog 3 13 =++ x x x x x=? 54) 1 12 2 log 4 12 = + + x x x x=? TRANG 2/15 cutrongxoay@hotmail.com LE TIEN DUAT - K42A 55) 2 1 )213(log 2 3 =+ + xx x x=? 56) xxx 2 3 3 log2)1(log3 =++ x=4096 57) 1)3(log 2 3 = x xx x=1 58) )13(log)11(log 2 xx a a +=+ x 59) log 3 (2x+1)+log 5 (4x+1)+log 7 (6x+1)=3x x=0 và x=1 60) 19log)148(log 44 2 3 2 = ++ xx xx x=-4 61) 21lg1lg31lg 22 +=++ xxx x 62) )22( 4 1 log 2 1 ++= xxx x= 2 1 63) 8 1 )2lg( 2 1 += x x x=3 64) )32(log)22(log 2 32 2 322 = + + xxxx x= 34111 + 65) 2log cos2sin sin22sin3 log 22 77 xx xx xx = x= 66) 9 11 )22(log 1 2 1 1 2 1 1 2 1 1 2 1 2 22 22 ++= + ++ + + + + xx x x x x x x x x x=9/7 và x=7/9 57) (x+1) lg(x+1) =100(x+1) x=-9/10 và x=99 58) 5log3log 22 xxx =+ (x>0) x=2 59) 642.3 55 log2log =+ x x x=625 60) )52(log 2 25 1 )53( 53 1 xx x x + = x=2 và x = 2 135 + 61) )271(log 2 4 1 )12( 12 1 xx x x + = x=? 62) 11659 2 )21(log 3 = x x x=-13 63) log 3 (3 x -8)=2-x x=2 64) log 7 (7 -x +6)=1+x x=? 65) 0222 1loglog1log 55 2 5 =+ + xxx x=5 66) 243log 27log ) 27 125 () 5 3 ( 5 5 )1(log )1(log2 27 1 9 = + x x x=2 67) 5 7 3log 36 6 xx x = x=? ĐHMỏ địa chất : 2002 68)Tìm các nghiệm của: 24222 1log1)16(log)16(log2 5 2 3 2 3 =++ + xxx thoả mãn: 0 4 13 cos < + x x x=? ĐHLNghiệp: 2002 69) 2 loglog 1)22()22( 22 xx xx +=++ x=1 ĐHMỏHN: A-D 2001 & ĐHQGHNội: A 2001 70) 2 6log 2 log 2 2 9.2 xx x = x=2 và x = 2log1 1 3 2 71) 12)12.3(log 2 += x x x ĐHĐà Nẵng: B 1997 72) 11 1 11 1 2 3lglg 32 ++ + = ++ xx x xx TRANG 3/15 c utrongxoay@hotmail.com LE TIEN DUAT - K42A 73) 4)2(log)2(log)2(log 2,0 3 5 5 =++ xxx x=3 74) 5,0log3loglog3log 33 ++=+ xx x x 75) 01222 1loglog1log 55 2 5 =+ + xxx 76) )112(logloglog2 33 2 9 += xxx 77) 04log34log24log3 164 =++ xxx 78) log 5 x+log 3 x=log 5 3log 9 225 79) 5,2) 5 2 ( )85(log 2 25,0 = xx x=? 80) 0)2cos(coslog)sin(coslog 1 =++ xxxx x x 81) xxx 4 8 4 6 log)(log2 =+ 82) log 2 (6 x +2.3 2x+2 )=2x+2 B) Giải các ph ơng trình (có điều kiện) sau: 1) Tìm gía trị Min của hàm số: y= )1(log)3(log 2 3 2 1 22 ++ + xx xx . 2) Tìm tất cả các nghiệm của phơng trình: (2 xx = 2 )1 . *) Thuộc miền xác định của hàm số: y= lg(4x-1) x=1 *) Thuộc miền xác định của hàm số: y= ln(x 2 - x-2) x=-5/3 3) Giải: log a axlog x ax= a a 1 log 2 với: 0<a 1 x=1/a 2 và x= a 1 4) Xác định m để phơng trình: 0)22(log2)32(log4 2 1 22 2 2 =+++ + mxxx xx mx có ba nghiệm? m=1/2 , m =3/2 và m=1 5) Định m để phơng trình: 0)122(log)4(log 3 1 2 3 =++ mxmxx có nghiệm duy nhất? m=0 , 2 1 m 10 1 6) Định m để phơng trình: 2 )1(log log 5 5 = +x mx có nghiệm duy nhất? m=? 7) Tìm x để: )13(log)65(log 2 2 2232 2 =+ + xxxmxm m đợc nghiệm đúng với mọi m? x=5. 8) Tìm x để: )15(log)535(log 2 2 22 2 =++ + xxmxxm m đúng với m x=? ĐHYHphòng:2001 9) Tìm m để phơng trình: lg(x 2 +mx) lg(x-3) = 0 có nghiệm? 10) Với giá trị nào của x thì: 2lg 1 lg 2 2 + += x xy đạt giá trị nhỏ nhất? 11) Cho hàm số: )2(log )1( + + = mmx mxm y a với: 0<a 1 a) Tìm miền xác định của hàm số khi m= 2 1 b) Tìm tất cả các giá trị của m để hàm số xác định với 1x . 12) Tìm m để các nghiệm x 1 ,x 2 của : 0)2(log)422(log2 22 2 1 22 4 =+++ mmxxmmxx thoả: 1 2 2 2 1 >+ xx 13) Tìm tất cả các giá trị của m để: 01)2(log)5()2(log)1( 2 1 2 2 1 =+ mxmxm có 2 nghiệm thoả mãn: 2<x 1 x 2 <4. 14) Tìm m để phơng trình: )3(log3loglog 2 4 2 2 1 2 2 =+ xmxx có nghiệm thuộc [ ) +;32 TRANG 4/15 cutrongxoay@hotmail.com LE TIEN DUAT - K42A 15) Giải và biện luận phơng trình: 4)2(log 2 2 2 =+ mx x tuỳ theo m R . 16) Giải và biện luận : ) 2 1(log)2(log) 2 1(log])13(1[)2(log])2(1[ 2 11 2 3 2 11 22 3 2 x xx x mxxm +=++++ 17) Giải và biện luận phơng trình: 2lgx - lg(x-1) = lga với a R. 18) Giải và biện luận phơng trình: 2x 2 +(1- log 3 m)x+ log 3 m 1 = 0 với m * + R 19) Giải và biện luận phơng trình: 0logloglog 2 =++ aaa xa axx với a * + R 20) Tìm m để: 0log)1(log 25 2 25 =++++ + xmmxx có nghiệm duy nhất? 21) Tìm m để: 0)(log)4(log 2 7 17 =++ xmxxm có đúng hai nghiệm phân biệt? 22) Cho phơng trình: 04)1lg()1(2)1(lg)1( 22222 =++++ mxxmxx a) Giải phơng trình khi: m=-4 b) Tìm m để phơng trình có đúng hai nghiệm thoả: 31 x 23) Tìm a để: xaxx aa log)3(log 2 =+ có nghiệm? 24) Tìm a để: log 2 (2 x +1).log 2 (2 x+1 +2)=2+a có nghiệm? 25) Tìm a để: )2(log )2(log 2 2 2 2 ++ =+++ xx a axx có nghiệm thuộc: (0;1)? B/ Bất Ph ơng trình loga rit: Dạng 1: log a f(x) > m > > > < << m m axf a xf axf a )( 1 0)( )( 10 Dạng 2: log h(x) f(x) > log h(x) g(x) > > > > < << 0)( )()( 1)( 0)( )()( 1)(0 xg xgxf xh xf xgxf xh A) Giải các bất ph ơng trình sau: 1) lg(x+4)+lg(3x+46)>3 x 6 2) log 4x-3 x 2 >1 x ( ) ;3 3) log x (x 3 -x 2 -2x)<3 x ( ) + ;2 4) 0 64 log 5 1 + x x x 2 3 ;2 5) lg 2 x-lgx 3 +2 0 x ( ] [ ) + ;10010;0 6) 1+log 2 (x-1) log x-1 4 x [ ) ( ) + ;32;4/5 7) 0 1)4(log 5 2 x x x=5 và x ( ) ++ ;24 8) 0 54 )3(log 2 2 2 xx x x=4 và x ( ) + ;5 9) 4 1loglog 2 3 2 9 x x x=2 và x ( ] 5/4;0 10) 2 7 1 loglog 7 x x x ( ) + ;1 11) 5 1 log2log2 5 x x x ( ) + ;1 TRANG 5/15 cutrongxoay@hotmail.com LE TIEN DUAT - K42A 12) log x 2.log 2x 2.log 2 4x>1 ⇒ x ( ) ( ) 22 2;15,0;2 ∪∈ − 13) 1 14 224 log 2 16 25 2 > −− − xx x ⇒ x ( ) ( ) 4;31;3 ∪−∈ 14) 0 3 12 loglog 2 2 1 < + − + x x x ⇒ x ( ) +∞∈ ;4 15) 64 1 log 12 1 2)6(log 2 1 2 22 3 2 +<− + x x ⇒ x       −∉ 2 3 ; 2 6 16) 0)2210(log 2 2 log 2 >+− xx x ⇒ x=? 17) 126 66 log2log ≤+ xx x ⇒ x=? 18) lgx(lg 2 x+lgx 2 -3) ≥ 0 ⇒ x=? 19) x xx x xx x 2 log)224214()1 2 )(1272( 22 +−−≤−+−+ ⇒ x=4 20) 09logloglog 12 2 1 > −x ⇒ x ( ) 10;4∈ 21) 1 log1 log1 2 > + + x x a a (0<a ≠ 1) ⇒ x =? 22) 2 1 2 24 log 2 ≥ − − x x x ⇒ x ( ) ( ] 73;22;131; 2 1 +∪∪       +−∈ § HVinh1999 23) )3(log5loglog 2 1 3 139 +>−+ xxx ⇒ x ( ) ∞∈ ;0 24) log x (4+2x)<1 ⇒ x ( ) ( ) ( ) ( ) ∞∪∪−∪−−∈ ;21;00;11;2 25) 4 3 16 13 log)13(log 4 14 ≤ − − x x ⇒ x       ∪       ∈ 3 10 ;3 3 1 ;0 26) 054log 8412 2 >− −− x xx ⇒ x       ∪       ∈ 2 3 ; 4 5 4 5 ;1 27) 0 43 )1(log)1(log 2 3 3 2 2 > −− +−+ xx xx ⇒ x ( ) ( ) ∞∪−∈ ;40;1 §HB¸ch Khoa Hµ Néi:19997 28) 2)16185(log 2 3 >+− xx x ⇒ x ( ) ∞∪         ∈ ;81; 3 1 §HTh¬ng m¹i Hµ Néi: 1997 29) 2 2lglg )23lg( 2 > + +− x xx ⇒ x Φ∈ §HKTróc Hµ Néi:1997 30) 316log64log 2 2 ≥+ x x ⇒ x ( ] 4;12; 2 1 3 1 ∪         ∈ − §HY Hµ Néi:1997 31) 06log)52(log)1( 2 1 2 2 1 ≥++++ xxxx ⇒ x ( ] [ ) ∞∪∈ ;42;0 §HLuËt - Dîc Hµ Néi:2002 32) 1) 3 1 ( ]3)2 2 ([loglog 1 2 log 2 3 1 2 3 ≥ ++ −x x ⇒ x        +−+− ∈ 2 2171 ; 2 731 §Htµi chÝnh Hµ Néi:2002 33) 1 2 23 log > + + x x x ⇒ x ( ) 2;1∈ Häc ViÖn qhÖQTÕ: D 2002 34) log x log 9 (3 x -9) ≤ 1 ⇒ x >log 13 10 §HVHo ¸: D 2002 35) 02)5(log6)5(log3)5(log 25 1 55 2 5 1 ≤+−+−+− xxx ⇒ x =? TRANG 6/15 cutrongxoay@hotmail.com LE TIEN DUAT - K42A 36) 2) 16 31 2(loglog 5,02 ≤− x ⇒ x =? 37) 32 4log 2 ≤ +x x ⇒ x =? C§¼ngGTVT¶i: 2002 38) 2 1 2 lg2 1 2 lg4 2 2 2 > + + + + x x x x ⇒ x =? 39) 1 3)39(log 1 3 ≤ −− − x x ⇒ x [ ) 2;10log2 3 −∈ 40) )243(log1)243(log 2 3 2 9 ++>+++ xxxx ⇒ x       −∪       −−∈ 1; 3 1 1; 3 7 §H SP-HCM: A-B 2001 41) 0)1628( 1 5 log)134( 2 5 2 ≤+−−+++− xx x x xx ⇒ x =1 §KTQD: A 2001 42) log 2 (2 x +1)+log 3 (4 x +2) ≤ 2 ⇒ x ( ] 0;∞−∈ §HNTh¬ng: A 2001 43) log 2 x+log 2x 8 ≤ 4 ⇒ x         ∪       ∈ +− 2 133 2 133 2;2 2 1 ;0 §HYth¸i b×nh: 2001 44) 22000log1 <+ x ⇒ x ( ) ∞∪         ∈ ;2000 2000 1 ;0 3 §H§µ N¼ng: 2001 45) )2(log3log6log 3 1 3 1 2 3 +>−+−− xxxx ⇒ x =? 46) 2)22(log)12(log 1 2 12 −>−− +xx ⇒ x ( ) 3log;5log2 22 +−∈ 47) )3(log53loglog 2 4 2 2 1 2 2 −>−+ xxx ⇒ x ( ) 16;8 2 1 ;0 ∪       ∈ 48) 3 2log2log xx xx ≤ ⇒ x [ ) ∞∪       ∈ ;2 2 1 ;0 3 49) 3 )5(log )35(log 3 ≥ − − x x a a víi: 0<a 1≠ ⇒ x [ ] 3;2∈ 50) )1(loglog)1(loglog 2 5 13 2 5 2 1 xxxx −+>++ ⇒ x       ∞−∈ 5 12 ; 51) log 2 xlog 3 2x + log 3 xlog 2 3x o≥ ⇒ x [ ) ∞∪        ∈ ;1 6 6 ;0 52) x xx x x x 3 35 5 log )log2(log 3 loglog − <+ ⇒ x ( ) 3;1 5 5 ;0 ∪         ∈ 53) 2 2 2 2 432 655log)(log65 xxxxxxxxxx −+++−>−++ ⇒ x       ∈ 3; 2 5 54) 0 352 )114(log)114(log 2 32 11 22 5 ≥ −− −−−+− xx xxxx ⇒ x ( ) 152;2 −−∈ 55) )112(logloglog2 33 2 9 −+> xxx ⇒ x ( ) 4;1∈ 56) 0 132 5 5 lg < +− − + x x x x ⇒ x ( ) ( ) 3;10;5 ∪−∈ TRANG 7/15 cutrongxoay@hotmail.com LE TIEN DUAT - K42A 57) )1(log 1 132log 1 3 1 2 3 1 + > + x xx x =? 58) log 4 (x+7)>log 2 (x+1) x =? 59) 1)23(log 2 > x x 60) 1)3(log 2 3 > x xx 61) (4 x -12.2 x +32).log 2 (2x-1) 0 62) 2)83(log 3 1 > x x 63) 1 1 32 log 3 < x x B) Giải các bất ph ơng trình (có điều kiện) sau: 1) Trong các nghiệm của: 1)(log 22 + + yx yx Hãy tìm nghiệm có tổng: x+2y lớn nhất? 2) Chứng minh rằng: 2 log2loglog 222 ba ba + + Với: a,b 1 3) Tìm nghiệm của: 32sin 2 1 sin3 2 + xx Thoả mãn: lg(x 2 +x+1)<1 4) Giải: log a (x 2 -x-2)>log a (-x 2 +2x+3) biết nó có một nghiệm x=9/4. 5) Cho 03log)6(log)15(log 2 5 2 1 ++++++ a a axxaxx .Tìm a để bpt có nghiệm duy nhất? tìm nghiệm đó? 6) Với giá trị nào của a thì bpt: log 2a+1 (2x-1)+log a (x+3)>0. Đợc thoả mãn đồng thời tại x=1 và x=4. 7) Giải và biện luận theo a: log x a + log a x + 2cosa 0 8) Cho hai bất phơng trình: log x (5x 2 -8x+3)>2 (1) và x 2 - 2x + 1 - a 4 0 (2) . Xác định a sao cho: Mọi nghiệm của (1) cũng là nghiệm của (2) ? 9) Giải và biện luận bất phơng trình: log x 100 - 2 1 log m 100 > 0. 10) Với giá trị nào của m thì bpt: 3)2(log 2 2 1 >+ mxx có nghiệm và mọi nghiệm của nó đều thuộc miền xác định của hàm số: 2log)1(log 1 3 += + xxy xx 11) Giải và biện luận: xax x a 2 1l og > + 12) Cho: xmxmxmx 2 1 2 log)(3)3( <++ (1) . a) Kiểm nghiệm rằng với m=2 thì bất phơng trình không có nghiệm? b) Giải và biện luận (1) theo m! 13) Cho 3 )5(log )35(log 3 > x x a a (1) . Với: 0<a 1 và 1+log 5 (x 2 +1)-log 5 (x 2 +4x+m)>0 (2) . Tìm tất cả các giá trị của m sao cho mọi nghiệm của (1) đều là nghiệm củ (2)? 14) Tìm các giá trị x thoả: x>1 nghiệm đúng bpt: 1)1(log 22 2 <+ + mx m xx Với: .40 < m x>3 ĐHGTVTải: 2002 15) Giải và biện luận: 2log 2 1 loglogloglog 22 aa aa a xx + x=? ĐHNNI: A 2002 16) Giải và biện luận: 1)1(log 2 2 1 <++ axx x=? ĐHThăng long: A 2002 17) Tìm m sao cho: log m (x 2 -2x+m+1)>0. Đúng với mọi x. x=? ĐHđà nẵng: A 2002 18) Tìm m để: 02)5(log6)5(log3)5(log 25 1 55 5 1 +++ xxx và: 0)35)(( xmx chỉ có 1 nghiệm chung duy nhất? x=? Viện ĐHMởHN: A 2002 TRANG 8/15 cutrongxoay@hotmail.com LE TIEN DUAT - K42A 19) Tìm m để [ ] 2;0x đều thoả: 5)2(log2log 2 4 2 2 +++ mxxmxx x=? ĐHspHN: A 2001 20) Cho bất phơng trình: xax 22 loglog >+ a) giải khi a=1? x + 2 51 2; 2 1 b) Xác định a để bpt có nghiệm? a 4 1 HViện BCVT: A 2002 21) Định m để: log x-m (x 2 -1)>log x-m (x 2 +x-2) có nghiệm? x =? ĐHđà lạt: A-B 2002 22) Tìm m để: 0) 1 log1(2) 1 log1(2) 1 log2( 222 2 + + + ++ + m m m m x m m x có nghiệm duy nhất? m= 31 32 23) Tìm m để: xmxmxmx 2 1 2 log)(3)3( ++ có nghiệm duy nhất? tìm nghiệm đó? m=2. 24) Định m để: xxx m 222 sincossin 3.32 + có nghiệm? x =? ĐHQGHN: 1999 C/ Ph ơng trình mũ: A) Giải các ph ơng trình sau: 1) 13 86 2 = + xx x =2 và x=4. 2) xx = ) 2 25,0 (4.125,0 82 x = 3 38 3) 5 2x-1 +5 x+1 - 250 = 0 x =2 4) 9 x + 6 x = 2.4 x x =0 5) 43 64 255 = x x x =7/5 6) 22 43 93 = x x x = ? 7) 2 2x-3 - 3.2 x-2 + 1 = 0 x =1 và x=2 8) 2442 ) 2 5 () 5 2 ( = xx x =1 9) 033.43 24 =+ xx x =0 và x= 4 1 10) 5 2x - 7 x - 5 2x .35 + 7 x .35 = 0 x = 2 1 11) 4 410 2 9 2 2 x x + = x =3 12) 33,0.2 100 3 2 += x x x x = 13lg 3lg 13) x x 1001,0.1000 = x =1 và x= 2 1 14) 73 3 1 3 13 82 = x x x x x 15) 2 x .5 x =0,1(10 x-1 ) 5 x = 2 3 16) 363.2 = xx x =4 17) 4 2 1 )1( 39 = xx x = 2 3 và x= 2 1 18) 431 ) 3 4 ( 2 1 3 4 .) 4 3 ( = xx x =2 19) 3 x +3 x+1 +3 x+2 =5 x +5 x+1 +5 x+2 x = 43 31 log 5 3 TRANG 9/15 cutrongxoay@hotmail.com LE TIEN DUAT - K42A 20) 2 x +2 x-1 +2 x-2 =7 x +7 x-1 +7 x-2 x = 343 228 log 7 2 21) 4 4 xx xx = x =1 và x= 3 256 22) 161 42.2 ++ = xx x = 2 1 23) 4)32()32( =++ xx x =? 24) 10)625()625( =++ xx x =2 và x=-2 23) xxx )22()154()154( =++ x =2 24) xxx )5()23()23( =++ x =? HvQHQTế:1997 25) 3 2)125(7)215( + =++ xxx x =0 và x= 7log 2 215+ ĐHQGHN: D 1997 26) 2)625()625( sinsin =++ xx x= k với: Zk ĐHcần thơ: D 2000 27) 2653 +=+ x xx x=0 và x=1 ĐHSPHN: A 2002 28) 21 )1(22 2 = x xxx x=1 ĐHthuỷlợi: A 2002 29) 093.613.73.5 1112 =++ + xxxx x= 5 3 log 3 ;x= 5l og 3 ĐHHồng đức: A 2002 30) 112 323 += xx x=? ĐHDL đông đô: A-D 31) 11 34 2 = + xx x x=0;x=2;x=3 CĐsp đồng nai: 2002 32) xxx 6242.33.8 +=+ x=1 và x=3 ĐHQGHN: D 2001 33) x x 231 2 =+ x=2 ĐHthái Nghuyên: D 2001 34) 022.92 2212 22 =+ +++ xxxx x=-1;x=2 ĐHthuỷ lợi cơ sở II: 2000 35) 8444)24(2 22 1 +=+ xxxx x x=1/2 ĐHmở HN: D 2001 36) 4x 2 + x.3 x + 3 x+1 =2x 2 .3 x + 2x + 6 x=-1;x=3/2; 3 3 1; ;log 2 2 37) 4 sinx -2 1+sinx .cosxy+ y 2 =0 x=k ;y=o và k Z 38) 11 2 1 9 ++ = xx x x= 2log 3 39) 1 2 12 33 1 2.62 3 =+ x xx x x=1 ĐHyHN: 2001 40) 12122 11 2 += ++ + xx x x { } [ ) ;13 41) 1)1( 34 2 =+ + xx x x { } 3;1;0 42) 1313)1(3)4( 1 11 +++=+ + xx x xxx x { } [ ] 1;01 43) xx xx = x=1 và x=4 44) 232 14231 =+ ++ yxyx x=0,5 và y=0,5 45) 2 2 4 2 1 3 3 6 7 1 2.3 x x x x + + + + = + x=-1 46) )32(10 101 )32()32( 1212 22 =++ + xxxx x= )32lg( )32(10lg 1 + + 47) 033.369 31 22 =+ xx x=? 48) 27 x +13.9 x +13.3 x+1 +27=0 VN TRANG 10/15 cutrongxoay@hotmail.com [...]... Giải và biện luận: 5 x 2 + 2 mx + 2 5 2 x 2 + 4 mx + m + 2 = x 2 + 2mx + m Giải và biện luận: ĐHthuỷ sản: 2002 x=? a + 2x + a 2x = a x+(3k-2)2x+1-3k+1=0 (1) Cho: (k+1)4 a) Giải (1) khi: k=3 TRANG 11/15 cutrongxoay@hotmail.com LE TIEN DUAT - K42A 6) 7) b) Tìm tất cả các giá trị của k để (1) có hai nghiệm trái dấu? Giải và biện luận: 4 x 2 x +1 m = 0 Cho phơng trình: 5.16x + 2.81x = a.36x a) x=0 và. .. Giải phơng trình khi: a=7 2 ĐH.Hồng đức: D 5 2 8) ( ) Tìm tất cả các giá trị của a để phơng trình vô nghiệm? a ;2 10 Giải phơng trình: 9 x 2 4.3 x 2 a = 0 V ới: -38/3 3) 1 1 +3... 2 log 4 ( xy + 1) log 4 (4 y + 2 y 2 x + 4) = log 4 y 1 e x e y = (log 2 y log 2 x)( xy + 1) ( 2 ; 2 2 x + y = 1 2 log 4 x log 2 y = 0 (1;1) và (4;2) 2 2 x 5 y + 4 = 0 1 1 ; ) 2 8 (2;4) ĐH Tài chính: 2001 ĐH DL hùng vơng: 2001 * (2;1) và (a;a) với a R+ ĐH Mỏ: 1999 2) 2 ĐH Thái nguyên: A-B1997 log x ( x y ) = 2 (5;2) 7 log 4 x log x y = 6 log x ( x + 1) = lg 1,7 ( 3 + 5 ; 9... x (3 x + ky ) = 2 3) Giải và biện luận hệ: với kR log y (3 y + kx) = 2 log x ( x cos + y sin ) + log y ( y cos + x sin ) = 4 4) Cho hệ phơng trình: log x ( x cos + y sin ) log y ( y cos + x sin ) = 4 4 b) Cho: 0; biện luận hệ? 2 log x (ax + by ) + log y (ay + bx ) = 4 5) Cho hệ: log x (ax + by ) log y ( ay + bx) = 4 a) Giải hệ khi: a=3, b=5 b) Giải và biện luận hệ khi:a>0,b>0 . x 2 53 + = và x = 2 299 32) x x = 3)29(log 2 x=0 và x =3 33) x x x x 2 3 323 log 2 1 3 loglog 3 log += x=1 và x = 8 3 34) log 2 x + 2log 7 x = 2 + log 2 xlog 7 x x=7 và x = 4 35). log 2 (x 2 +x+1)+log 2 (x 2 -x+1)=log 2 (x 4 +x 2 +1)+log 2 (x 4 -x 2 +1) x=0 và x= 1 Hviện QHQtế: 2002 47) 3)29(l og 2 =+ x x x=0 và x=3 ĐHHuế: A-B 2002 48) )93.11(log)33(log3log)1( 5 1 55 =++ + xx x x=0 và x=2 ĐHSPVinh: D-G-M 2002 49). x=9/7 và x=7/9 57) (x+1) lg(x+1) =100(x+1) x=-9/10 và x=99 58) 5log3log 22 xxx =+ (x>0) x=2 59) 642.3 55 log2log =+ x x x=625 60) )52(log 2 25 1 )53( 53 1 xx x x + = x=2 và x

Ngày đăng: 20/10/2014, 09:00

Xem thêm

TỪ KHÓA LIÊN QUAN

w