1 Outline I.Solving the Simple Harmonic Oscillator with the ladder operators II.Representing an operator as a matrix III.Heisenberg Picture and Schroedinger Picture IV.Equations of motion for x(t) and p(t) in the Heisenberg Picture V.The Ehrenfest Theorem Please read Goswami Chapter 8 2 I. Solving the simple harmonic oscillator with the ladder operators Recall a u 0 = 0 Συπποσε ωε ωαντ το φινδ τηε ειγενφυνχτιονσ ιν ξ−σπαχε Ω ριτε ουτ α = φ ( ξ ). Υσε − ι η ∂ ∂ ξ φορ π . µω 2η ξ + ι 2 µ η ω − ι η ∂ ∂ ξ υ 0 ( ξ ) = 0 Μυλτιπλψ βψ 2 ανδ δεφινε ξ = µω η ξ ξ + ∂ ∂ ξ υ 0 = 0. Ιντεγρατε: υ 0 = Χε − ξ 2 /2 . Νορµ αλιζε: 1 ≡ δξ υ 0 ( ξ ) 2 = Χ 2 δξ εξπ − µωξ 2 η −∞ +∞ ∫ −∞ +∞ ∫ = Χ 2 η π µω Σο Χ = µω π η 1/4 Σο υ 0 ξ ( ) = µω π η 1/4 ε − ξ 2 /2 3 u n ξ ( ) ∝ υ ν ξ ( ) = ξ υ ν = ξ α † ( ) ν ν ! υ 0 = ξ 1 ν ! µω 2η ξ − ιπ 2 µ η ω ν υ 0 = 1 2 ν 1 ν ! ξ − ∂ ∂ ξ ν ε − ξ 2 /2 ↓ 1 24 4 34 4 ε − ξ 2 /2 Η ν ξ ( ) Τηισ ισ τηε σαµ ε σολυτιον ασ ωασ φουνδ ωιτη τηε σεριεσ µ ετηοδ. Νοτε, ιτ τυρνσ ουτ τηατ τηε υ ν αρε ορτηονορµ αλ, σο υ ν υ µ = δ νµ Το φινδ τηε ειγενϖαλυεσ, ρεχαλλ Η υ = η ω α † α + 1 2 υ = Ε υ Σο α † α υ = Ε η ω − 1 2 υ 4 Consider u 0 We know that a u 0 = 0 Σο α † α υ 0 = 0 Ε 0 η ω − 1 2 ↑ 6 74 84 υ 0 = 0 Σο Ε 0 η ω − 1 2 = 0 Ε 0 = η ω 2 . 5 II. Representing an operator as a matrix Consider the mathematical operation u m a † u n . What this means is: (i) Begin with an initial state u n , the nth energy level of H or N. (ii) Operate on it with a † , which raises it to state u n+1 Τηατ ισ, α † υ ν = χ υ ν +1 ωηερε χ ισ α νορµ αλιζατιον χονσταντ. (ιιι) Χαλχυλατε τηε ιννερ προδυχτ οφ τηατ ρεσυλτ ωιτη υ µ : υ µ χ υ ν +1 = χ υ µ υ ν +1 ↓ 1 24 34 δ µ , ν +1 Νοω χονσιδερ υ µ χ υ ν . Βψ α σιµ ιλαρ αναλψσισ τηισ γιϖεσ χ ∋ υ µ υ ν −1 = χ ∋ δ µ , ν −1 . Νοω φινδ τηε χ ανδ χ ∋. 6 Start with u n+1 = 1 ν +1 ( ) ! α † ( ) ν +1 υ 0 = 1 ν +1 ( ) 1 ν ! α † ( ) ν +1 υ 0 = α † ν +1 ( ) 1 ν ! α † ( ) ν υ 0 ↓ 1 244 34 4 υ ν Σο υ ν +1 = α † ν +1 ( ) υ ν . Ρεωριτε τηισ ασ: ν +1 ( ) υ ν +1 = α † υ ν . Μυλτιπλψ ον τηε λεφτ ωιτη υ µ : υ µ ν +1 ( ) υ ν +1 ↓ 1 24 44 34 4 4 = υ µ α † υ ν ν +1 ( ) υ µ υ ν +1 ↓ 1 24 34 δ µ , ν +1 Σο υ µ α † υ ν = ν +1 ( ) δ µ , ν +1 7 Now consider the case for operator a: Start with a u n = α 1 ν ! α † ( ) ν υ 0 . Ρεχαλλ ωε σηοωεδ τηατ α α † ( ) ν = ν α † ( ) ν −1 + α † ( ) ν α Σο α υ ν = ν ν ! α † ( ) ν −1 υ 0 + 1 ν ! α † ( ) ν α υ 0 ↓ { 0 Νοω µ υλτιπλψ ον τηε λεφτ ωιτη υ µ : υ µ α υ ν = υ µ ν ν ! α † ( ) ν −1 υ 0 = υ µ ν 1 ν −1 ( ) ! α † ( ) ν −1 υ 0 ↓ 1 24 4 4 34 4 4 υ ν −1 = υ µ ν υ ν −1 = ν υ µ υ ν −1 ↓ 1 24 34 δ µ , ν −1 Σο υ µ α υ ν = νδ µ , ν −1 8 Construct a table for operator a † : INITIAL STATES u ruuuuuuuuuuuuuuuuuu n= 0 1 2 3 4 FINAL STATES m= 0 0 0 0 0 0 1 1 0 0 0 0 2 0 2 0 0 0 3 0 0 3 0 4 Construct a table for operator a : INITIAL STATES u ruuuuuuuuuuuuuuuuuu n= 0 1 2 3 4 FINAL STATES m= 0 0 1 0 0 0 1 0 0 2 0 0 2 0 0 0 3 0 3 0 0 0 0 4 9 These "tables" are the matrix representations of the operators a † and a. Notice that because the simple harmonic oscillator has an infinite number of eigenstates, the matrices are infinite-dimensional. The matrices encode the -amount of overlap between states u n and u m − ορ − −τηε αµ πλιτυδε ↓ 1 24 34 φορ τρανσιτιον ↓ 1 24 34 βετωεεν υ ν ανδ υ µ προβαβιλιτψ (χαυσεδ βψ α ορ α † ) 10 Recall we showed that the operator that evolves Ψ ιν τιµ ε ισ Υ = ε − ιΗ ( τ − τ 0 )/η . Σο ιφ τ 0 = 0, Ψ( τ ) = ε − ιΗτ /η Ψ(0) . Χονσιδερ σοµ ε οπερατορ Α ωηιχη ισ νοτ ιτσελφ α φυνχτιον οφ τιµ ε. Συπποσε ωε ωαντ το φινδ ιτσ εξπεχτατιον ϖαλυε ατ τιµ ε τ: Α τ = Ψ( τ ) Α Ψ( τ ) = Ψ(0) ε ιΗτ /η Αε − ιΗτ /η Ψ(0) Ω ε ηαϖε α χηοιχε αβουτ ωηετηερ το γρουπ τηε εξπονεντιαλ φυνχτιονσ ωιτη τηε Α ορ ωιτη τηε Ψ(0). 2 γρουπινγσ: Ψ(0) ε ιΗτ /η 1 24 34 Αε − ιΗτ /η Ψ(0) 1 244 34 4 Ψ(0) ε ιΗτ /η Αε − ιΗτ /η 1 24 34 Ψ(0) Ψ( τ ) Α Ψ( τ ) Ψ(0) Α ∋Ψ(0) Ηερε Α ισ νοτ α φυνχτιον οφ τ βυτ Ψ ισ. Ηερε Α ∋ ισ α φυνχτιον οφ τ βυτ Ψ ισ νοτ. Τηε ϖιεω τηατ ∀τηε εϖολυτιον οφ τιµ ε Τηε ϖιεω τηατ ∀τηε εϖολυτιον οφ τιµ ε χηανγεσ τηε Ψ∋σ, νοτ τηε οπερατορσ∀ ισ τηε χηανγεσ τηε οπερατορσ, νοτ τηε Ψ∋σ∀ ισ τηε Σχηροεδινγερ Πιχτυρε οφ θυαντυµ µ εχηανιχσ. Ηεισενβεργ Πιχτυρε οφ θυαντυµ µ εχηανιχσ. . χ ∋ υ µ υ ν 1 = χ ∋ δ µ , ν 1 . Νοω φινδ τηε χ ανδ χ ∋. 6 Start with u n +1 = 1 ν +1 ( ) ! α † ( ) ν +1 υ 0 = 1 ν +1 ( ) 1 ν ! α † ( ) ν +1 υ 0 = α † ν +1 ( ) 1 ν ! α † ( ) ν υ 0 ↓ 1 244 34 4 . υ ν +1 = α † ν +1 ( ) υ ν . Ρεωριτε τηισ ασ: ν +1 ( ) υ ν +1 = α † υ ν . Μυλτιπλψ ον τηε λεφτ ωιτη υ µ : υ µ ν +1 ( ) υ ν +1 ↓ 1 24 44 34 4 4 = υ µ α † υ ν ν +1 ( ) υ µ υ ν +1 ↓ 1 24 34 δ µ , ν +1 Σο. 0 1 1 0 0 0 0 2 0 2 0 0 0 3 0 0 3 0 4 Construct a table for operator a : INITIAL STATES u ruuuuuuuuuuuuuuuuuu n= 0 1 2 3 4 FINAL STATES m= 0 0 1 0 0 0 1 0 0 2 0 0 2 0 0 0 3 0 3 0