1. Trang chủ
  2. » Giáo án - Bài giảng

DE CUONG ON THI HOC KY I MU VA LOGARIT

7 757 11
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 413 KB

Nội dung

Trường THPT BC2 TĨNH GIA Đề cương ôn thi học kỳ I năm học 2008 – 2009 HÀM LUỸ THỪA , HÀM SỐ HÀM SỐ LOGARIT Bài 1: LUỸ THỪA Vấn đề 1: Tính Giá trò biểu thức Bài 1: Tính a) A = 1 5 1 3 7 1 1 2 3 32 4 4 2 3 5 : 2 : 16: (5 .2 .3 −             b) 1 2 2 3 3 1 4 5 2 (0,25) ( ) 25 ( ) : ( ) : ( ) 4 3 4 3 − − −   +     Bài 2: a) Cho a = 1 (2 3) − + b = 1 (2 3) − − . Tính A= (a +1) -1 + (b + 1) -1 b) cho a = 4 10 2 5+ + b = 4 10 2 5− + . Tính A= a + b Bài 4: a) Biết 4 -x + 4 x = 23. Tính 2 x + 2 -x b) Biết 9 x + 9 -x = 23. Tính A= 3 x + 3 -x Bài 5: Tính a) A = 2 2 2 . 2 2 2 . 2 2. 2− + + + b) B = 5 3 2 2 2 c) C = 3 3 2 3 2 3 2 3 d) D = 3 3 9 27 3 Vấn đề 2: Đơn giản một biểu thức Bài 6: Giản ước biểu thức sau a) A = 4 ( 5)a − b) B = 4 2 81a b với b ≤ 0 c) C = 3 3 25 5 ( )a (a > 0) d) D = 2 4 2 2 1 3 9 9 9 ( 21)( )( 1)a a a a + + + − với a > 0 e) E = 2 1 1 1 2 2 2 1 1 1 2 2 2 ( ) 2 ( ) x y x y x y xy x y x y −   + + −  ÷ − −  ÷  ÷ + +   với x > 0, y > 0 f ) F = 2 2 2 1 1 a x x x − + − với x = 1 2 a b b a   +  ÷  ÷   a > 0 , b > 0 g) G = a x a x a x a x + − − + + − Với x = 2 2 1 ab b + a > 0 , b > 0 h) 1 1 2 2 2 2 1 1 ( ) . 1 .( ) ( ) 2 a b c b c a a b c a b c bc − − − − −   + + + − + + +  ÷ − +   i) I = 3 2 3 2 3 3 2 2 6 4 2 2 4 6 2 3 2 2 2 2 3 2 3 3 1 ( ) 2 3 3 ) 2 ( ) b a a b a a b a b b a a b b a −   − − − + + + +   + + −   j) J = 2 1 1 1 1 1 1 2 2 2 2 4 9 4 3 2 3 a a a a a a a a − − −   − − +   +   − −   với 0 < a ≠ 1, 3/2 Vấn đề 3: Chứng minh một đẳng thức Bài 7 chứng minh : 2 1 2 1 2x x x x+ − + − − = với 1≤ x ≤ 2 Chương II : Hàm số luỹ thừa,hàm sô , hàm số lôgarit Trường THPT BC2 TĨNH GIA Đề cương ôn thi học kỳ I năm học 2008 – 2009 Bài 8 chứng minh : 3 3 3 32 4 2 2 2 4 2 2 3 ( )a a b b a b a b+ + − = + Bài 9: chứng minh: 2 3 3 1 1 1 2 2 2 2 2 1 1 2 2 ( ) 1 x a x a ax x a x a    − −  ÷   + =  ÷   −  ÷ −      với 0 < a < x Bài 10 chứng minh: 1 4 3 3 4 2 2 2 1 2 2 1 3 ( ) ( ) : ( ) 1 2 ( ) x x y xy y y x y x y x y x xy y x x y − −   + + + − + + + =  ÷ + + −   Với x > 0 , y > 0, x ≠ y , x ≠ - y Bài 11 Tìm x biết a) 2 x = 1024 b) (1/3) x = 27 Bài 2: HÀM SỐ LUỸ THỪA Vấn đề 1: Tìm tập xác đònh của hàm số Bài 12 tìm tập xác đònh của hàm số a) 1 3 (1 2 )x − − b) 2 2 3 (3 )x− c) (x 2 – 2) -2 d) 2 3 ( 2 3)x x− − e) a) ( ) 2 2 3 3 4x x+ − c) ( ) 3 2 4 x− Vấn đề 2: Tính đạo hàm của hàm số Bài 13: Tính đạo hàm các hàm số a) ( ) 2 2 3 3 4x x+ − b) ( ) 3 2 1x π − c) ( ) 3 2 4 x− d) ( ) 1 2 3 3 2x x − − + − e) ( ) 2 2 2x x π − − − f) ( ) 3 2 4 3x x− − g) ( ) 1 2 5 x x+ h) ( ) 2 1x π − i) ) (x 2 – 2) -2 Vấn đề 3: Khảo sát sự biến thien vẽ đồ thò hàm số Bài 14 a) y = x -4/3 b) y = x 3 c) y = 1 3 (1 2 )x − − d) y = x 4/3 e) y = x -3 f) y = 1 2 2 (1 )x− Bài 3: LOGARIT Vấn đề 1: các phép tính cơ bản của logarit Bài 15 Tính logarit của một số A = log 2 4 B= log 1/4 4 C = 5 1 log 25 D = log 27 9 E = 4 4 log 8 F = 3 1 3 log 9 G = 3 1 5 2 4 log 2 8    ÷  ÷   H= 1 3 27 3 3 log 3    ÷  ÷   I = 3 16 log (2 2) J= 2 0,5 log (4) K = 3 log a a L = 52 3 1 log ( ) a a a Bài 16 : Tính luỹ thừa của logarit của một số A = 2 log 3 4 B = 9 log 3 27 C = 3 log 2 9 D = 3 2 2log 5 3 2    ÷   E = 2 1 log 10 2 8 F = 2 1 log 70 2 + G = 8 3 4log 3 2 − H = 3 3 log 2 3log 5 9 + Chương II : Hàm số luỹ thừa,hàm sô , hàm số lôgarit Trường THPT BC2 TĨNH GIA Đề cương ôn thi học kỳ I năm học 2008 – 2009 I = log 1 (2 ) a a J = 3 3 log 2 3log 5 27 − Vấn đề 2: Tìm cơ số X Bai 17: Tìm cơ số X biết a) log x 7 = -1 b) 10 log 3 0,1 x = c) log 8 3 x = d) 5 log 2 8 6 x = − e) 3 log 2 3 4 x = f) 5 3 log 2 5 x = − Bài 18: Tim X biết a) 81 1 log 2 x = b) 1 log log 9 log 5 log 2 2 a a a a x = − + c) ( ) 2 2 2 1 log 9log 4 3log 5 2 x = − d) 0,1 log 2x = − e) 2 1 log log 32 log 64 log 10 5 3 a a a a x = − + Vấn đề 3: Rút gọn biểu thức Bài 19: Rút gọn biểu thức A = 4 3 log 8log 81 B = 1 5 3 log 25log 9 C = 3 2 25 1 log log 2 5 D = 3 8 6 log 6log 9log 2 E = 3 4 5 6 8 log 2.log 3.log 4.log 5.log 7 F = 2 4 log 30 log 30 G = 5 625 log 3 log 3 H = 2 2 96 12 log 24 log 192 log 2 log 2 − I = 1 9 3 3 log 7 2log 49 log 27+ − J = log log a b b a a b− Vấn đề 4: Chứng minh đẳng thức logarit Bai 20: Chứng minh ( giả sử các biểu thức sau đã cho có nghóa) a) log log log ( ) 1 log a a ax a b x bx x + = + b) 1 2 . 1 1 1 ( 1) . log log log 2log n a a a a n n x x x x + + + + = → c) cho x, y > 0 x 2 + 4y 2 = 12xy Chứng minh: lg(x+2y) – 2 lg2 = (lgx + lg y) / 2 d) cho 0 < a ≠ 1, x > 0 Chứng minh: log a x . 2 2 1 log (log ) 2 a a x x= Từ đó giải phương trình log 3 x.log 9 x = 2 e) cho a, b > 0 a 2 + b 2 = 7ab chứng minh: 2 2 2 1 log (log log ) 3 2 a b a b + = + Bài 4: HÀM SỐ HÀM SỐ LOGARIT Vấn đề 1: tìm tập xác đònh của hàm số Bài 21: tìm tập xác đònh của các hàm số sau a) y = 2 3 log 10 x− b) y = log 3 (2 – x) 2 c) y = 2 1 log 1 x x − + d) y = log 3 |x – 2| e)y = 5 2 3 log ( 2) x x − − f) y = 1 2 2 log 1 x x − g) y = 2 1 2 log 4 5x x− + − h) y = 2 1 log 1x − i) lg( x 2 +3x +2) Vấn đề 2: Tìm đạo hàm các hàm số Bài 22: tính đạo hàm của các hàm số a) y = x.e x b) y = x 7 .e x c) y = (x – 3)e x d) y = e x .sin3x Chương II : Hàm số luỹ thừa,hàm sô , hàm số lôgarit Trường THPT BC2 TĨNH GIA Đề cương ôn thi học kỳ I năm học 2008 – 2009 e) y = (2x 2 -3x – 4)e x f) y = sin(e x ) g) y = cos( 2 2 1x x e + ) h) y = 4 4x – 1 i) y = 3 2x + 5 . e -x + 1 3 x j) y= 2 x e x -1 + 5 x .sin2x k) y = 2 1 4 x x − Bài 23 . Tìm đạo hàm của các hàm số logarit a) y = x.lnx b) y = x 2 lnx - 2 2 x c) ln( 2 1x x+ + ) d) y = log 3 (x 2 - 1) e) y = ln 2 (2x – 1) f) y = x.sinx.lnx g) y = lnx.lgx – lna.log a (x 2 + 2x + 3) Vấn đề 3: Khảo sát vẽ đồ thò hàm số Bài 24: khảo sát vẽ đồ thò hàm số , logarit a) y = 3 x b) y = 1 3 x    ÷   c) y = log 4 x d) y = log 1/4 x Bài 5: PHƯƠNG TRÌNH PHƯƠNG TRÌNH LOGARIT Vấn đề 1: Phương trình Dạng 1. Đưa về cùng cơ số Bài 25 : Giải ác phương trình sau a) 4 3 2 4 x− = b) 2 5 6 2 2 16 2 x x− − = c) 2 2 3 3 5 3 9 x x x− + − = d) 2 8 1 3 2 4 x x x− + − = e) 5 2x + 1 – 3. 5 2x -1 = 110 f) 5 17 7 3 1 32 128 4 x x x x + + − − = f) 2 x + 2 x -1 + 2 x – 2 = 3 x – 3 x – 1 + 3 x - 2 g) (1,25) 1 – x = 2(1 ) (0,64) x+ Dạng 2. đặt ẩn phụ Bài 26 : Giải các phương trình a) 2 2x + 5 + 2 2x + 3 = 12 b) 9 2x +4 - 4.3 2x + 5 + 27 = 0 c) 5 2x + 4 – 110.5 x + 1 – 75 = 0 d) 1 5 2 8 2 0 2 5 5 x x+     − + =  ÷  ÷     e) 3 5 5 20 x x− − = f) ( ) ( ) 4 15 4 15 2 x x − + + = g) ( ) ( ) 5 2 6 5 2 6 10 x x + + − = Dạng 3. Logarit hóa ï Bài 27 Giải các phương trình a) 2 x - 2 = 3 b) 3 x + 1 = 5 x – 2 c) 3 x – 3 = 2 7 12 5 x x− + d) 2 2 5 6 2 5 x x x− − + = e) 1 5 .8 500 x x x − = f) 5 2x + 1 - 7 x + 1 = 5 2x + 7 x Dạng 4. sử dụng tính đơn điệu Bài 28: giải các phương trình a) 3 x + 4 x = 5 x b) 3 x – 12 x = 4 x c) 1 + 3 x/2 = 2 x Vấn đề 2: Phương trình logarit Dạng 1. Đưa về cùng cơ số Bài 29: giải các phương trình a) log 4 (x + 2) – log 4 (x -2) = 2 log 4 6 b) lg(x + 1) – lg( 1 – x) = lg(2x + 3) c) log 4 x + log 2 x + 2log 16 x = 5 d) log 4 (x +3) – log 4 (x 2 – 1) = 0 e) log 3 x = log 9 (4x + 5) + ½ f) log 4 x.log 3 x = log 2 x + log 3 x – 2 Chương II : Hàm số luỹ thừa,hàm sô , hàm số lôgarit Trường THPT BC2 TĨNH GIA Đề cương ôn thi học kỳ I năm học 2008 – 2009 g) log 2 (9 x – 2 +7) – 2 = log 2 ( 3 x – 2 + 1) Dạng 2. đặt ẩn phụ Bài 30: giải phương trình a) 1 2 1 4 ln 2 lnx x + = − + b) log x 2 + log 2 x = 5/2 c) log x + 1 7 + log 9x 7 = 0 d) log 2 x + 2 10log 6 9x + = e) log 1/3 x + 5/2 = log x 3 f) 3log x 16 – 4 log 16 x = 2log 2 x g) 2 2 1 2 2 log 3log log 2x x x+ + = h) 2 2 lg 16 l g 64 3 x x o+ = Dạng 3 hóa Bài 31: giải các phương trình a) 2 – x + 3log 5 2 = log 5 (3 x – 5 2 - x ) b) log 3 (3 x – 8) = 2 – x Bài 6: BẤT PHƯƠNG TRÌNH BẤT PHƯƠNG TRÌNH LOGARIT Vấn đề 1: Bất Phương trình Bài 32: Giải các bất phương trình a) 16 x – 4 ≥ 8 b) 2 5 1 9 3 x+   <  ÷   c) 6 2 9 3 x x+ ≤ d) 2 6 4 1 x x− + > e) 2 4 15 4 3 4 1 2 2 2 x x x − + −   <  ÷   f) 5 2x + 2 > 3. 5 x Bài 33: Giải các bất phương trình a) 2 2x + 6 + 2 x + 7 > 17 b) 5 2x – 3 – 2.5 x -2 ≤ 3 c) 1 1 1 2 4 2 3 x x − − > + d) 5.4 x +2.25 x ≤ 7.10 x e) 2. 16 x – 2 4x – 4 2x – 2 ≤ 15 f) 4 x +1 -16 x ≥ 2log 4 8 g) 9.4 -1/x + 5.6 -1/x < 4.9 -1/x Bài 34: Giải các bất phương trình a) 3 x +1 > 5 b) (1/2) 2x - 3 ≤ 3 c) 5 x – 3 x+1 > 2(5 x -1 - 3 x – 2 ) Vấn đề 2: Bất Phương trình logarit Bài 35: Giải các bất phương trình a) log 4 (x + 7) > log 4 (1 – x) b) log 2 ( x + 5) ≤ log 2 (3 – 2x) – 4 c) log 2 ( x 2 – 4x – 5) < 4 d) log 1/2 (log 3 x) ≥ 0 e) 2log 8 ( x- 2) – log 8 ( x- 3) > 2/3 f) log 2x (x 2 -5x + 6) < 1 g) 1 3 3 1 log 1 2 x x − > + Bài 36: Giải các bất phương trình a) log 2 2 + log 2 x ≤ 0 b) log 1/3 x > log x 3 – 5/2 c) log 2 x + log 2x 8 ≤ 4 d) 1 1 1 1 log logx x + > − e) 16 2 1 log 2.log 2 log 6 x x x > − f) 4 1 4 3 1 3 log (3 1).log ( ) 16 4 x x − − ≤ Bài 37. Giải các bất phương trình a) log 3 (x + 2) ≥ 2 – x b) log 5 (2 x + 1) < 5 – 2x c) log 2( 5 – x) > x + 1 d) log 2 (2 x + 1) + log 3 (4 x + 2) ≤ 2 Chương II : Hàm số luỹ thừa,hàm sô , hàm số lôgarit Trường THPT BC2 TĨNH GIA Đề cương ôn thi học kỳ I năm học 2008 – 2009 Mốt số bài toán ôn tập ĐỀ 1 Giải pt v bà ất pt sau a. xxx 1025.24 <− c. 9 1 3 14 2 = +− xx b. 1)1(loglog 22 =−+ xx d. 5log)1(log)3(log 222 ≥−++ xx e. 03log3log 3 <− xx ĐỀ 2 Giải pt v bà ất pt sau a. 3log)2(log 2 1 2 2 1 ≥+ xx c. xxx 96.24.3 =− b. 2655 11 =+ −+ xx d. 3)1(log 2 2 ≥− x e. 2)(loglog)(loglog 4224 >+ xx ĐỀ 3 Giải pt v bà ất pt sau a. 010.725.24.5 ≤−+ xxx c. 8 1 2 152 2 = −− xx b. 2)326(log 5 >− x d. 1log) 2 1 (log 2 1 2 1 =++ xx e. 011 4 log3)(log2 2 2 2 =−− x x ĐỀ 4 Giải pt v bà ất pt sau a. 033.103 12 ≤+− + xx c. 1522 22 =− −+ xx b. 0loglog 2 2 2 =+ xx d. 1log)1(log 22 =+− xx e. 233 5lg2lg 2 −< ++ xx ĐỀ 5 Giải pt v bà ất pt sau a. 922 3 ≤+ − xx c. 042.24 1 =+− + xx b. 6 33 logloglog 842 =++ xxx d. 1)1(log) 2 1 (log 2 1 2 1 ≤−+− xx e. 03log3log 3 <− xx ĐỀ 6 Giải pt v bà ất pt sau a. 1)2(log)3(log 22 ≤−+− xx c. 2) 2 1 ( 13 2 = +− xx b. 010.725.24.5 =−+ xxx d. 2)413(log 3 >− x e. 2)(loglog)(loglog 4224 >+ xx ĐỀ 7 Giải pt v bà ất pt sau a. 1)5(log)3(log 33 <−+− xx c. 12 65 2 = +− xx b. 2122.52.3 21 =−+ ++ xxx d. 2)328(log 5 >− x e. 011 4 log3)(log2 2 2 2 =−− x x ĐỀ 8: Chương II : Hàm số luỹ thừa,hàm sô , hàm số lôgarit Trường THPT BC2 TĨNH GIA Đề cương ôn thi học kỳ I năm học 2008 – 2009 Giải pt v bà ất pt sau a. 02loglog 2 1 2 2 1 ≤−+ xx c. xxx 318 42 2 −+− = b. 5loglog3 93 =− xx d. 0624 >−+ xx e. 233 5lg2lg 2 −< ++ xx Chương II : Hàm số luỹ thừa,hàm sô , hàm số lôgarit . TĨNH GIA Đề cương ôn thi học kỳ I năm học 2008 – 2009 HÀM LUỸ THỪA , HÀM SỐ MŨ VÀ HÀM SỐ LOGARIT B i 1: LUỸ THỪA Vấn đề 1: Tính Giá trò biểu thức B i 1:. II : Hàm số luỹ thừa,hàm sô mũ , hàm số lôgarit Trường THPT BC2 TĨNH GIA Đề cương ôn thi học kỳ I năm học 2008 – 2009 Mốt số b i toán ôn tập ĐỀ 1 Giải

Ngày đăng: 08/06/2013, 01:25

TỪ KHÓA LIÊN QUAN

w