Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 19 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
19
Dung lượng
911,97 KB
Nội dung
De_bai-Tiep_tuyen_da_thuc.doc Dap_an_tiep_tuyen.Sua.pdf De_bai-Cuc_tri_da_thuc .doc Dap an-Cuc_tri_da_thuc .doc De_bai-Tuong_giao_da_thuc.doc Da_an-Tuong_giao_da_thuc.doc CHUYEN DE I: HAM SO DA THUC Bài 1: Tiếp tuyến hàm đa thức - Khóa LT Đảm bảo - thầy Phan Huy Khải Hocmai.vn – Ngôi trường chung của học trò Việt 1 BTVN PHẦN TIẾP TUYẾN HÀM ĐA THỨC Bài 1. Cho đồ thị 3 2 : 1 m C y x mx m . Viết phương trình tiếp tuyến của m C tại các điểm cố định mà m C đi qua. Bài 2. Tìm điểm 3 2 : 2 3 12 1M C y x x x sao cho tiếp tuyến của (C) tại điểm M đi qua gốc tọa độ. Bài 3. Viết phương trình tiếp tuyến của đồ thị 3 2 : 3 2 C y x x biết tiếp tuyến đó vuông góc với đường thẳng: 5 3 4 0 y x Bài 5. Viết phương trình tiếp tuyến đi qua 0; 1 A đến 3 2 2 3 1 y x x Bài 6. Viết phương trình tiếp tuyến đi qua 1;2 A đến 3 2 3 2 y x x Bài 7. Cho 3 2 : 2 3 12 5C y x x x . Viết phương trình tiếp tuyến biết a, Tiếp tuyến đó song song với đường thẳng 6 4y x b, Tiếp tuyến đó vuông góc với đường thẳng 1 2 3 y x c, Tiếp tuyến tạo với đường thẳng 1 5 2 y x góc 45 Bài 8. Tìm các điểm trên trục hoành mà từ đó kẻ được 3 tiếp tuyến đến đồ thị hàm số 3 2 : 3C y x x trong đó có 2 tiếp tuyến vuông góc với nhau. Bài 9. Cho đồ thị 3 1 : 3 x C y x và điểm M bất kì thuộc C . Gọi I là giao của 2 tiệm cận. Tiếp tuyến tại M cắt 2 tiệm cận tại A, B. CMR: a, M là trung điểm của AB b, Diện tích tam giác IAB không đổi …………………Hết……………… Nguồn: Hocmai.vn Bài 1: Tiếp tuyến hàm ña thức - Khóa LT ðảm bảo - Thầy Phan Huy Khải Hocmai.vn – Ngôi trường chung của học trò Việt 1 HDG CÁC BTVN PHẦN TIẾP TUYẾN HÀM ðA THỨC Bài 1. Cho ñồ thị ( ) 3 2 : 1 m C y x mx m = + − − . Viết phương trình tiếp tuyến của ( ) m C tại các ñiểm cố ñịnh mà ( ) m C ñi qua Lời giải: Gọi 0 0 ( ; ) M x y là ñiểm cố ñịnh mà ( ) m C ñi qua 3 2 0 0 0 2 3 0 0 0 2 0 0 0 3 0 0 0 0 1, ( 1) 1 0, 1 0 1 1 0 2 1 0 y x mx m m m x x y m x x x y y x y ⇒ = + − − ∀ ⇒ − + − − = ∀ − = = = − ⇒ ⇒ ∨ = = − − − = Do ñó có 2 ñiểm cố ñịnh mà ( ) m C ñi qua là ( ) 1 1;0 M và ( ) 2 1; 2 M − − Ta có: 2 3 2 y x mx ′ = + - Phuơng trình tiếp tuyến tại M 1 là: ( ) (1)( 1) (2 3) 2 3 y y x m x m ′ = − = + − + - Phuơng trình tiếp tuyến tại M 2 là: ( ) ( 1)( 1) 2 ( 2 3) 2 1 y y x m x m ′ = − + − = − + − − Bài 2. Tìm ñiểm ( ) 3 2 : 2 3 12 1 M C y x x x ∈ = + − − sao cho tiếp tuyến của (C) tại ñiểm M ñi qua gốc tọa ñộ. Lời giải: Gọi 0 0 ( ; ) M x y là ñiểm cần tìm 3 2 0 0 0 0 2 3 12 1 y x x x ⇒ = + − − (1) PTTT của (C) tại M là: ( ) ( ) 2 2 0 0 0 0 0 0 0 0 0 ( ) : ( )( ) 6 6 12 6 6 12 d y y x x x y x x x y x x x ′ = − + = + − + − + − Vì (d) ñi qua gốc tọa ñộ nên ( ) 2 0 0 0 0 6 6 12 y x x x = + − (2) Từ (1) và (2) ( ) 3 2 2 0 0 0 0 0 0 2 3 12 1 6 6 12 x x x x x x ⇒ + − − = + − 3 2 0 0 2 0 0 0 0 0 4 3 1 0 ( 1)(4 1) 0 1 12 x x x x x x y ⇒ + + = ⇒ + − + = ⇒ = − ⇒ = Vậy ( 1;1; 2) M − Bài 1: Tiếp tuyến hàm ña thức - Khóa LT ðảm bảo - Thầy Phan Huy Khải Hocmai.vn – Ngôi trường chung của học trò Việt 4 Bài 3. Viết phương trình tiếp tuyến của ñồ thị ( ) 3 2 : 3 2 C y x x = − + biết tiếp tuyến ñó vuông góc với ñường thẳng: 5 3 4 0 y x − + = Lời giải: Tiếp tuyến vuông góc với ñường thẳng: 5 3 4 0 y x − + = có phương trình dạng: 5 (d):y x a 3 = − + ð i ề u ki ệ n ñể (d) và (C) ti ế p xúc nhau là: h ệ 3 2 2 5 3 2 x a 3 5 3 6 3 x x x x − + = − + − = − có nghi ệ m T ừ 2 2 5 29 5 3 27 3 6 9 18 5 0 1 61 3 3 27 x a x x x x x a = → = − = − ⇒ − + = ⇒ = → = V ậ y có 2 ti ế p tuy ế n th ỏ a mãn bài toán: 1 5 29 ( ) : x 3 27 d y = − + và 2 5 61 ( ) : x 3 27 d y = − + Bài 4 . Vi ế t ph ươ ng trình ti ế p tuy ế n ñ i qua ( ) 0; 1 A − ñế n 3 2 2 3 1 y x x = + − Lời giải : Ph ươ ng trình ñườ ng th ẳ ng ñ i qua A có d ạ ng d: y=kx – 1. d ti ế p xúc v ớ i (C) khi và ch ỉ khi h ệ sau có nghi ệ m: ( ) 3 2 3 2 2 2 3 2 3 2 3 2 2 2 2 3 1 1 2 3 1 6 6 1 6 6 0 2 3 1 6 6 1 4 3 0 (4 3) 0 3 4 0 3 3 9 6. 6. 4 4 8 x x kx x x x x x k x x x x x x x x x x x x k k + − = − ⇔ + − = + − = + = ⇔ + − = + − ⇔ + = ⇔ + = ⇔ = − = ⇒ = − + − = − V ậ y có 2 ti ế p tuy ế n c ầ n tìm là: y 1 = − và 9 y x-1 hay 9x+8y+8=0 8 = − Bài 5 . Vi ế t ph ươ ng trình ti ế p tuy ế n ñ i qua ( ) 1; 2 A − ñế n 3 2 3 2 y x x = − + Lời giải : Ph ươ ng trình ñườ ng th ẳ ng ñ i qua A có d ạ ng d: y=k(x+1) + 2. d ti ế p xúc v ớ i (C) khi và ch ỉ khi h ệ sau có nghi ệ m: Bài 1: Ti ế p tuy ế n hàm ñ a th ứ c - Khóa LT ðả m b ả o - Th ầ y Phan Huy Kh ả i Hocmai.vn – Ngôi tr ườ ng chung c ủ a h ọ c trò Vi ệ t 4 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 2 3 2 2 2 3 2 3 2 3 3 2 1 2 3 2 3 6 1 2 3 6 0 3 2 3 3 6 2 2 6 0 3 3 2 0 1 2 3 1 2 3 1 2 1 2 3 1 2 3 1 2 x x k x x x x x x k x x x x x x x x x x x y k k y x k y x − + = + + ⇔ − + = − + + = − = ⇔ − + = − − + ⇔ − = ⇔ = ± = = ⇒ = − ⇒ = − + + = + = + + + V ậ y có 3 ti ế p tuy ế n c ầ n tìm là: y 2 = và ( ) ( ) 1 2 3 1 2 y x = ± + + Bài 6 . Cho ( ) 3 2 : 2 3 12 5 C y x x x = − − − . Vi ế t ph ươ ng trình ti ế p tuy ế n bi ế t a, Ti ế p tuy ế n ñ ó song song v ớ i ñườ ng th ẳ ng 6 4 y x = − b, Ti ế p tuy ế n ñ ó vuông góc v ớ i ñườ ng th ẳ ng 1 2 3 y x = + c, Ti ế p tuy ế n t ạ o v ớ i ñườ ng th ẳ ng 1 5 2 y x = − + góc 45 Lời giải: a, Tiếp tuyến song song với ñt: 6 4 y x = − có dạng ( ) : 6 d y x b = + với 4 b ≠ − ðK ñể ( ) d và ( ) C tiếp xúc là hệ sau có nghiệm: 3 2 2 2 3 12 5 6 6 6 12 6 x x x x b x x − − − = + − − = Từ 2 2 1 13 2 6 6 12 6 3 0 1 13 2 x x x x x x − + = − − = ⇔ − − = ⇔ − − = Vì: ( ) ( ) 3 2 2 2 1 2 3 18 5 6 6 12 6 6 12 15 7 13 8 3 6 x b x x x x x x x x x = − − − = − − − − − − − = − − - V ớ i 1 13 1 13 3 13 13 3 13 13 13. 8 6 2 2 2 2 x b y x − + − + + + = ⇒ = − − = − ⇒ = − 2 2 1 13 2 6 6 12 6 3 0 1 13 2 x x x x x x − + = − − = ⇔ − − = ⇔ − − = Bài 1: Ti ế p tuy ế n hàm ñ a th ứ c - Khóa LT ðả m b ả o - Th ầ y Phan Huy Kh ả i Hocmai.vn – Ngôi tr ườ ng chung c ủ a h ọ c trò Vi ệ t 4 - V ớ i 1 13 1 13 3 13 13 3 13 13 13. 8 6 2 2 2 2 x b y x − − − − − − = ⇒ = − − = − ⇒ = − V ậ y có 2 ti ế p tuy ế n th ỏ a mãn bài toán là: ( ) 1 3 13 13 : 6 2 d y x + = − và ( ) 2 3 13 13 : 6 2 d y x − = − b, Ti ế p tuy ế n vuông góc v ớ i ñườ ng th ẳ ng 1 2 3 y x = + s ẽ có h ệ s ố góc 3 k = − . Ph ươ ng trình hoành ñộ ti ế p ñ i ể m là: 1 2 2 2 1 7 2 6 6 12 3 2 2 3 0 1 7 2 x y x x x x x + = ′ = − − = − ⇔ − − = ⇔ − = ( ) ( ) 3 2 2 2 1 2 3 18 5 6 6 12 6 6 12 15 7 16 5 3 6 x b x x x x x x x x x = − − − = − − − − − − − = − − - PTTT t ạ i 1 1 7 2 x + = là: ( ) 1 7 3 16. 5 3 13 8 7 2 y x y x + = − − − ⇒ = − − + - PTTT t ạ i 1 1 7 2 x − = là: ( ) 1 7 3 16. 5 3 13 8 7 2 y x y x − = − − − ⇒ = − − − c, G ọ i k là h ệ s ố góc c ủ a ti ế p tuy ế n c ầ n tìm. Theo gi ả thi ế t ta có: 1 3 2 1 2 tan 45 2 1 2 1 1 2 1 3 2 k k k k k k k k = − + + = = ⇔ + = − ⇔ − = − - V ớ i 3 k = − ta có pt hoành ñộ ti ế p ñ i ể m: 1 2 2 2 1 7 2 6 6 12 3 6 6 9 0 1 7 2 x y x x x x x + = ′ = − − = − ⇔ − − = ⇔ − = - PTTT t ạ i 1 1 7 2 x + = là: ( ) 1 7 3 16. 5 3 13 8 7 2 y x y x + = − − − ⇒ = − − + - PTTT t ạ i 1 1 7 2 x − = là: ( ) 1 7 3 16. 5 3 13 8 7 2 y x y x − = − − − ⇒ = − − − - V ớ i k = 1/3 ta có pt hoành ñộ ti ế p ñ i ể m: Bài 1: Ti ế p tuy ế n hàm ñ a th ứ c - Khóa LT ðả m b ả o - Th ầ y Phan Huy Kh ả i Hocmai.vn – Ngôi tr ườ ng chung c ủ a h ọ c trò Vi ệ t 4 1 2 2 2 3 315 1 6 6 6 12 6 6 9 0 3 3 315 6 x y x x x x x + = ′ = − − = ⇔ − − = ⇔ − = ( ) ( ) 3 2 2 2 1 127 2 3 18 5 6 6 12 6 6 12 15 7 134 3 6 18 x b x x x x x x x x x= − − − = − − − − − − − = − − PTTT t ạ i 1 3 315 6 x + = là 1 1333 402 201 3 18 y x + = − PTTT t ạ i 1 3 315 6 x − = là 1 1333 402 201 3 18 y x − = − V ậ y có 4 ti ế p tuy ế n th ỏ a mãn bài toán Bài 7 . Tìm các ñ i ể m trên tr ụ c hoành mà t ừ ñ ó k ẻ ñượ c 3 ti ế p tuy ế n ñế n ñồ th ị hàm s ố ( ) 3 2 : 3 C y x x = + trong ñ ó có 2 ti ế p tuy ế n vuông góc v ớ i nhau Lời giải : L ấ y ( ) ,0 M m b ấ t kì thu ộ c tr ụ c hoành Ox. ðườ ng th ẳ ng ñ i qua M v ớ i h ệ s ố góc k có ph ươ ng trình ( ) y k x m kx km = − = − ti ế p xúc v ớ i ( ) C ⇔ h ệ 3 2 2 3 (1) 3 6 (2) x x kx km x x k + = − + = có nghi ệ m. Th ế (2) vào (1) ta có: ( ) ( ) 3 2 2 3 3 6 x x x x x m + = + − ( ) ( ) ( ) 2 2 2 3 3 6 0 0 2 3 3 6 0 x x m x m x x m x m ⇔ + − − = = ⇔ + − − = ðể t ừ M k ẻ ñượ c 3 ti ế p tuy ế n ñế n ( ) C trong ñ ó có 2 ti ế p tuy ế n vuông góc thì ph ươ ng trình ( ) 2 ( ) 2 3 3 6 0 g x x m x m = + − − = ph ả i có 2 nghi ệ m phân bi ệ t 1 2 ; x x khác 0 sao cho 1 2 1 k k = − (k xác ñị nh theo x trong (2)) ( ) ( )( ) ( ) ( ) [ ] 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 ; 3 3 3 48 0 9 30 9 0 3 (0) 6 0 0 0 9 2 2 1 9 2( ) 4 1 3 6 3 6 1 m m m m m m g m m m x x x x x x x x x x x x x x > − < − ∆ = − + > + + > ⇔ = − ≠ ⇔ ≠ ⇔ ≠ + + = − + + + = − + + = − Bài 1: Ti ế p tuy ế n hàm ñ a th ứ c - Khóa LT ðả m b ả o - Th ầ y Phan Huy Kh ả i Hocmai.vn – Ngôi tr ườ ng chung c ủ a h ọ c trò Vi ệ t 4 ( )( ) 1 1 3 3 3 3 1 0 0 27 27 1 9 3 3 3 3 4 1 m m m m m m m m m m m > − ∨ < − > − ∨ < − ⇔ ≠ ⇔ ≠ ⇔ = − = − − − + − + = − sV ậ y ñ i ể m th ỏ a mãn là: 1 ;0 27 M Bài 8 . Cho ñồ th ị ( ) 3 1 : 3 x C y x + = − và ñ i ể m M b ấ t kì thu ộ c ( ) C . G ọ i I là giao c ủ a 2 ti ệ m c ậ n. Ti ế p tuy ế n t ạ i M c ắ t 2 ti ệ m c ậ n t ạ i A, B. CMR: a, M là trung ñ i ể m c ủ a AB b, Di ệ n tích tam giác IAB không ñổ i Lời giải : a, ðồ th ị ( ) C có TCN: ( ) 1 : y 3 d = và TC ð : ( ) 2 : x 3 d = ⇒ t ọ a ñộ ñ i ể m ( ) 3;3 I L ấ y ñ i ể m b ấ t kì ( ) 10 3 ;3 , 0 M m C m m + + ∈ ≠ . Ti ế p tuyên t ạ i M có d ạ ng: ( ) ( ) ( ) ( ) 2 2 10 10 20 30 : 3 3 3 3d y y m x m y x m m m m ′ = + − + + + ⇔ = − + + + Ph ươ ng trình hoành ñộ giao ñ i ể m c ủ a ( ) C và ( ) d là: 2 2 2 2 2 2 10 20 30 3 1 1 1 3 6 9 3 2 1 0 3 x x x x m x m m m m m m m + − + + + = ⇔ − + + − + + = − D ễ th ấ y pt trên có 2 nghi ệ m phân bi ệ t 1 2 x x < . G ọ i ( ) 1 1 ; A x y và ( ) 2 2 ; B x y . Ta có: 2 1 2 2 2 6 2 6 2 1 M m m x x m x m + + = = + = ( ) 1 2 1 2 2 2 10 20 30 20 2 3 6 2 M y y x x y m m m m + = − + + + + = + = V ậ y m là trung ñ i ể m c ủ a AB ( ñ pcm) b, Do tam giác IAB vuông t ạ i I, mà có M là trung ñ i ể m c ủ a AB nên ta có: ( ) ( ) ( ) ( ) 1 2 1 10 . 2 ; ; 2 20 2 IAB S IA IB d M d M d m m ∆ = = = = Bài 1: Ti ế p tuy ế n hàm ñ a th ứ c - Khóa LT ðả m b ả o - Th ầ y Phan Huy Kh ả i Hocmai.vn – Ngôi tr ườ ng chung c ủ a h ọ c trò Vi ệ t 4 V ậ y di ệ n tích IAB ∆ không ñổ i. ………………….Hết………………. Nguồn: Hocmai.vn Bài 2: Cực trị hàm đa thức – Khóa LT Đảm bảo – Thầy Phan Huy Khải Hocmai.vn – Ngôi trường chung của học trò Việt 1 BTVN PHẦN CỰC TRỊ HÀM ĐA THỨC Bài 1 : Tìm a để hàm số 3 2 4 ( ) 2(1 sin ) (1 os2 ) 1 3 f x x a x c a x đạt cực trị tại 1 2 ,x x thảo mãn điều kiện: 2 2 1 2 1 x x Bài 2 : Cho hàm số 3 2 1 1 3sin 2 ( ) (sin os ) 3 2 4 a f x x a c a x x 1. Tìm a để hàm số luôn đồng biến 2. Tìm a để hàm số đạt cực trị tại 1 2 ,x x thỏa mãn điều kiện 2 2 1 2 1 2 x x x x Bài 3 : Tìm m để hàm số 3 2 3 ( ) 2 m f x x x m có các CĐ và CT nằm về hai phía của đường thẳng y = x Bài 4: Tìm m để hàm 4 3 2 ( ) 4 1f x x x x mx có cực đại, cực tiểu Bài 5 : Cho hàm số 4 3 2 ( ) 2 f x x x mx . Tìm m để hàm chỉ có cực tiểu mà không có cực đại Bài 6 : CMR hàm số 4 2 ( ) 6 4 6f x x x x luôn có 3 cực trị đồng thời gốc tọa độ O là trọng tâm của tam giác có 3 đỉnh là 3 điểm cực trị Bài 7 : CMR: 4 3 4 ( ) 0, 256 27f x x px q x R q p Bài 8 : Tìm m để hàm số 4 2 ( ) 1 1 2f x mx m x m có đúng 1 cực trị Bài 9 : CMR hàm số 4 3 2 ( ) 5 1 f x x x x có 3 điểm cực trị nằm trên một parabol. ……………….Hết………………. Nguồn: hocmai.vn [...]... giao hàm đa thức – Khóa LT Đảm bảo – Thầy Phan Huy Khải HDG CÁC BTVN PHẦN TƯƠNG GIAO HÀM ĐA THỨC Câu 1: Cho hàm số (C): y x 3 3mx 2 mx và đường thẳng d: y = x + 2 Tìm m để hàm số (C) cắt đường thẳng d: 1.1 Tại đúng 2 điểm phân biệt 1.2 Tại 3 điểm phân biệt A, B, C sao cho AB = BC 1.3 Tại 3 điểm phân biệt lập thành cấp số nhân Câu 2: Cho hàm số y x 4 2 m 1 x 2 2m 1 2.1 Tìm m để hàm số. .. phân biệt lập thành cấp số cộng; 2.2 Tìm m để hàm số cắt Ox tại 3 điểm phân biệt có hoành độ nhỏ hơn 3 ………………….Hết……………… hocmai.vn Nguồn: Hocmai.vn – Ngôi trường chung của học trò Việt 1 Bài 3: Tương giao hàm đa thức – Khóa LT Đảm bảo – Thầy Phan Huy Khải HDG CÁC BTVN PHẦN TƯƠNG GIAO HÀM ĐA THỨC Câu 1: Cho hàm số (C): y x 3 3mx 2 mx và đường thẳng d: y = x + 2 Tìm m để hàm số (C) cắt đường thẳng...Bài 2: Cực trị hàm đa thức – Khóa LT Đảm bảo – thầy Phan Huy Khải HDG CÁC BTVN PHẦN CỰC TRỊ HÀM ĐA THỨC 4 3 Bài 1: Tìm a để hàm số f ( x) x 3 2(1 sin a) x 2 (1 cos2a) x 1 đạt cực trị tại 2 x1 , x2 thảo mãn điều kiện: x12 x2 1 Lời giải: Hàm số có CĐ, CT f ( x ) 4 x 2 4(1 sin a ) x (1 cos2a ) 0 có 2 nghiệm... 3 (sin a cosa) x 2 3sin 2a x 4 1 Tìm a để hàm số luôn đồng biến 2 2 Tìm a để hàm số đạt cực trị tại x1 , x2 thỏa mãn điều kiện x1 x2 x12 x2 Lời giải: Ta có: f ( x ) x 2 (sin a cosa ) x 3sin 2a 4 1 Hàm số luôn đồng biến f ( x) 0, x R Hocmai.vn – Ngôi trường chung của học trò Việt 1 Bài 2: Cực trị hàm đa thức – Khóa LT Đảm bảo – thầy Phan Huy Khải (sin a cosa)2 ... đạt cực tiểu tại x = 0, và không có cực đại Page 3 of 5 Bài 2: Cực trị hàm đa thức – Khóa LT Đảm bảo – thầy Phan Huy Khải TH 2: Nếu g 0 m 9 thì g(x) có 2 nghiệm phân biệt Đk để hàm chỉ có cực tiểu 8 mà không có cực đại là: g 0 0 m 0 (thỏa mãn) m 0 Vậy các giá trị cần tìm của m là: m 9 8 Bài 6: CMR hàm số f ( x) x 4 6 x 2 4 x 6 luôn có 3 cực trị đồng thời gốc tọa độ... Lời giải: f ( x) 4 x 3 p 0 x Từ bbt suy ra 3 p , từ đó ta vẽ được bbt của hàm f(x) 4 f ( x) 0, x R Page 4 of 5 Bài 2: Cực trị hàm đa thức – Khóa LT Đảm bảo – thầy Phan Huy Khải min f ( x) f ( 3 xR p )0 4 4 p p 3 3 4 p 4 q0 3 256q 27 p 4 (dpcm) Bài 8: Tìm m để hàm số f ( x) mx 4 m 1 x 2 1 2m có đúng 1 cực trị x 0 Lời giải: f ( x )... 2 1 3 Câu 2: Cho hàm số y x 4 2 m 1 x 2 2m 1 2.1 Tìm m để hàm số cắt Ox tại 4 điểm phân biệt lập thành cấp số cộng; 2.2 Tìm m để hàm số cắt Ox tại 3 điểm phân biệt có hoành độ nhỏ hơn 3 Lời giải: Xét phương trình hoành độ giao điểm: x 4 2 m 1 x 2 2m 1 0 ; (1) Đặt t x 2 , t 0 thì (1) thành: f (t ) t 2 2 m 1 t 2m 1 0 2.1 Điều kiện để hàm số cắt Ox tại 4 điểm... hàm số f ( x) x3 3m 2 x m có các CĐ và CT nằm về hai phía của 2 đường thẳng y = x Lời giải: Hàm số có CĐ và CT f ( x) 3 x 2 3mx 0 có 2 nghiệm phân biệt m 0 Khi đó f’(x) có 2 nghiệm phân biệt x1 0; x2 m tọa độ 2 điểm CĐ, CT là: A(0; m); B(m; m m3 ) 2 Hai điểm A, B nằm về hai phía của đường thẳng y = x hay x – y = 0 khi và chỉ khi: Page 2 of 5 Bài 2: Cực trị hàm đa thức – Khóa. .. 0 m 1 Vậy m 1 1.3 Đk cần: Giả sử (C) cắt d tại 3 điểm phân biệt có hoành độ x1 ; x2 ; x3 lần lượt lập thành cấp số nhân Khi đó ta có: g x x x1 x x2 x x3 Hocmai.vn – Ngôi trường chung của học trò Việt 1 Bài 3: Tương giao hàm đa thức – Khóa LT Đảm bảo – Thầy Phan Huy Khải x1 x2 x3 3m Suy ra: x1 x2 x2 x3 x1 x3 m 1 x x x 2 1 2 3 2 3 Vì x1 x3 ... của học trò Việt Page 2 of 3 Bài 3: Tương giao hàm đa thức – Khóa LT Đảm bảo – Thầy Phan Huy Khải 0 t1 t2 3 f t có 2 nghiệm phân biệt t1 ; t2 sao cho: 0 t1 3 t2 ' m 2 0 ' m2 0 f 3 4 4m 0 f (0) 2m 1 0 S 2 m 1 3 S 2 m 1 0 P 2m 1 0 1 m m 1 2 1 Đáp số m m 1 2 ………………….Hết……………… Nguồn: Hocmai.vn . Bài 2: Cực trị hàm đa thức – Khóa LT Đảm bảo – Thầy Phan Huy Khải Hocmai.vn – Ngôi trường chung của học trò Việt 1 BTVN PHẦN CỰC TRỊ HÀM ĐA THỨC Bài 1 : Tìm a để hàm số 3 2 4 ( ) 2(1. 2: Cực trị hàm đa thức – Khóa LT Đảm bảo – thầy Phan Huy Khải Hocmai.vn – Ngôi trường chung của học trò Việt 1 HDG CÁC BTVN PHẦN CỰC TRỊ HÀM ĐA THỨC Bài 1 : Tìm a để hàm số 3 2 4 (. 3: Tương giao hàm đa thức – Khóa LT Đảm bảo – Thầy Phan Huy Khải Hocmai.vn – Ngôi trường chung của học trò Việt 1 HDG CÁC BTVN PHẦN TƯƠNG GIAO HÀM ĐA THỨC Câu 1: Cho hàm số (C): 3 2 3 y