1. Trang chủ
  2. » Giáo án - Bài giảng

Các chuyên đề môn toán bồi dưỡng học sinh môn toán chọn lọc

34 549 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 34
Dung lượng 1,1 MB

Nội dung

Trờng THCS sơn kim Phạm việt Hà Chuyên đề I: Căn thức bậc hai B ài 1 : 1) Đơn giản biểu thức : P = 14 6 5 14 6 5+ + . 2) Cho biểu thức : Q = x 2 x 2 x 1 . x 1 x 2 x 1 x + + ữ ữ + + a) Rút gọn biểu thức Q. b) Tìm x để Q > - Q. c) Tìm số nguyên x để Q có giá trị nguyên. H ớng dẫn : 1. P = 6 2. a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : Q = 1 2 x . b) Q > - Q x > 1. c) x = { } 3;2 thì Q Z B ài 2 : Cho biểu thức P = 1 x x 1 x x + + a) Rút gọn biểu thức sau P. b) Tính giá trị của biểu thức P khi x = 1 2 . H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : P = x x + 1 1 . b) Với x = 1 2 thì P = - 3 2 2 . B ài 3 : Cho biểu thức : A = 1 1 1 1 + + x x x xx a) Rút gọn biểu thức sau A. b) Tính giá trị của biểu thức A khi x = 4 1 c) Tìm x để A < 0. d) Tìm x để A = A. H ớng dẫn : a) ĐKXĐ : x 0, x 1. Biểu thức rút gọn : A = 1x x . b) Với x = 4 1 thì A = - 1. c) Với 0 x < 1 thì A < 0. d) Với x > 1 thì A = A. B ài 4 : Cho biểu thức : A = 1 1 3 1 a 3 a 3 a + ữ ữ + a) Rút gọn biểu thức sau A. Các bài tập chọn lọc - ôn tập toán 9 năm học 2009 - 20101 Trờng THCS sơn kim Phạm việt Hà b) Xác định a để biểu thức A > 2 1 . H ớng dẫn : a) ĐKXĐ : a > 0 và a 9. Biểu thức rút gọn : A = 3 2 +a . b) Với 0 < a < 1 thì biểu thức A > 2 1 . B ài 5 : Cho biểu thức: A = 2 2 x 1 x 1 x 4x 1 x 2003 . x 1 x 1 x 1 x + + + ữ + . 1) Tìm điều kiện đối với x để biểu thức có nghĩa. 2) Rút gọn A. 3) Với x Z ? để A Z ? H ớng dẫn : a) ĐKXĐ : x 0 ; x 1. b) Biểu thức rút gọn : A = x x 2003+ với x 0 ; x 1. c) x = - 2003 ; 2003 thì A Z . B ài 6 : Cho biểu thức: A = ( ) 2 x 2 x 1 x x 1 x x 1 : x 1 x x x x + + ữ ữ + . a) Rút gọn A. b) Tìm x để A < 0. c) Tìm x nguyên để A có giá trị nguyên. H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : A = 1 1 + x x . b) Với 0 < x < 1 thì A < 0. c) x = { } 9;4 thì A Z. B ài 7 : Cho biểu thức: A = x 2 x 1 x 1 : 2 x x 1 x x 1 1 x + + + ữ ữ + + a) Rút gọn biểu thức A. b) Chứng minh rằng: 0 < A < 2. H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : A = 1 2 ++ xx b) Ta xét hai trờng hợp : +) A > 0 1 2 ++ xx > 0 luôn đúng với x > 0 ; x 1 (1) +) A < 2 1 2 ++ xx < 2 2( 1++ xx ) > 2 xx + > 0 đúng vì theo gt thì x > 0. (2) Từ (1) và (2) suy ra 0 < A < 2(đpcm). B ài 8 : Cho biểu thức: P = a 3 a 1 4 a 4 4 a a 2 a 2 + + + (a 0; a 4) a) Rút gọn P. b) Tính giá trị của P với a = 9. H ớng dẫn : Các bài tập chọn lọc - ôn tập toán 9 năm học 2009 - 20102 Trờng THCS sơn kim Phạm việt Hà a) ĐKXĐ : a 0, a 4. Biểu thức rút gọn : P = 2 4 a b) Ta thấy a = 9 ĐKXĐ . Suy ra P = 4 B ài 9 : Cho biểu thức: N = a a a a 1 1 a 1 a 1 + + ữ ữ ữ ữ + 1) Rút gọn biểu thức N. 2) Tìm giá trị của a để N = -2004. H ớng dẫn : a) ĐKXĐ : a 0, a 1. Biểu thức rút gọn : N = 1 a . b) Ta thấy a = - 2004 ĐKXĐ . Suy ra N = 2005. B ài 10 : Cho biểu thức 3x 3x 1x x2 3x2x 19x26xx P + + + + = a. Rút gọn P. b. Tính giá trị của P khi 347x = c. Với giá trị nào của x thì P đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất đó. H ớng dẫn : a ) ĐKXĐ : x 0, x 1. Biểu thức rút gọn : 3x 16x P + + = b) Ta thấy 347x = ĐKXĐ . Suy ra 22 33103 P + = c) P min =4 khi x=4. B ài 11 : Cho biểu thức + + + + = 1 3 22 : 9 33 33 2 x x x x x x x x P a. Rút gọn P. b. Tìm x để 2 1 P < c. Tìm giá trị nhỏ nhất của P. H ớng dẫn : a. ) ĐKXĐ : x 0, x 9. Biểu thức rút gọn : 3x 3 P + = b. Với 9x0 < thì 2 1 P < c. P min = -1 khi x = 0 Bài 12: Cho A= 1 1 1 4 . 1 1 a a a a a a a + + + ữ ữ ữ + với x>0 ,x 1 a. Rút gọn A b. Tính A với a = ( ) ( ) ( ) 4 15 . 10 6 . 4 15+ ( KQ : A= 4a ) Bài 13: Cho A= 3 9 3 2 1 : 9 6 2 3 x x x x x x x x x x + ữ ữ ữ ữ + + với x 0 , x 9, x 4 . a. Rút gọn A. b. x= ? Thì A < 1. c. Tìm x Z để A Z Các bài tập chọn lọc - ôn tập toán 9 năm học 2009 - 20103 Trờng THCS sơn kim Phạm việt Hà (KQ : A= 3 2x ) Bài 14: Cho A = 15 11 3 2 2 3 2 3 1 3 x x x x x x x + + + + với x 0 , x 1. a. Rút gọn A. b. Tìm GTLN của A. c. Tìm x để A = 1 2 d. CMR : A 2 3 . (KQ: A = 2 5 3 x x + ) Bài 15: Cho A = 2 1 1 1 1 1 x x x x x x x + + + + + + với x 0 , x 1. a . Rút gọn A. b. Tìm GTLN của A . ( KQ : A = 1 x x x+ + ) Bài 16: Cho A = 1 3 2 1 1 1x x x x x + + + + với x 0 , x 1. a . Rút gọn A. b. CMR : 0 1A ( KQ : A = 1 x x x + ) Bài 17: Cho A = 5 25 3 5 1 : 25 2 15 5 3 x x x x x x x x x x + + ữ ữ ữ ữ + + a. Rút gọn A. b. Tìm x Z để A Z ( KQ : A = 5 3x + ) Bài 18: Cho A = 2 9 3 2 1 5 6 2 3 a a a a a a a + + + với a 0 , a 9 , a 4. a. Rút gọn A. b. Tìm a để A < 1 c. Tìm a Z để A Z ( KQ : A = 1 3 a a + ) Bài 19: Cho A= 7 1 2 2 2 : 4 4 2 2 2 x x x x x x x x x x + + + ữ ữ ữ ữ + với x > 0 , x 4. a. Rút gọn A. b. So sánh A với 1 A ( KQ : A = 9 6 x x + ) Bài20: Cho A = ( ) 2 3 3 : x y xy x y x y y x x y x y + ữ + ữ + với x 0 , y 0, x y Các bài tập chọn lọc - ôn tập toán 9 năm học 2009 - 20104 Trờng THCS sơn kim Phạm việt Hà a. Rút gọn A. b. CMR : A 0 ( KQ : A = xy x xy y + ) Bài 21 : Cho A = 1 1 1 1 1 . 1 1 x x x x x x x x x x x x x x + + + + ữ ữ ữ + + Với x > 0 , x 1. a. Rút gọn A. b. Tìm x để A = 6 ( KQ : A = ( ) 2 1x x x + + ) Bài 22 : Cho A = ( ) 4 3 2 : 2 2 2 x x x x x x x x + ữ + ữ ữ ữ với x > 0 , x 4. a. Rút gọn A b. Tính A với x = 6 2 5 (KQ: A = 1 x ) Bài 23 : Cho A= 1 1 1 1 1 : 1 1 1 1 2x x x x x + + ữ ữ + + với x > 0 , x 1. a. Rút gọn A b. Tính A với x = 6 2 5 (KQ: A = 3 2 x ) Bài 24 : Cho A= 3 2 1 1 4 : 1 1 1 1 x x x x x x + + ữ ữ ữ + + với x 0 , x 1. a. Rút gọn A. b. Tìm x Z để A Z (KQ: A = 3 x x ) Bài 25: Cho A= 1 2 2 1 2 : 1 1 1 1 x x x x x x x x ữ ữ ữ + + với x 0 , x 1. a. Rút gọn A. b. Tìm x Z để A Z c. Tìm x để A đạt GTNN . (KQ: A = 1 1 x x + ) Bài 26 : Cho A = 2 3 3 2 2 : 1 9 3 3 3 x x x x x x x x + + ữ ữ ữ ữ + với x 0 , x 9 . a. Rút gọn A. b. Tìm x để A < - 1 2 ( KQ : A = 3 3a + ) Bài 27 : Cho A = 1 1 8 3 1 : 1 1 1 1 1 x x x x x x x x x x + ữ ữ ữ ữ + với x 0 , x 1. a. Rút gọn A b. Tính A với x = 6 2 5 (KQ: A = 4 4 x x + ) c . CMR : A 1 Các bài tập chọn lọc - ôn tập toán 9 năm học 2009 - 20105 Trờng THCS sơn kim Phạm việt Hà Bài 28 : Cho A = 1 1 1 : 1 2 1 x x x x x x + + ữ + với x > 0 , x 1. a. Rút gọn A (KQ: A = 1x x ) b.So sánh A với 1 Bài 29 : Cho A = 1 1 8 3 2 : 1 9 1 3 1 3 1 3 1 x x x x x x x + ữ ữ ữ ữ + + Với 1 0, 9 x x a. Rút gọn A. b. Tìm x để A = 6 5 c. Tìm x để A < 1. ( KQ : A = 3 1 x x x + ) Bài30 : Cho A = 2 2 2 2 1 . 1 2 2 1 x x x x x x x + + ữ ữ + + với x 0 , x 1. a. Rút gọn A. b. CMR nếu 0 < x < 1 thì A > 0 c. Tính A khi x =3+2 2 d. Tìm GTLN của A (KQ: A = (1 )x x ) Bài 31 : Cho A = 2 1 1 : 2 1 1 1 x x x x x x x x + + + ữ ữ + + với x 0 , x 1. a. Rút gọn A. b. CMR nếu x 0 , x 1 thì A > 0 , (KQ: A = 2 1x x+ + ) Bài 32 : Cho A = 4 1 2 1 : 1 1 1 x x x x x + ữ + với x > 0 , x 1, x 4. a. Rút gọn b. Tìm x để A = 1 2 Bài 33 : Cho A = 1 2 3 3 2 : 1 1 1 1 x x x x x x x x + + + ữ ữ ữ + với x 0 , x 1. a. Rút gọn A. b. Tính A khi x= 0,36 c. Tìm x Z để A Z Bài 34 : Cho A= 3 2 2 1 : 1 2 3 5 6 x x x x x x x x x + + + + + ữ ữ ữ ữ + + với x 0 , x 9 , x 4. a. Rút gọn A. b. Tìm x Z để A Z c. Tìm x để A < 0 (KQ: A = 2 1 x x + ) Các bài tập chọn lọc - ôn tập toán 9 năm học 2009 - 20106 Trờng THCS sơn kim Phạm việt Hà Chuyên đề II: hàm số bậc nhất B ài 1 : 1) Viết phơng trình đờng thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4). 2) Tìm toạ độ giao điểm của đờng thẳng trên với trục tung và trục hoành. H ớng dẫn : 1) Gọi pt đờng thẳng cần tìm có dạng : y = ax + b. Do đờng thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4) ta có hệ pt : += += ba ba 4 2 = = 1 3 b a Vậy pt đờng thẳng cần tìm là y = 3x 1 2) Đồ thị cắt trục tung tại điểm có tung độ bằng -1 ; Đồ thị cắt trục hoành tại điểm có hoành độ bằng 3 1 . B ài 2 : Cho hàm số y = (m 2)x + m + 3. 1) Tìm điều kiện của m để hàm số luôn nghịch biến. 2) Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 3. 3) Tìm m để đồ thị của hàm số trên và các đồ thị của các hàm số y = -x + 2 ; y = 2x 1 đồng quy. H ớng dẫn : 1) Hàm số y = (m 2)x + m + 3 m 2 < 0 m < 2. 2) Do đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 3. Suy ra : x= 3 ; y = 0 Thay x= 3 ; y = 0 vào hàm số y = (m 2)x + m + 3, ta đợc m = 4 3 . 3) Giao điểm của hai đồ thị y = -x + 2 ; y = 2x 1 là nghiệm của hệ pt : = += 12 2 xy xy (x;y) = (1;1). Để 3 đồ thị y = (m 2)x + m + 3, y = -x + 2 và y = 2x 1 đồng quy cần : (x;y) = (1;1) là nghiệm của pt : y = (m 2)x + m + 3. Với (x;y) = (1;1) m = 2 1 B ài 3 : Cho hàm số y = (m 1)x + m + 3. 1) Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y = -2x + 1. 2) Tìm giá trị của m để đồ thị của hàm số đi qua điểm (1 ; -4). 3) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m. H ớng dẫn : 1) Để hai đồ thị của hàm số song song với nhau cần : m 1 = - 2 m = -1. Các bài tập chọn lọc - ôn tập toán 9 năm học 2009 - 20107 Trờng THCS sơn kim Phạm việt Hà Vậy với m = -1 đồ thị của hàm số song song với đồ thị hàm số y = -2x + 1. 2) Thay (x;y) = (1 ; -4) vào pt : y = (m 1)x + m + 3. Ta đợc : m = -3. Vậy với m = -3 thì đồ thị của hàm số đi qua điểm (1 ; -4). 3) Gọi điểm cố định mà đồ thị luôn đi qua là M(x 0 ;y 0 ). Ta có y 0 = (m 1)x 0 + m + 3 (x 0 1)m - x 0 - y 0 + 3 = 0 = = 2 1 0 0 y x Vậy với mọi m thì đồ thị luôn đi qua điểm cố định (1;2). B ài 4 : Cho hai điểm A(1 ; 1), B(2 ; -1). 1) Viết phơng trình đờng thẳng AB. 2) Tìm các giá trị của m để đờng thẳng y = (m 2 3m)x + m 2 2m + 2 song song với đờng thẳng AB đồng thời đi qua điểm C(0 ; 2). H ớng dẫn : 1) Gọi pt đờng thẳng AB có dạng : y = ax + b. Do đờng thẳng đi qua hai điểm (1 ; 1) và (2 ;-1) ta có hệ pt : += += ba ba 21 1 = = 3 2 b a Vậy pt đờng thẳng cần tìm là y = - 2x + 3. 2) Để đờng thẳng y = (m 2 3m)x + m 2 2m + 2 song song với đờng thẳng AB đồng thời đi qua điểm C(0 ; 2) ta cần : =+ = 222 23 2 2 mm mm m = 2. Vậy m = 2 thì đờng thẳng y = (m 2 3m)x + m 2 2m + 2 song song với đờng thẳng AB đồng thời đi qua điểm C(0 ; 2) B ài 5 : Cho hàm số y = (2m 1)x + m 3. 1) Tìm m để đồ thị của hàm số đi qua điểm (2; 5) 2) Chứng minh rằng đồ thị của hàm số luôn đi qua một điểm cố định với mọi m. Tìm điểm cố định ấy. 3) Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ x = 2 1 . H ớng dẫn : 1) m = 2. 2) Gọi điểm cố định mà đồ thị luôn đi qua là M(x 0 ;y 0 ). Ta có y 0 = (2m 1)x 0 + m - 3 (2x 0 + 1)m - x 0 - y 0 - 3 = 0 = = 2 5 2 1 0 0 y x Vậy với mọi m thì đồ thị luôn đi qua điểm cố định ( 2 5 ; 2 1 ). Baứi 6 : Tìm giá trị của k để các đờng thẳng sau : y = 6 x 4 ; y = 4x 5 3 và y = kx + k + 1 cắt nhau tại một điểm. B ài 7 : Giả sử đờng thẳng (d) có phơng trình y = ax + b. Xác định a, b để (d) đi qua hai điểm A(1; 3) và B(-3; -1). B ài 8 : Cho hàm số : y = x + m (D). Tìm các giá trị của m để đờng thẳng (D) : 1) Đi qua điểm A(1; 2003). 2) Song song với đờng thẳng x y + 3 = 0. Các bài tập chọn lọc - ôn tập toán 9 năm học 2009 - 20108 Trờng THCS sơn kim Phạm việt Hà Chuyên đề III: Phơng trình bất phơng trình bậc nhất một ần Hệ phơng trình bậc nhất 2 ẩn . A. kiến thức cần nhớ : 1. Phơng trình bậc nhất : ax + b = 0. Ph ơng pháp giải : + Nếu a 0 phơng trình có nghiệm duy nhất : x = b a . + Nếu a = 0 và b 0 phơng trình vô nghiệm. + Nếu a = 0 và b = 0 phơng trình có vô số nghiệm. 2. Hệ phơng trình bậc nhất hai ẩn : =+ =+ c'y b' x a' c by ax Ph ơng pháp giải : Sử dụng một trong các cách sau : +) Phơng pháp thế : Từ một trong hai phơng trình rút ra một ẩn theo ẩn kia , thế vào phơng trình thứ 2 ta đợc phơng trình bậc nhất 1 ẩn. +) Phơng pháp cộng đại số : - Quy đồng hệ số một ẩn nào đó (làm cho một ẩn nào đó của hệ có hệ số bằng nhau hoặc đối nhau). - Trừ hoặc cộng vế với vế để khử ẩn đó. - Giải ra một ẩn, suy ra ẩn thứ hai. B. Ví dụ minh họa : Ví dụ 1 : Giải các phơng trình sau đây : a) 2 2 x x 1 -x x = + + ĐS : ĐKXĐ : x 1 ; x - 2. S = { } 4 . b) 1 x x 1 - 2x 3 3 ++ = 2 Giải : ĐKXĐ : 1 x x 3 ++ 0. (*) Khi đó : 1 x x 1 - 2x 3 3 ++ = 2 2x = - 3 x = 2 3 Với x = 2 3 thay vào (* ) ta có ( 2 3 ) 3 + 2 3 + 1 0 Vậy x = 2 3 là nghiệm. Ví dụ 2 : Giải và biện luận phơng trình theo m : (m 2)x + m 2 4 = 0 (1) + Nếu m 2 thì (1) x = - (m + 2). + Nếu m = 2 thì (1) vô nghiệm. Ví dụ 3 : Tìm m Z để phơng trình sau đây có nghiệm nguyên . (2m 3)x + 2m 2 + m - 2 = 0. Giải : Ta có : với m Z thì 2m 3 0 , vây phơng trình có nghiệm : x = - (m + 2) - 3 - m2 4 . để pt có nghiệm nguyên thì 4 2m 3 . Giải ra ta đợc m = 2, m = 1. Ví dụ 3 : Tìm nghiệm nguyên dơng của phơng trình : 7x + 4y = 23. Giải : a) Ta có : 7x + 4y = 23 y = 4 7x - 23 = 6 2x + 4 1 x Vì y Z x 1 4. Các bài tập chọn lọc - ôn tập toán 9 năm học 2009 - 20109 Trờng THCS sơn kim Phạm việt Hà Giải ra ta đợc x = 1 và y = 4 bài tập phần hệ pt B ài 1 : Giải hệ phơng trình: a) 2x 3y 5 3x 4y 2 = + = b) x 4y 6 4x 3y 5 + = = c) 2x y 3 5 y 4x = + = d) x y 1 x y 5 = + = e) 2x 4 0 4x 2y 3 + = + = f) 2 5 2 x x y 3 1 1,7 x x y + = + + = + B ài 2 : Cho hệ phơng trình : mx y 2 x my 1 = + = 1) Giải hệ phơng trình theo tham số m. 2) Gọi nghiệm của hệ phơng trình là (x, y). Tìm các giá trị của m để x + y = -1. 3) Tìm đẳng thức liên hệ giữa x và y không phụ thuộc vào m. B ài 3 : Cho hệ phơng trình: x 2y 3 m 2x y 3(m 2) = + = + 1) Giải hệ phơng trình khi thay m = -1. 2) Gọi nghiệm của hệ phơng trình là (x, y). Tìm m để x 2 + y 2 đạt giá trị nhỏ nhất. B ài 4 : Cho hệ phơng trình: (a 1)x y a x (a 1)y 2 + = + = có nghiệm duy nhất là (x; y). 1) Tìm đẳng thức liên hệ giữa x và y không phụ thuộc vào a. 2) Tìm các giá trị của a thoả mãn 6x 2 17y = 5. 3) Tìm các giá trị nguyên của a để biểu thức 2x 5y x y + nhận giá trị nguyên. B ài 5 : Cho hệ phơng trình: x ay 1 (1) ax y 2 + = + = 1) Giải hệ (1) khi a = 2. 2) Với giá trị nào của a thì hệ có nghiệm duy nhất. B ài 6 : Xác định các hệ số m và n, biết rằng hệ phơng trình mx y n nx my 1 = + = có nghiệm là ( ) 1; 3 . B ài 7 : Cho hệ phơng trình ( ) a 1 x y 4 ax y 2a + + = + = (a là tham số). 1) Giải hệ khi a = 1. 2) Chứng minh rằng với mọi a hệ luôn có nghiệm duy nhất (x ; y) thoả mãn x + y 2. Các bài tập chọn lọc - ôn tập toán 9 năm học 2009 - 201010 [...]... thø hai 2h TÝnh vËn tèc cđa mçi «t«? Bµi 5 : Trong mét bi lao ®éng trång c©y, mét tỉ gåm 13 häc sinh (c¶ nam vµ n÷) ®· trång ®ỵc tÊt c¶ 80 c©y BiÕt r»ng sè c©y c¸c b¹n nam trång ®ỵc vµ sè c©y c¸c b¹n n÷ trång ®ỵc lµ b»ng nhau ; mçi b¹n nam trång ®ỵc nhiỊu h¬n mçi b¹n n÷ 3 c©y TÝnh sè häc sinh nam vµ sè häc sinh n÷ cđa tỉ Bµi 6 : Kho¶ng c¸ch gi÷a hai thµnh phè A vµ B lµ 180 km Mét « t« ®i tõ A ®Õn B,... đònh mọi hệ có nghiệm x > 0, y > 0 Bµi 10 (trang 23): Một ôtô và một xe đạp chuyển động đi từ 2 đầu một đoạn đường sau 3 giờ thì gặp nhau Nếu đi cùng chiều và xuất phát tại một điểm thì sau 1 giờ hai xe cách nhau 28 km Tính vận tốc của mỗi xe HD : Vận tốc xe đạp : 12 km/h Vận tốc ôtô : 40 km/h Bµi 11 : (trang 24): Một ôtô đi từ A dự đònh đến B lúc 12 giờ trưa Nếu xe chạy với vận tốc 35 km/h thì sẽ đến... mƯt bĨ c¹n th× sau 2 giê 55phót bĨ ®Çy bĨ NÕu më riªng tõng vßi th× vßi thø nhÊt lµm ®Çy bĨ nhanh h¬n vßi thø hai lµ hai giê Hái nÕu më riªng tõng vßi th× mçi vßi ch¶y bao l©u ®Çy bĨ? Bµi 24: Hai tỉ häc sinh trång ®ỵc mét sè c©y trong s©n trêng NÕu lÊy 5 c©y cđa tỉ 2 chun cho tỉ mét th× sè c©y trång ®ỵc cđa c¶ hai tỉ sÏ b»ng nhau NÕu lÊy 10 c©y cđa tỉ mét chun cho tỉ hai th× sè c©y trång ®ỵc cđa tỉ hai... V=B.h h : chiỊu cao B: diƯn tÝch ®¸y 1 H×nh trơ: Sxq = P.h = 2πR.h víi R: b¸n kÝnh ®¸y V = B.h = πR2.h 2 H×nh chãp: S xq = 1 P.d 2 1 V = B.h 3 2 H×nh nãn: 1 P.d = πR.l 2 1 1 V = B.h = πR 2 h 3 3 d: ®êng sinh; h: chiỊu cao S xq = víi d: ®êng cao mỈt bªn 3 H×nh chãp cơt: S xq = V = 1 ( P + P').d 2 ( h: chiỊu cao 3 H×nh nãn cơt: 1 ( P + P').d = π ( R + r ) d 2 1 π h 2 V = B + B '+ B.B ' h = R + r 2 + R.r... ®êng kÝnh ®¸y b»ng mét nưa chiỊu cao Bµi 19: Mét h×nh trơ cã thiÕt diƯn qua trơc lµ mét h×nh ch÷ nhËt cã chiỊu dµi 4 cm, chiỊu réng 3 cm TÝnh Sxq vµ V cđa h×nh trơ ®ã Bµi 20: Cho h×nh nãn ®Ønh A, ®êng sinh AB = 5 cm, b¸n kÝnh ®¸y OB = 3 cm a TÝnh Sxq cđa h×nh nãn b TÝnh V cđa h×nh nãn c Gäi CD lµ d©y cung cđa (O; OB)vu«ng gãc víi OB CMR: CD ⊥ (AOB) Bµi 21: Cho tam gi¸c ABC vu«ng t¹i A quay mét vßng... cã thiÕt diƯn qua trơc lµ mét tam gi¸c ®Ịu c¹nh b»ng 4 cm TÝnh Sxq vµ V Bµi 23: Mét h×nh nãn cơt cã ®êng cao 12 cm, c¸c b¸n kÝnh ®¸y lµ 10 cm vµ 15 cm a TÝnh Sxq cđa h×nh nãn cơt b TÝnh V cđa h×nh nãn sinh ra h×nh nãn cơt ®ã Bµi 24: Mét h×nh thang ABCD cã gãc A vµ gãc D =90 0, AB = BC = a , gãc C = 60 0 TÝnh Stp cđa h×nh t¹o thµnh khi quay h×nh thang vu«ng mét vßng xung quanh: a C¹nh AD b C¹nh DC C¸c . mãn *) Cách 2: Không cần lập điều kiện / 0 mà thay x = 3 vào (1) để tìm đợc m = - 4 9 .Sau đó thay m = - 4 9 vào phơng trình (1) : Các bài tập chọn lọc - ôn tập toán 9 năm học 2009 - 2 0101 8 Trờng. nghiệm sẽ tìm đợc nghiệm thứ 2 Các bài tập chọn lọc - ôn tập toán 9 năm học 2009 - 2 0101 3 Trờng THCS sơn kim Phạm việt Hà +) Cách 3: thay giá trị của tham số tìm đợc vào công thức tích hai nghiệm. x + m (D). Tìm các giá trị của m để đờng thẳng (D) : 1) Đi qua điểm A(1; 2003). 2) Song song với đờng thẳng x y + 3 = 0. Các bài tập chọn lọc - ôn tập toán 9 năm học 2009 - 2 0108 Trờng THCS

Ngày đăng: 19/08/2014, 22:24

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w