1. Trang chủ
  2. » Giáo án - Bài giảng

Cơ học lượng tử 1.3

102 417 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 102
Dung lượng 2,36 MB

Nội dung

1 Outline I.Solving the Simple Harmonic Oscillator with the ladder operators II.Representing an operator as a matrix III.Heisenberg Picture and Schroedinger Picture IV.Equations of motion for x(t) and p(t) in the Heisenberg Picture V.The Ehrenfest Theorem Please read Goswami Chapter 8 2 I. Solving the simple harmonic oscillator with the ladder operators Recall a u 0 = 0 Συπποσε ωε ωαντ το φινδ τηε ειγενφυνχτιονσ ιν ξ−σπαχε Ω ριτε ουτ α = φ ( ξ ). Υσε − ι η ∂ ∂ ξ φορ π . µω 2η ξ + ι 2 µ η ω − ι η ∂ ∂ ξ                 υ 0 ( ξ ) = 0 Μυλτιπλψ βψ 2 ανδ δεφινε ξ = µω η ξ ξ + ∂ ∂ ξ       υ 0 = 0. Ιντεγρατε: υ 0 = Χε − ξ 2 /2 . Νορµ αλιζε: 1 ≡ δξ υ 0 ( ξ ) 2 = Χ 2 δξ εξπ − µωξ 2 η       −∞ +∞ ∫ −∞ +∞ ∫ = Χ 2 η π µω Σο Χ = µω π η       1/4 Σο υ 0 ξ ( ) = µω π η       1/4 ε − ξ 2 /2 3 u n ξ ( ) ∝ υ ν ξ ( ) = ξ υ ν = ξ α † ( ) ν ν ! υ 0 = ξ 1 ν ! µω 2η ξ − ιπ 2 µ η ω           ν υ 0 = 1 2 ν 1 ν ! ξ − ∂ ∂ ξ       ν ε − ξ 2 /2 ↓ 1 24 4 34 4 ε − ξ 2 /2 Η ν ξ ( ) Τηισ ισ τηε σαµ ε σολυτιον ασ ωασ φουνδ ωιτη τηε σεριεσ µ ετηοδ. Νοτε, ιτ τυρνσ ουτ τηατ τηε υ ν αρε ορτηονορµ αλ, σο υ ν υ µ = δ νµ Το φινδ τηε ειγενϖαλυεσ, ρεχαλλ Η υ = η ω α † α + 1 2       υ = Ε υ Σο α † α υ = Ε η ω − 1 2       υ 4 Consider u 0 We know that a u 0 = 0 Σο α † α υ 0 = 0 Ε 0 η ω − 1 2       ↑ 6 74 84 υ 0 = 0 Σο Ε 0 η ω − 1 2 = 0 Ε 0 = η ω 2 . 5 II. Representing an operator as a matrix Consider the mathematical operation u m a † u n . What this means is: (i) Begin with an initial state u n , the nth energy level of H or N. (ii) Operate on it with a † , which raises it to state u n+1 Τηατ ισ, α † υ ν = χ υ ν +1 ωηερε χ ισ α νορµ αλιζατιον χονσταντ. (ιιι) Χαλχυλατε τηε ιννερ προδυχτ οφ τηατ ρεσυλτ ωιτη υ µ : υ µ χ υ ν +1 = χ υ µ υ ν +1 ↓ 1 24 34 δ µ , ν +1 Νοω χονσιδερ υ µ χ υ ν . Βψ α σιµ ιλαρ αναλψσισ τηισ γιϖεσ χ ∋ υ µ υ ν −1 = χ ∋ δ µ , ν −1 . Νοω φινδ τηε χ ανδ χ ∋. 6 Start with u n+1 = 1 ν +1 ( ) ! α † ( ) ν +1 υ 0 = 1 ν +1 ( ) 1 ν ! α † ( ) ν +1 υ 0 = α † ν +1 ( ) 1 ν ! α † ( ) ν υ 0 ↓ 1 244 34 4 υ ν Σο υ ν +1 = α † ν +1 ( ) υ ν . Ρεωριτε τηισ ασ: ν +1 ( ) υ ν +1 = α † υ ν . Μυλτιπλψ ον τηε λεφτ ωιτη υ µ : υ µ ν +1 ( ) υ ν +1 ↓ 1 24 44 34 4 4 = υ µ α † υ ν ν +1 ( ) υ µ υ ν +1 ↓ 1 24 34 δ µ , ν +1 Σο υ µ α † υ ν = ν +1 ( ) δ µ , ν +1 7 Now consider the case for operator a: Start with a u n = α 1 ν ! α † ( ) ν υ 0 . Ρεχαλλ ωε σηοωεδ τηατ α α † ( ) ν = ν α † ( ) ν −1 + α † ( ) ν α Σο α υ ν = ν ν ! α † ( ) ν −1 υ 0 + 1 ν ! α † ( ) ν α υ 0 ↓ { 0 Νοω µ υλτιπλψ ον τηε λεφτ ωιτη υ µ : υ µ α υ ν = υ µ ν ν ! α † ( ) ν −1 υ 0 = υ µ ν 1 ν −1 ( ) ! α † ( ) ν −1 υ 0 ↓ 1 24 4 4 34 4 4 υ ν −1 = υ µ ν υ ν −1 = ν υ µ υ ν −1 ↓ 1 24 34 δ µ , ν −1 Σο υ µ α υ ν = νδ µ , ν −1 8 Construct a table for operator a † : INITIAL STATES u ruuuuuuuuuuuuuuuuuu n= 0 1 2 3 4 FINAL STATES m= 0 0 0 0 0 0 1 1 0 0 0 0 2 0 2 0 0 0 3 0 0 3 0 4 Construct a table for operator a : INITIAL STATES u ruuuuuuuuuuuuuuuuuu n= 0 1 2 3 4 FINAL STATES m= 0 0 1 0 0 0 1 0 0 2 0 0 2 0 0 0 3 0 3 0 0 0 0 4 9 These "tables" are the matrix representations of the operators a † and a. Notice that because the simple harmonic oscillator has an infinite number of eigenstates, the matrices are infinite-dimensional. The matrices encode the -amount of overlap between states u n and u m − ορ − −τηε αµ πλιτυδε ↓ 1 24 34 φορ τρανσιτιον ↓ 1 24 34 βετωεεν υ ν ανδ υ µ προβαβιλιτψ (χαυσεδ βψ α ορ α † ) 10 Recall we showed that the operator that evolves Ψ ιν τιµ ε ισ Υ = ε − ιΗ ( τ − τ 0 )/η . Σο ιφ τ 0 = 0, Ψ( τ ) = ε − ιΗτ /η Ψ(0) . Χονσιδερ σοµ ε οπερατορ Α ωηιχη ισ νοτ ιτσελφ α φυνχτιον οφ τιµ ε. Συπποσε ωε ωαντ το φινδ ιτσ εξπεχτατιον ϖαλυε ατ τιµ ε τ: Α τ = Ψ( τ ) Α Ψ( τ ) = Ψ(0) ε ιΗτ /η Αε − ιΗτ /η Ψ(0) Ω ε ηαϖε α χηοιχε αβουτ ωηετηερ το γρουπ τηε εξπονεντιαλ φυνχτιονσ ωιτη τηε Α ορ ωιτη τηε Ψ(0). 2 γρουπινγσ: Ψ(0) ε ιΗτ /η 1 24 34 Αε − ιΗτ /η Ψ(0) 1 244 34 4 Ψ(0) ε ιΗτ /η Αε − ιΗτ /η 1 24 34 Ψ(0) Ψ( τ ) Α Ψ( τ ) Ψ(0) Α ∋Ψ(0) Ηερε Α ισ νοτ α φυνχτιον οφ τ βυτ Ψ ισ. Ηερε Α ∋ ισ α φυνχτιον οφ τ βυτ Ψ ισ νοτ. Τηε ϖιεω τηατ ∀τηε εϖολυτιον οφ τιµ ε Τηε ϖιεω τηατ ∀τηε εϖολυτιον οφ τιµ ε χηανγεσ τηε Ψ∋σ, νοτ τηε οπερατορσ∀ ισ τηε χηανγεσ τηε οπερατορσ, νοτ τηε Ψ∋σ∀ ισ τηε Σχηροεδινγερ Πιχτυρε οφ θυαντυµ µ εχηανιχσ. Ηεισενβεργ Πιχτυρε οφ θυαντυµ µ εχηανιχσ. . χ ∋ υ µ υ ν 1 = χ ∋ δ µ , ν 1 . Νοω φινδ τηε χ ανδ χ ∋. 6 Start with u n +1 = 1 ν +1 ( ) ! α † ( ) ν +1 υ 0 = 1 ν +1 ( ) 1 ν ! α † ( ) ν +1 υ 0 = α † ν +1 ( ) 1 ν ! α † ( ) ν υ 0 ↓ 1 244 34 4 . υ ν +1 = α † ν +1 ( ) υ ν . Ρεωριτε τηισ ασ: ν +1 ( ) υ ν +1 = α † υ ν . Μυλτιπλψ ον τηε λεφτ ωιτη υ µ : υ µ ν +1 ( ) υ ν +1 ↓ 1 24 44 34 4 4 = υ µ α † υ ν ν +1 ( ) υ µ υ ν +1 ↓ 1 24 34 δ µ , ν +1 Σο. 0 1 1 0 0 0 0 2 0 2 0 0 0 3 0 0 3 0 4 Construct a table for operator a : INITIAL STATES u ruuuuuuuuuuuuuuuuuu n= 0 1 2 3 4 FINAL STATES m= 0 0 1 0 0 0 1 0 0 2 0 0 2 0 0 0 3 0 3 0

Ngày đăng: 20/10/2014, 02:00

TỪ KHÓA LIÊN QUAN

w