Bài tập: Giải tích 1 – Ngành: Sư phạm Vật lý và Vật lý học GV bộ môn: Nguyễn Vũ Thụ Nhân – Tổ bộ môn Toán – lý – Khoa Vật lý – ĐH Sư phạm TpHCM Bài tập Khai triển Taylor – Maclaurin Bài 1: 1. Khai triển đa thức 4 3 2 5 5 2 x x x x thành lũy thừa của (x – 2) 2. Khai tri ển đa thức 5 4 2 2 1 x x x x thành lũy thừa của (x +1) Bài 2: Tìm khai triển Maclaurin đến bậc 5 của các hàm số sau: 1. tan y x 2. arcsin y x 3. arccos y x 4. arctan y x 5. 1 ( 1)( 2) y x x 6. 2 3 1 x y x 7. 2 2 (1 2 ) (1 2 ) x x y x e x e 8. 1 ln 1 x y x 9. arcsin sin y x x 10. sin cos y x x 11. cos(3 ).sin y x x 12. sin x y e x Bài 3: Viết công thức Maclaurin của các hàm số : 1. sin x e đến x 5 2. tan x e đến x 5 3. ln(cos ) x đến x 6 4. 2 ln 1 x x đến x 5 5. sin ln x x đến x 6 6. 1 1 sin x đến bậc 5 7. cos(sin ) x đến x 6 . Tìm f (6) (0) ; 8. 2 2 x x e đến bậc 5. 9. tan(sin ) x đến x 5 10. sin(tan ) x đến x 5 11. 3 2 3 1 2 1 3 x x x x đến x 3 Bài 4 : Với các giá trị nào của A, B, C, D thì khi x 0 ta có công thức tiệm cận : 2 5 2 1 0( )? 2 x Ax Bx e x Cx Dx Bài 5: Áp dụng công thức khai triển Taylor – Maclaurin, tính giới hạn của : 1. 0 1 1 lim cot x x x x 2. 2 0 ln(1 ) lim x x x x 3. 2 4 0 cos 1 2 lim x x x x 4. 3 0 tan sin lim x x x x 5. 3 0 arctan arcsin lim x x x x 6. 3 3 0 tan 3 lim sin 6 x x x x x x x 7. 2 2 2 0 ln (1 ) sin lim 1 x x x x e 8. 2 0 1 2 lim sin x x x e x x x 9. 3 5 0 2(tan sin ) lim x x x x x Bài tập: Giải tích 1 – Ngành: Sư phạm Vật lý và Vật lý học GV bộ môn: Nguyễn Vũ Thụ Nhân – Tổ bộ môn Toán – lý – Khoa Vật lý – ĐH Sư phạm TpHCM 10. 2 1 lim ln 1 x x x x 11. 2 2 0 1 lim cot x x x 12. 6 5 6 5 6 6 lim x x x x x Đáp số 1.1 -7(x-2) - (x-2) 2 + 3(x-2) 3 + (x-2) 4 1.2 (x+1) 2 + 2(x+1) 3 - 3(x+1) 4 + (x+1) 5 2.1 3 5 7 7 2 17 0( ) 3 15 315 x x x x x 2.2 3 5 7 7 3 5 0( ) 6 40 112 x x x x x 2.3 3 5 5 3 0( ) 2 6 40 x x x x 2.4 3 5 7 7 0( ) 3 5 7 x x x x x 2.5 2 3 4 5 5 1 3 5 11 21 0( ) 2 4 8 16 32 64 x x x x x x 2.6 2 3 4 5 5 3 5 5 5 5 5 0( ) x x x x x x 2.7 3 5 5 16 32 0( ) 3 15 x x x 2.8 3 5 5 2 2 2 0( ) 3 5 x x x x 2.9 5 5 2 0( ) 12 x x x 2.10 2 3 4 5 5 1 0( ) 2 6 24 120 x x x x x x 2.11 3 5 5 14 62 0( ) 3 15 x x x x 2.12 3 5 2 5 0( ) 3 30 x x x x x 3.1 2 4 5 5 1 0( ) 2 8 15 x x x x x 3.2 2 3 4 5 5 3 37 1 0( ) 2 2 8 120 x x x x x x 3.3 2 4 6 6 0( ) 2 12 45 x x x x 3.4 3 5 5 3 0( ) 6 40 x x x x 3.5 2 4 6 6 0( ) 6 180 2835 x x x x 3.6 3 4 5 2 5 5 2 61 1 0( ) 6 3 120 x x x x x x 3.7 2 4 6 6 5 37 1 0( ) 2 24 720 x x x x 3.8 3 4 5 2 5 2 5 1 2 0( ) 3 6 15 x x x x x x 3.9 3 5 7 7 107 0( ) 6 40 5040 x x x x x 3.10 3 5 7 7 55 0( ) 6 40 1008 x x x x x 3.11 2 3 6 x x 4. 1 1 1 1 ; ; ; 2 12 2 12 A B C D 5.1 1 3 5.2 1 2 5.3 1 24 5.4 1 2 5.5 1 2 5.6 16 5.7 0 5.8 1 5.9 1 5.10 1 2 5.11 2 3 5.12 1 3 . Bài tập: Giải tích 1 – Ngành: Sư phạm Vật lý và Vật lý học GV bộ môn: Nguyễn Vũ Thụ Nhân – Tổ bộ môn Toán – lý – Khoa Vật lý – ĐH Sư phạm TpHCM Bài tập Khai triển Taylor – Maclaurin Bài 1:. Maclaurin Bài 1: 1. Khai triển đa thức 4 3 2 5 5 2 x x x x thành lũy thừa của (x – 2) 2. Khai tri ển đa thức 5 4 2 2 1 x x x x thành lũy thừa của (x +1) Bài 2: Tìm khai triển Maclaurin. 12. 6 5 6 5 6 6 lim x x x x x Đáp số 1.1 -7 (x-2) - (x-2) 2 + 3(x-2) 3 + (x-2) 4 1.2 (x+1) 2 + 2(x+1) 3 - 3(x+1) 4 + (x+1) 5 2.1 3 5 7 7 2 17 0( ) 3 15 315 x x x x x