1. Trang chủ
  2. » Luận Văn - Báo Cáo

tìm điểm bất động chung cho một họ các ánh xạ giả co chặt bản tóm tắt tiếng anh

23 256 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 240,01 KB

Nội dung

C i C i i = 1, 2, . . . T i A i G i (u, v) cardG = 2 C 1 C 2 H x ∈ H {x k } ∞ k=1 {y k } ∞ k=1 y 0 = x, x k = P C 1 (y k−1 ), y k = P C 2 (x k ), k = 1, 2, , P C (x) k → ∞ C = C 1 ∩ C 2 P C H C C 1 C 2 H P C (x) k → ∞ cardG ≥ 2 C i T i {T i } i≥2 {T i } ∞ i=1 λ i C H H F =  ∞ i=1 F ix(T i ) = ∅ F ix(T i ) T i u ∗ ∈ F u ∗ ∈ C F (u ∗ ), v − u ∗  ≥ 0 v ∈ C, F : C → H C H F u α ∈ C u α ∈ C  ∞  i=1 γ i A i (u α ) + αu α , v − u α  ≥ 0 ∀v ∈ C, A i = I − T i α > 0 {γ i } γ i > 0; ∞  i=1 γ i  λ i = γ < ∞,  λ i = 1 − λ i 2 . ϕ : H −→ R ϕ  { n } ∞ n=0 {α n } ∞ n=0 • (i) k = 0 z 0 ∈ C  0 α 0 (ii) k = n z ∈ C min z∈C  ϕ(z) +   n  ∞  i=1 γ i A i (z n ) + α n z n  − ϕ  (z n ), z  . z n+1 (iii) z n+1 − z n  n ← n + 1 (ii) { n } ∞ n=0 {α n } ∞ n=0 0 <  n ≤ 1; 0 < α n+1 ≤ α n ≤ 1; α n → 0 n → ∞; ∞  n=0  n α n = ∞; ∞  n=0  2 n < ∞; ∞  n=0 (α n − α n+1 ) 2 α 3 n  n < ∞, {u α } {z n } u ∗ B =  ∞ i=1 γ i A i W T n T n−1 T 1 γ n γ n−1 γ 1 {T i } N i=1 u 0 ∈ H, u k+1 = T [k+1] u k − λ k+1 µF (T [k+1] u k ), T [n] = T n mod N µ ∈  0, 2η L 2  η L F {u k } ∞ k=0 u ∗ C =  N i=1 F ix(T i ) x 0 ∈ H {x n } ∞ n=0 x 0 ∈ H, y 0 0 = x 0 , y i k = (1 − β i k )y i−1 k + β i k T i (y i−1 k ), i = 1, 2, · · · , N, x k+1 = (1 − β 0 k )x k + β 0 k (I − λ k µF )y N k , k ≥ 0. λ k β i k i = 0, . . . , N λ k ∈ (0, 1) β i k ∈ (α, β) α, β ∈ (0, 1) k ≥ 0 lim k→∞ λ k = 0; ∞  k=0 λ k = ∞; lim k→∞   β i k+1 − β i k   = 0. u ∗ W n H C H F : C −→ H x ∗ ∈ C F (x ∗ ), x − x ∗  ≥ 0 ∀x ∈ C. V I(F, C) C H F : C −→ H C H C C H F : C −→ H U C u ∈ C \U v ∈ U F (u), u − v > 0. • x ∗ ∈ C x ∗ ∈ C x ∗ = P C (x ∗ − λF (x ∗ )) λ > 0 x 0 ∈ C x n+1 = P C (x n − λF (x n )), n = 0, 1, 2, · · · {x n } • F x 0 = x ∈ C, y n = P C (x n − λF (x n )), x n+1 = P C (x n − λF (y n )), n = 0, 1, 2, · · · λ ∈ (0, 1/L) L F • J H u ∗ ∈ C J(u ∗ ) = min u∈C J(u). ϕ : H → R v ∈ C  > 0 G : u → ϕ(u) + J  (v) − ϕ  (v), u . G  (v) = J  (v). v ∈ C v min u∈C {ϕ(u) + J  (v) − ϕ  (v), u}. { n } n∈N (i) k = 0  0 u 0 ∈ C (ii) k = n u ∈ C min u∈C {ϕ(u) +  n J  (u n ) − ϕ  (u n ), u}. u n+1 (iii) u n+1 − u n  n ← n + 1 (ii) J  F u 0 ∈ C  0 > 0 min u∈C {ϕ(u) +  0 F (u 0 ) − ϕ  (u 0 ), u}. u 1 u 0  0 u 1  1 u 2 z n ∈ C z n+1 min u∈C {ϕ(u) +  n F (u n ) − ϕ  (u n ), u}; C H F : C −→ H a C u ∗ ϕ : C −→ R ϕ  b C u n+1 F L C 0 <  n < 2ab/L 2 {u n } u ∗ F { n } ∞ n=0 {α n } ∞ n=0 • (i) k = 0 z 0 ∈ C  0 α 0 (ii) k = n z ∈ C min z∈C {ϕ(z) +  n (F (z n ) + α n z n ) − ϕ  (z n ), z}. z n+1 (iii) z n+1 − z n  n ← n + 1 (ii) { n } ∞ n=0 {α n } ∞ n=0 Ψ (i) 0 <  n ≤ 1 0 < α n+1 ≤ α n ≤ 1 α n → 0 n → ∞ (ii)  ∞ n=0  n α n = ∞  ∞ n=0  2 n < ∞ (iii)  ∞ n=0 (α n − α n+1 ) 2 α 3 n  n < ∞ H C H F : C −→ H ϕ : H −→ R ϕ  n ∈ N z n+1 Ψ F lim z n+1 − u ∗  = 0, u ∗ E C E T C E k x y ∈ D(T ) T k > 0 j(x − y) ∈ J(x − y) T (x) − T (y), j(x − y) ≤ x − y 2 − k(x − y) − (T (x) − T (y)) 2 , j(x) E I E (I − T )(x) − (I − T )(y), j(x − y) ≥ k(I − T )(x) − (I − T )(y) 2 , x, y ∈ D(T ) j(x − y) ∈ J(x − y) H  T (x) − T (y)  2 ≤ x − y  2 +λ  (I − T )(x) − (I − T )(y)  2 , x, y ∈ D(T ) λ = 1 − k T λ 0 ≤ λ < 1 [...]... auxiliary problem algorithm for a countably infinite family of non-self strictly pseudocontractive mappings in Hilbert spaces Constructed a procedure to determine a common fixed point for a countably infinite family of non-self strictly pseudocontractive and prove the convergence of regularization solution 2 Established the regularization auxiliary problem algorithm to determine a common element of the set... methods are constructed based on an infinite sum of mappings and Wn -mapping, introduced by Takahashi W Using these methods, we constructed a procedure for determing a common fixed point of a countably infinite family of non-self strictly pseudocontractive mappings, as well as, for finding a common element of the set of solutions for a variational inequality involving a monotone Lipschitz continuous... algorithm for com- puting a common fixed point for a countably infinite family of non-seld strictly pseudocontractive mappings in Hilbert space Let in H H Let be a real Hilbert space and let {Ti }∞ i=1 be a nonempty closed convex subset be a countably infinite family of non-self mappings of problem: C C into H such that F = λi -strictly ∞ i=1 F ix(Ti ) pseudocontractive = ∅ Consider the find an element... continuous mapping and the set of common fixed points for a countably infinite family of nonexpansive mappings on a closed convex subset in Hilbert spaces An illustrative example is considered Ch­¬ng 3 Variational inequality problem over the set of common fixed points for a finite family of nonexpansive mappings 3.1 Variational inequality problem over the set of common fixed points for a finite family... we applied a regularization auxiliary problem algorithm for finding a common fixed point for a countably infinite family of non-self strictly pseudocontractive mappings in Hilbert space At each iteration step, we solve a regularization problem with monotone mapping B= ∞ i=1 γi Ai , which is very complicated in computation To overcome this difficulty, in the next section, we introduce a new method,... regularization auxiliary problem algorithm for finding common fixed points of a countably infinite family of non-self strictly pseudocontractive or nonexpansive mappings in Banach spaces 2 Find a solution for a mixed variational inequality problem over the set of common fixed points of a countably infinite family of nonexpansive mappings in Banach spaces 22 23 3 Could we use mapping where 4 Sn = n i=1 γi Ai... and such that, for some positive constants η -strongly F = monotone N i=1 F ix(Ti ) Let = ∅ {Ti }N i=1 be L and N If Then the sequence S : H −→ H be a be L-Lipschitz be a mapping continuous and nonexpansive self-maps of converges strongly to the unique element Comment 3.1 η, F F : H → H p∗ of γ -strictly {xk }k∈N , defined by H such that (3.2) − (3.3), (3.1) pseudocontractive H, the mapping T , defined... set of common fixed points of a finite family of nonexpansive mappings in Hilbert spaces We introduced a new method, which is a combination of the hybrid stepest descent method for variational inequalities with the Krasnoselskij - Mann type algorithm for fixed point problems A strong convergence theorem is proved under simpler conditions and some numerical example are also given for illustration Conclusion... let from C into condition H (2.3) C be a nonempty closed convex subset of a real Hilbert space be a sequence of non-self such that ∞ i=1 F ix(Ti ) F := and the functional differentiable on H, = ∅ ϕ : H −→ R and its Gateaux derivative schitz continuous Then, for every (2.5) λi -strictly Moreover, if Assumption n ≥ 0, H pseudocontractive mappings Assume that {γi }∞ i=1 satisfies is proper, convex, and Gateaux... variational inequality problem and the set of common fixed points for an infinite family of nonexpansive or strictly pseudocontractive mappings in Hilbert spaces 3 Constructed an explicit iterative algorithm to determine a solution for a class of variational inequality problem over the set of common fixed points for a finite family of nonexpansive mappings or strictly pseudocontractive mappings in Hilbert spaces

Ngày đăng: 28/08/2014, 17:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w