www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 ________________________________________________________________________________ Câu I. Cho hàm số y= -x + x + a x+a 2 trong đó a là tham số. 1) Xác định a để đồ thị của hàm số có tiệm cận xiên đi qua điểm (2, 0). Khảo sát sự biến thiên và vẽ đồ thị của hàm số ứng với giá trị vừa tìm đỷợc của a. 2) Xác định tất cả các giá trị của a để đồ thị của hàm số cắt đỷờng thẳngy=x-1tại2điểm phân biệt. Khi đó gọi y 1 ,y 2 là tung độ của 2 giao điểm, hãy tìm một hệ thức giữa y 1 ,y 2 , không phụ thuộc a. Câu II. Giải và biện luận theo k phỷơng trình 1 cosx - 1 sinx =k . Câu III. 1) Giải bất phỷơng trình x - 3x + 2 + x - 4x + 3 22 2x-5x+4 2 . Câu IV. Giải và biện luận theo a, b, phỷơng trình x=a-b(a-bx 2 ) 2 . www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 __________________________________________________________ Câu I . 1 ) Phơng trình tiệm cận xiên : y = - x + a + 1. Từ đó suy ra a = 1. 2) a642< hoặc a642> + ; 12 1 2 yy (y y ) 1+ =. Câu II. Phơng trình đã cho tơng đơng với sin x cosx k sin x cos x = (1) Đặt tsinxcosx 2sinx 4 = = , |t| 2 ; khi đó (1) trở thành 2 2t k t1 = , |t| 2(t 1) (2) 2 f(t) kt 2t k 0=+= , |t| 2(t 1) (3) a) k0:t0 2sinx 4 === xk 4 =+ (k Z) b) k 0 : f (-1) = - 2, f(1) = 2 nên (3) không có nghiệm t = 1. * f( 2) k 2 2 0= = =k22: = = t22sinx 4 x2k 4 = + (k Z) ; * f( 2) k 2 2 0=+ = =k22: == t22sinx 4 3 x3k 4 =+ (k Z) ; * f( 2)f( 2) (k 2 2)(k 2 2) 0=+< |k| 2 2< : (3) có một nghiệm t: 2 t 2<< ; đó là nghiệm 2 11k t2sinx k4 + + == 2 11k sin x sin 4 2k ++ == x2k 4 x(2k1) 4 =++ =+ + (k Z) * f( 2)f( 2) (k 2 2)(k 2 2) 0=+> |k| 2 2> S1 22 22 <=< (3) có 2 nghiệm 2t 2<< , hai nghiệm đó là 2 1 11k t2sinx k4 + + == 2 1 11k sin x sin 4 2k ++ = = 1 1 x2k 4 x(2k1) 4 =++ =+ + (k Z) và 2 2 11k t2sinx k4 + == 2 2 11k sin x sin 4 2k + == 2 2 x2k 4 x(2k1) 4 =++ =+ + (k Z) www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 __________________________________________________________ (Tất cả các nghiệm đều thỏa mãn điều kiện nghiệm). Câu III. 1) Điều kiện 2 2 2 x3x20 x4x30 x5x40 + + + x 1 và x 4. a) Tìm nghiệm ở miền x 4 : (x 1)(x 2) (x 1)(x 3) 2 (x 1)(x 4)+ x2 x32x4 + . Do x 4 nên x2 x4 x3 x4 x2 x32x4 + . Vậy x 4 đều là nghiệm. b) Rõ ràng x = 1 thỏa mãn bất phơng trình đã cho. c) Xét x < 1. Khi đó, bất phơng trình đã cho đợc viết lại nh sau : + (1 x)(2 x) (1 x)(3 x) 2 (1 x)(4 x) 2x 3x 24x + . Do x < 1 nên 2x 4x 2x 3x 24x 3x 4x < +< < Vậy x < 1 không phải là nghiệm. Kết luận : x 4 hoặc x = 1. 2) Đặt 22 Z(x2y1) (2xay5)= + + ++ . Do 2 (x 2y 1) 0+ và 2 (2x ay 5) 0++ nên Z 0. Vậy a) min Z0= x2y10 2x ay 5 0, += ++= tức là hệ phơng trình x2y 1 2x ay 5 = += phải có nghiệm a 4. b) Xét trờng hợp a = 4. Khi đó 22 Z (x 2y 1) (2x 4y 5)= + + + . Đặt t = x 2y + 1 ( < t < + ). Khi đó : 222 Zt (2t3) 5t 12t9=+ + = + + và min 9 Z 5 = ( khi 6 t) 5 = . Kết luận : min Z = 0 (nếu a 4) 9 5 (nếu a = 4). Câu IV. Đặt z=a-bx 2 (1) ta có x=a-bz 2 . (2) Từ(1)và(2)tacó: z-x=b(z 2 -x 2 )=b(z+x)(z-x)(3) a)b=0ị x=a. b) b ạ 0 : Từ (3) ta có: )z-x=0ị x=a-bx 2 bx 2 +x-a=0 x 12, = -1 1 + 4ab 2b ,ab - 1 4 ; ) z-xạ 0 ị b(z+x)=1 b[a-bx 2 +x]-1=0 b 2 x 2 -bx+1-ab=0 x 34, = b b 4ab - 3 2b = 14ab-3 2b 2 ,ab 3 4 . Tóm lại ta có: Nếub=0thìx=a. Nếu b ạ 0: Với 3 4 >ab - 1 4 :x 12, = -1 1 + 4ab 2b ; với ab 3 4 :x 12, = - 1 1 + 4ab 2b ;x 34, = 14ab-3 2b . Câu Va. 1) Xét hàm g(t) = t - lnt với tập xác định (0 ; +Ơ). Ta có g(t) = 1 2t - 1 t = t-2 2t , vậy g(t) có bảng biến thiên www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 ________________________________________________________________________________ t 04+Ơ g(t) - 0 + +Ơ +Ơ g(t) 2 - ln4 suy ra g(t) có giá trị nhỏ nhất ming(t)=g(4)=2-ln4> 0, bởi vì 2 > ln4 e 2 > 4 mà e = 2,78 > 2. Thành thử g(t) > 0 với mọi t > 0, hay t > lnt. 2) Đặt t = 1 |x| ,tacótđ +Ơ khi x đ 0, sử dụng kết quả 1, thì suy ra điều cần chứng minh. 3) Với x ạ 0, ta có f n (x)=nx n-1 ln|x| + x n-1 màn-1 1, nên lim f' (x) = 0 x0 n . Mặt khác f' (0) = lim f (0 + x) - f (0) x = lim ( x) ln| x n x0 nn x0 n-1 |=0 , vậy f n (x) liên tục tạix=0.Hiển nhiên f n (x) liên tục tại các điểm x ạ 0. Câu Vb. 1) (Q) cắt mp (BDDB) theo giao tuyến BD ; BD // EC ị BD // BD. Kéo dài EC, cắt AD kéo dài tại F ị F cố định. AD đi qua F, vậy AD luôn đi qua điểm cố định F. 2) mp (AABB)// mp (DDC) ị AB // DC, mp (AADD) // mp(BBC) www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 ________________________________________________________________________________ ị AD // BC; do đó ABCD là hình bình hành. Mặt khác, BBDD là hình chữ nhật ị BB = DD ị BBC = DDCị BC = DC ị ABCD là hình thoi. Ta có S ABCD'''' = S cos 3 =2a ABCD 2 . 3) ImpDDBB ImpAAC (' ') (' ) ị I thuộcgiao tuyến hai mặt phẳng (DDBB) và (AAC) ị tập hợp các điểm I là nửa đỷờng thẳng cùng phía với Ax, và vuông góc (P) tại O (O là giao điểm của AC và BD). www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 ________________________________________________________________________________ www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 ________________________________________________________________________________ Câu Va. 1) Chứng tỏ rằng với t > 0, ta luôn luôn có lnt < t. 2) Chứng minh rằng với mọi số nguyên dỷơng n, ta đều có lim lnxx n x0 =0. 3) Chứng minh rằng với mọi số nguyên dỷơng 2, hàm số khix o, xx o n ln khix=0 có đạo hàm f n (x) liên tục trên R. Câu Vb. Trong mặt phẳng (P) cho hình vuông ABCD cạnh a. Kéo dài AB thêm đoạn BE = a. Dựng ba nửa đỷờng thẳng Ax, By, Dz vuông góc với (P) và ở về cùng một phía đối với (P). Một mặt phẳng (Q) chứa CE quay quanh CE, cắt Ax, By, Dz lần lỷỳồt tại A, B, D. 1) Chứng minh rằng BD//BD, và đỷờng thẳng AD luôn đi qua một điểm cố định. 2) Tứ giác ABCD là hình gì ? Tính diện tích tứ giác ấy khi (Q) tạo với (P) góc 60 0 . 3) Khi (Q) quay quanh CE, hãy tìm tập hợp giao điểm I của các đỷờng chéo AC và BD của tứ giác ABCD. . z=a-bx 2 (1) ta có x=a-bz 2 . (2) Từ(1)và(2)tacó: z-x=b(z 2 -x 2 )=b(z+x)(z-x)(3) a)b=0ị x=a. b) b ạ 0 : Từ (3) ta có: )z-x=0ị x=a-bx 2 bx 2 +x-a=0 x 12, = -1 1 + 4ab 2b ,ab - 1 4 ; ) z-xạ. z-xạ 0 ị b(z+x)=1 b[a-bx 2 +x ]-1 =0 b 2 x 2 -bx+1-ab=0 x 34, = b b 4ab - 3 2b = 14ab-3 2b 2 ,ab 3 4 . Tóm lại ta có: Nếub=0thìx=a. Nếu b ạ 0: Với 3 4 >ab - 1 4 :x 12, = -1 1 + 4ab 2b ; với ab 3 4 :x 12, = -. 4ab 2b ; với ab 3 4 :x 12, = - 1 1 + 4ab 2b ;x 34, = 14ab-3 2b . Câu Va. 1) Xét hàm g(t) = t - lnt với tập xác định (0 ; +Ơ). Ta có g(t) = 1 2t - 1 t = t-2 2t , vậy g(t) có bảng biến thi n www.khoabang.com.vn Luyện thi